MENU閉じる
名古屋大学公式サイトへ
ホーム » お知らせ » 【研究成果】暗黒物質探索実験XENONnTによる最初の新物理探索の成果: 電子反跳事象に関する最新観測結果

【研究成果】暗黒物質探索実験XENONnTによる最初の新物理探索の成果: 電子反跳事象に関する最新観測結果

2022.07.22

名古屋大学の伊藤好孝教授(素粒子宇宙起源研究所 KMI・宇宙地球環境研究所 ISEE・高等研究院IAR)、風間慎吾准教授(KMI)、小林雅俊(ISEE・日本学術振興会特別研究員)が参加する米国・欧州・日本を中心とした国際共同実験グループ XENON コラボレーション(*注1)は最新の暗黒物質探索実験であるXENONnT実験における最初の成果を公表し、2020年に前身実験のXENON1T実験が報告した低エネルギーでの電子反跳事象の超過現象は有意に確認されず、その結果未知の物理現象に対して非常に強い制限を得た、という報告を行いました。本結果は、XENONコラボレーションが、日本時間7月22日18時30分に、14th International Conference on Identification of Dark Matter (オーストリア・ウィーン)で行った講演で報告されました。

風間准教授は、今回データ解析の責任者として、観測装置の立ち上げから物理成果のとりまとめを行い、小林研究員は、2020年のコロナ禍直後からイタリア現地に滞在し、観測装置の組み立てからデータ取得まで現地の運転責任者として活躍しました。

新しく稼働を始めた検出器は予期せぬ振る舞いが数多くあり、何よりも検出器の深い理解が求められるチャレンジングな解析でした。また新型コロナウイルスの影響により、データ解析は基本的にリモートで行ったため、国際解析チームをまとめるのにもとても苦労しました。解析グループの尽力により、世界で最も背景ノイズの少ない検出器を実現できたことは非常に誇らしく、XENON1T実験で確認された超過事象に関してXENONnT実験の初期データで決着をつけることが可能となりました。新物理の兆候が発見されなかったことは非常に残念ではありますが、本命のWIMP探索はまだ続いており、ここに暗黒物質が潜んでいる可能性が高いと考えています。引き続き、暗黒物質や新物理の発見へ向け努力し、いつの日かその正体や背後に潜む物理の解明ができたらと思っています。

風間慎吾, KMI 准教授

XENONnT実験による物理探索の結果をついに報告することができ、大変興奮しています。本成果は世界的なパンデミックの影響を受け、マンパワーが限られた中でもコラボレーションが協力して実験を進めてきたことによるもので、私自身も現地における運転責任者の1人として検出器の建設や試運転、物理データの取得といった面から貢献することができ、大変喜ばしく思います。XENONnTでは現在も暗黒物質に対する探索が進められており、また検出器もさらなる背景ノイズの削減に成功してデータ取得を続けています。今後も暗黒物質やニュートリノの性質など未知の物理現象を明らかにするため、研究を続けていきたいと思います。

小林雅俊, ISEE・日本学術振興会 特別研究員

 

プレスリリース本文

2022年7月22日
XENON実験国際共同研究グループ
名古屋大学素粒子宇宙起源研究所 (KMI)
名古屋大学宇宙地球環境研究所 (ISEE)
東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU)
東京大学宇宙線研究所 (ICRR)
神戸大学大学院理学研究科

発表概要

 暗黒物質など未知の物理現象の観測を目指すXENONコラボレーションは今回、プロジェクトの最新段階であるXENONnT実験における最初の探索結果を公表しました。XENONnT実験では、検出器の背景ノイズがこれまでにないレベルに低減され、極まれにしか起こらない未知の物理現象の探索感度が大きく向上しました。得られた観測データによる最初の成果として、前身のXENON1T実験で観測された超過事象の検証を行い、未知の物理現象に関する非常に強い制限を得ました。

 

発表内容

 XENONnT実験は、宇宙に存在する未知の質量である暗黒物質の正体を明らかにすることを主な目的とした実験です。検出器は有感体積としておよそ6トンの高純度キセノンを持ち、キセノンと入射粒子との相互作用により生じた光や電子を観測する仕組みになっています。実験はイタリア・グランサッソ国立研究所(INFN Laboratori Nazionali del Gran Sasso)の地下施設において行われており、検出器は宇宙線ミューオンや中性子といった外部からの環境放射線による影響を抑えるため、700トンの純水容器の中に収められています。新型コロナウイルスのパンデミックによる影響をうけつつも検出器の建設が進められ、2020年春から2021年春にかけて試運転を行ったのち、最終的に2021年の7月6日から11月10日にかけて97.1日間、観測を行いました。

 

