MENUClose
名古屋大学公式サイトへ
Home » Collaboration Projects

The ATLAS experiment aims to discover new physics phenomena, using world highest energy proton-proton collider called Large Hadron Collider (LHC) at CERN located in the vicinity of Geneva, Switzerland.
ATLAS is an international collaborative experiment which consists of about 3,000 researchers from more than 177 institutes in 38 countries. ATLAS discovered the Higgs boson in 2012. Nagoya team led by Prof. Tomoto plays a leading role in searching for the new particles, such as supersymmetric particles and measuring properties of the Higgs boson, as well as developing/constructing/operating electronics and software of "muon trigger system" which makes a decision whether an event caused by a proton-proton collision contains muons from the decays of Higgs bosons and new particles.

The Belle II experiment at the SuperKEKB accelerator in Japan aims to solve the great mysteries of particle physics.The Belle II collaboration consists of over 500 physicists and engineers from 97 institutions in 23 countries. The team at Nagoya University led by Prof. Iijima is one of the major research groups in the Belle II collaboration, which plays leading roles in various aspects of the project: construction and operation of a particle detector, called "TOP counter", newly developed by the Nagoya team, development of data processing methods using the high performance computers at KMI, and data analysis to find new phenomena.

The COSI is a NASA SMEX mission to be launched on 2025. It is dedicated for MeV astronomy. Using Ge-detector based Compton telescope with good energy resolution, COSI will explore the Galactic gamma-ray lines and other high energy astrophysics. The COSI team is lead by UC Berkeley group and NASA/GSFC, with collaborators in USA, France, Italy, Taiwan, and Japan.
The Cherenkov Telescope Array (CTA) is an international observatory project to observe very-high-energy (VHE) gamma rays with energies ranging from 20 GeV to 300 TeV. It will observe VHE celestial objects such as supernova remnants and active galactic nuclei. It also aims to indirectly discover the dark matter by observing gamma-ray signals that are expected from annihilation of dark-matter particles. The Nagoya University group is actively working on the development CTA focal-plane cameras and photodetectors, and on telescopes simulation to realize the construction of more than 100 telescopes in the Northern and Southern Hemispheres in 2020s.
DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is a space gravitational-wave antenna with a frequency band between 0.1 and
10 Hz. DECIGO consists of three spacecraft 1,000 km apart with laser interferometers. The most important objective of DECIGO is the detection
of primordial gravitational waves to reveal the secret of the beginning of the Universe. Other science targets include direct measurement of the
acceleration of the Universe, the revelation of the formation of massive black holes, and many others. As a pathfinder science mission of DECIGO,
we plan to launch B-DECIGO in 2034. Nagoya University (KMI) is one of the leading institutes for DECIGO.
The DsTau experiment (CERN NA65) aims accurate measurement (or prediction) of the amount of tau neutrinos and its energy distribution. We will scrutinize the physical potential beyond the Standard Model by performing precise measurements of tau neutrinos, whose characters are least known.
At the CERN, a 400 GeV proton beam was irradiated onto a target plate, and the secondary particles emitted by the reaction between protons and the target nucleus. We look for the decay of Ds, a short-lived charm particles, and measure the flux and the energy distribution of tau neutrinos generated.
In order to detect cascade decays within a few millimeters, a nuclear emulsion films tracker with excellent spatial resolution is mandatory.
Nagoya University contributes to the production of nuclear emulsion films, reading recorded track from developed emulsion films, and data analysis.
Proton beam irradiation has started in 2021,
Euclid Space Telescope is a space mission led by European Space Agency (ESA). Euclid will be launched in 2023 and conduct the first wide-area (15,000 sq. degress) galaxy survey by a space telescope. The research team at Nagoya University participates in Euclid Consortium and conducts preparatory studies for cosmology analyses.
The FASER Experiment (ForwArd Search ExpeRiment at the LHC) will search for unknown extra standard model particles emitted in the forward direction of the proton collision point of the LHC at CERN, and measure neutrinos in the high-energy region that humans have not yet explored. Nagoya University contributes to the measurement of high-energy neutrinos by producing nuclear emulsion films, reading recoded tracks, and analyzing neutrino intereactions.
Since 2022, we have been conducting beam irradiation, and nuclear emulsion films that have been developed after irradiation are scanned with our high-speed track reader (HTS) and analyzing the data.
The Fermi Gamma-ray Space Telescope (Fermi satellite) is a gamma-ray observatory satellite launched by NASA in 2008. It has the Large Area Telescope (LAT) that observes high-energy gamma rays with energies from 20 MeV to 300 GeV and the Gamma-ray Burt Monitor for lower energies. Nagoya University is a member institution of the Fermi/LAT team. Fermi/LAT has the highest sensitivity for gamma-ray source detection in the world. It has achieved the lowest upper limits of dark-matter cross section in both the Galactic center and dwarf spheroidal galaxies by indirect dark-matter search with gamma rays.
The FORCE mission aims to cover wide X-ray energy band of 1-80 keV, with good angular resolution of ~10'' and inprecedented sensitivity above 10 keV, the hard X-ray energy band. The mission is based on the heritage of Hitomi satellite hard X-ray imager, which showed the best hard X-ray sensitivity as then. With 10 times sharper X-ray mirror uner development with NASA team, FORCE provides an order of magnitude better sensitivity. Nagoya University contributes to satellite system concept design, detector design, and mirror calibration.
Hyper-Kamiokande is a next generation neutrino detector with 190 kton of water Cherenkov detector, having 8-times larger fiducial volume. Thanks to its large mass of Hyper-Kamiokande, we hope to discover neutrino CP violation, recently hinted by T2K long-baseline neutrino oscillation experiments, as well as to detect proton decays, which could be the evidence of Grand Unified Theory. Aiming to start its operation in 2027, KMI is contributing toR&D works for newly developed optical sensors, and new neutrino astrophysics with MeV-GeV energies.
The J-PARC muon g-2/EDM experiment is an international project that intends to measure the muon’s anomalous magnetic moment (g-2) and electric dipole moment (EDM) with an innovative method. It will use the high-intensity muon beam of Material and Life Science Experimental Facility (MLF) in Japan Proton Accelerator Research Complex (J-PARC) (Tokai Village, Japan). More than 100 researchers from nine countries join the experiment to reveal the existence of new physics beyond the standard model of particle physics based on the measurements. The collaborators are promoting the researches and developments to start the data taking in 2026. The research group of Nagoya University, lead by Prof. Toru Iijima, is promoting the researches and developments of the muon cooling technique and the muon linear accelerator, which make the innovative method possible.
Introductory movie (YouTube, Japanese)
The Murchison Widefield Array (MWA) is a low-frequency radio telescope in Western Australia, and a precursor instrument to the Square Kilometre Array (SKA). It consists of thousands of spider-like antennas arranged in regular grids called ‘tiles’, spread over several kilometers within the Murchison Radio-astronomy Observatory. The MWA is renowned for its wide field of view and nanosecond time resolution, making it invaluable for quickly mapping the sky and studying rare and faint events as they happen. Since it began operations in mid-2013, the MWA has made the breakthrough discovery of new ionospheric structures in the Earth’s atmosphere, been involved in the world’s first detection of gravitational waves and radiation from a neutron star merger, and created a catalogue of 300,000 galaxies and the first radio-colour panorama of the Universe. The MWA is run by a consortium of 21 institutions from Australia, New Zealand, China, Japan, Canada and the USA.
Nancy Grace Roman Space Telescope is NASA's next-generation flagship mission, which will be launched in 2025. Roman has a field of view 100 times wider than Hubble Space Telescope, providing wide-field observation of the Universe at a time. The research team at Nagoya University participates in the cosmology team and carries out forecasts of cosmological constraints and preparation studies for data analysis.
NOP experiment is a project for fundamental physics with slow neutrons; for example, precision measurement of neutron lifetime, search for new physics through P- and T-violation, and search for extra-dimension and dark energy. The main site of the project is J-PARC, which is the world-highest intense spallation neutron source. Furthermore, accelerator-driven neutron sources and research reactors both inside and outside of Japan are also utilized. Nagoya team has critical roles in a number of aspects in the project: R&D of various devices for neutrons, designing the experiments, measurements, and analysis.
The wide-field imaging survey by Subaru Hyper Suprime-Cam (HSC) is led by the National Astronomical Observatory of Japan (NAOJ) and conducted by the international collaboration of the Japanese and Taiwanese astronomical community and Princeton University. HSC started the survey in 2014 and completed observations of 1,100 sq. degrees of the sky in 2021. Among the same generation of galaxy surveys, HSC is the deepest (I-band limited magnitude ~ 26) and provides superb image quality (0.6" seeing on average). The research team at Nagoya University plays an essential role in cosmology analysis with weak gravitational lensing, collaborating with researchers at Kavli IPMU at the University of Tokyo.

Super-Kamokande is a water Cherenkov detector with 50 kton of ultra-pure water located at 1000 m underground of the Kamioka mine.
We study property of neutrinos by using various neutrino sources such as the sun, cosmic-rays, and the accelerator.
We are also conducting neutrino astrophysics and searching for proton decays.
The water will be enchanted with Gd doping in order to detect neutrinos from past super-novae.
KMI contributes to atmospheric neutrino oscillations and dark matter search using neutrinos.

An X-ray observatory is to be launched on 2023, lead by JAXA/ISAS. The mission is capable of X-ray spectroscopy with a resolving-power 30 times better than the existing X-ray missions. From this mission we can expect to observe the dynamical status of hot plasmas in high-energy sources, such as clusters of galaxies and black holes, with unprecedented accuracy. Also, the mission is a powerful tool to diagnose the ionization states of metals around high-energy sources, and searching for minor metals in such objects. Nagoya University contributes to the spectrometer and science operations team.