 本実験のように極まれな物理現象を観測するためには、観測のじゃまとなる背景ノイズを極限まで減らすことが求められます。XENONnT実験では、キセノン内部、検出器の部材、あるいは外部からの放射線が背景ノイズ源となりますが、その中でも特にラドン(*注2)は最も削減が難しく、XENONnT実験が目指す究極の感度達成のための最大の関門となっていました。

XENONコラボレーションではXENONnT検出器の建設にあたり、ラドンの発生源となる放射性不純物を検出器部材が極力含まないように徹底的な部材選定を行うとともに、キセノン中に含まれるラドンを常時除去するキセノン蒸留システムを新たに開発することで、検出器中のラドンをこれまでになく低いレベルに抑えることに成功しました。

 

 2020年、XENONコラボレーションはXENON1T実験で低エネルギー電子反跳事象の超過を観測したと報告しました。この超過は、太陽アクシオン、ニュートリノの異常磁気モーメント、アクシオン型粒子、暗黒光子など様々な新物理現象に由来する可能性が考えられたことから、多くの科学者により活発な議論が巻き起こりました。今回XENONコラボレーションは、後継であるXENONnT検出器において、背景ノイズをXENON1T検出器の1/5に改善した高感度探索を行い、その最初の結果を報告しました。今回、低エネルギー電子反跳事象の有意な超過は観測されなかったことから、XENON1T実験で報告された事象超過は、仮説の一つとして当時も考えられていた検出器中の残留トリチウム(*注3)の可能性が高いことが示唆されています。結果として、上記に挙げられた様な電子反跳を起こす新物理現象に対して、非常に強い制限を与えることになりました。

 

 今回取得した初期データは1トンの液体キセノンを1年間観測したことに相当する統計量を上回り、ブラインド解析(*注4)によって得られた今回の結果をもって、XENONnT実験はそのデビューを飾りました。このデータを用いて、暗黒物質の最も有力な候補の一つであるWeakly Massive Interactive Particles (WIMPs)に対する解析も現在進められています。XENONnT実験は今後数年間をかけて更なるデータ取得を続け、より高い感度で新たな物理現象の探索を行う予定です。

 

XENONコラボーションには、日本から名古屋大学、東京大学、神戸大学の3機関が参加しています。XENONnT実験の遂行にあたっては、SK-Gd実験の経験を活かしたガドリニウム水チェレンコフ検出技術を用いた中性子反同時検出器や、XMASS実験で培った液体キセノン純化システムへの貢献を行っているほか、データ解析の責任者として、今回のデータ解析結果のとりまとめに活躍しています。また、日本グループの XENON1T 及び XENONnT 実験に関わる活動は、日本学術振興会・科学研究費助成事業 (18H03697, 18KK0082, 19H05802, 19H05805, 19H00675, 19H01920, 21H05455, 21H04466, 22H00127) 、及びJST創発的研究支援事業(JPMJFR212Q)の支援を受け行われています。

 

参考リンク

XENONコラボレーションによるプレスリリース(英語版) xenonexperiment.org

名古屋大学宇宙地球環境研究所宇宙線研究グループ: https://www.isee.nagoya-u.ac.jp/CR/

 

発表雑誌

論文タイトル:Search for New Physics in Electronic Recoil Data from XENONnT

著者: XENON Collaboration

プレプリント:  xenonexperiment.org

(Physical Review Letters誌に投稿中)

 

用語解説

注1)  XENON コラボレーション

米国・ヨーロッパ・日本を中心とした12カ国27機関の約180人の研究者から構成される。日本からは、東京大学・名古屋大学・神戸大学が参加している。

 

注2) ラドン

ラドンは、ウランから始まる壊変(ウラン系列)に属し、ラジウム226の壊変により生成される希ガス元素。存在する元素の同位体は、すべて放射性で安定核種が存在しない。半減期は約3.8日で、崩壊後に発生する娘核である鉛214がさらに崩壊して放出するベータ線が観測における背景ノイズとなる。検出器の部材にわずかに含まれる放射性不純物から定常的に生成されるが、キセノンと同じ希ガス元素であることから除去することが難しい。

 

注3) トリチウム

通常の水素原子が陽子1つを原子核として持つのに対し、トリチウムは陽子1つと中性子2つを持つ水素原子。原子核が不安定な放射性同位体である。地球に降り注ぐ宇宙線と大気中の酸素や窒素と反応することでも生み出され、自然界にごく僅かに存在している。

 

注4) ブラインド解析

データ解析における無意識のバイアスを避けるため、事象選別など全ての準備が終了するまで観測データを見ずに解析を行う手法)

 

 

写真1:写真1:XENONnT実験装置の組み立て風景。底部光電子増倍管アレイの組み立てを行うところ。背後に組み立て済みのTPC検出器の一部が見える。Credit: Luigi Di Carlo for the XENON collaboration