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What is the origin of matter and the universe?
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KMI tries to answer the biggest questions of all time:

What is the universe made of ?

What is the origin of spacetime?

How did physical matter come about?

Is there an ultimate law governing the universe?

KMI researchers are exploring new frontiers in modern
physics by revealing the mysteries of elementary particles and
the universe itself.
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The Dark Universe
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Missing Antimatter
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Thanks to recent developments in cosmological
observation, we have entered an era of precision
cosmology. From detailed analyses of the expansion of our
universe and the formation of its large-scale structures,

our universe appears to be largely “dark.” The latest results
from the Planck satellite imply that only 4% of the universe
is made out of matter such as atoms, with the remaining
components of cosmic structures comprising mysterious

substances: 68% dark energy, which is accelerating the
expansion of the universe, and 27% dark matter, which
induces the formation of cosmic structures. Today, many
scientists around the world are working to shed light on
this dark side of the universe.

Approaches: Theoretical studies, ATLAS, Belle Il, CTA, FERMI, FORCE,
Hyper-Kamiokande, MWA, NEWSdm, Super-Kamiokande, XENONNT, XRISM
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Although matter and antimatter should have been produced
in equal amounts in the early universe, antimatter is rarely
observed today. Physicists suspect that differences in
the properties of particles and antiparticles, such as
their reactions or decay rates, led to more particles
than antiparticles surviving pair annihilations in the early
universe. This asymmetry, known as “CP violation,”
has been observed, but current measurements cannot
explain the number of baryons seen in the cosmological
observations of today’s universe. There is fierce global
competition in the search for large CP violations, the
discovery of which would likely reveal new physics beyond
our current understanding.

Approaches: Theoretical studies, ATLAS, Belle Il, Hyper-Kamiokande,
NOP, Super-Kamiokande, XENONNnT
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Approaches: Theoretical studies, ATLAS, Belle I, FERMI, NOP, XRISM

The uncertainty principle in quantum mechanics tells us that short
distances correspond to high energy. From general relativity, we
know that the curvature of spacetime is related to energy. There
is a need for a theoretical framework that consistently describes
quantum mechanical fluctuations in the curvature of spacetime
(quantum gravity). Superstring theory is the leading candidate
for the formulation of quantum gravity, that furthermore predicts
the existence of extra dimensions, supersymmetry, and gauge
interactions among particles. However, it remains a matter of
serious debate whether and how the superstring theory can be
reduced to the standard model of the particle physics, inflation
theory, and standard cosmology. This is partly due to our lack of
understanding about the nonperturbative aspects of the theory.
Solitonic objects called “branes” may provide clues toward a
nonperturbative understanding of superstring theory.
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Black Holes in Astrophysics
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Even light cannot escape from black holes. Their strong gravity causes
interstellar gas to accumulate and accelerate around them, forming an
accretion disk, and frictional forces are generated that produce vast
amounts of heat. Black holes are a major en
emitting photons from radio waves to gal
outflows. For this reason, black holes h:
astronomy for decades.

ce in the universe,
well as jets and
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Black Holes in the Laboratory
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Black holes have an event horizon from which even light cannot escape
due to their strong gravity. However, considering quantum effects, black
holes are predicted to emit blackbody radiation (Hawking radiation). To
clarify this theoretical prediction, there are several ongoing experiments
for detecting phonon emissions from the sonic horizon of a transsonic
id, which are an analogue to Hawking radiation.
ted to provide a deeper understanding of the
vity and quantum mechanics.

The properties and behavior of black holes can be exactly formulated
mathematically. Professor Stephen Hawking showed that black holes
are constantly growing spheres. Meanwhile, string theory, a proposed
theory of everything, shows us the importance of black holes. Indeed,
precise investigations of the surface of black holes have revealed the
equivalence between higher-dimensional gravity and theories for matter.
Furthermore, black holes can have various shapes in higher dimensions.
Understanding their mathematical structures will clarify the true nature
of gravity and the universe.

Image: the first picture of the shadow of a black hole (M87) captured by the Event Horizon Telescope
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ATLAS experiment
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The ATLAS experiment aims to discover new physics beyond the
standard model of particle physics, using the world’s largest and
most powerful energy frontier collider, the Large Hadron Collider
at CERN (European Organization for Nuclear Research). The KMI
Nagoya University team contributes to not only searching for new
physics, but also developing, constructing, and operating the
electronics and software of the “muon trigger system”.

The Belle Il experiment aims to discover new phenomena and
particles derived from huge numbers of collision of electrons and
positrons. The KMI Nagoya University group is leading the project,
including constructing a new particle identification detector called
“TOP counter”, operating distributed computing facilities, and
performing data analysis for discovering new phenomena.

Cherenkov Telescope Array (CTA)
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Celestial gamma rays are the highest-energy photons emitted by
high-energy objects. The CTA project will detect gamma rays with
energies of 20 GeV - 300 TeV using approximately 100 telescopes.
It will observe high-energy objects such as supernova remnants
and black holes, and indirectly search for dark matter.

Fermi gamma-ray space telescope
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Fermi is a GeV gamma-ray space telescope launched in 2008 by
the United States in collaboration with Europe and Japan. It is
one of the deepest probes for observing particle acceleration and
cosmic ray—matter interactions in the universe. It also hosts a
gamma-ray burst monitor.

CTAO/M-A. Besel/IAC (G.P. Diaz)/ESO

NASA




FORCE satellite
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LHCf / RHICf experiments
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FORCE is a future X-ray observatory planned to cover a wide
energy band of 1-80 keV, with a proposed launch in the late 2020s.
Its high sensitivity in the 10-80 keV band means that it will unveil
deeply obscured targets, such as rapidly growing black holes.

The LHCf experiment measured very forward particle productions
using dedicated compact detectors installed in the LHC to study
hadronic interactions of very high-energy cosmic rays. KMl is a
host institute of the experiment. In 2017, a similar experiment,
RHICf, was performed at the RHIC in collaboration with RIKEN. In
2021, new measurement with the LHC is projected, and a future
proton—oxygen run is planned as well.

Murchison Widefield Array (MWA)
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Nuclear Emulsion WIMP Search - directional measurement(NEWSdm)

The MWA is a low-frequency radio telescope in Western Australia
that aims to be the first to detect a signal from the Epoch of
Reionization. It consists of thousands of spider-like antennas
arranged in regular grids called “tiles” spread over several
kilometers within the Murchison Radio-Astronomy Observatory.
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The NEWSdm project searches for directional dark matter using
a very high-resolution nuclear emulsion (Nano Imaging Tracker)
that was originally developed at Nagoya University. The project
aims to directly understand the properties of dark matter by
detecting nano-scale track information. This project is an ongoing
international collaboration between Japan (Nagoya University and
Toho University), Italy, Russia, etc.

MWA Coll. & Curtin Univ.
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Neutron Optics and Physics (NOP)
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This project uses slow neutrons to investigate various topics in
physics, for example, precision measurement of beta decay and
nuclear reactions, and the search for the electric dipole moment,
extra dimensions, and dark energy. Experiments are performed
worldwide, including the world’s most intense pulsed neutron
source at J-PARC (Japan Proton Accelerator Research Complex).

Super-Kamiokande / Hyper-Kamiokande
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XENONNT experiment
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XRISM satellite
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Super-Kamiokande (SK), a 50,000ton water Cherenkov detector located
1000 m underground in Kamioka, Japan, studies neutrinos and searches
for proton decay. From 2020, the SK-Gd project with the Gadolinium-
loaded water begins to observe neutrinos from supernova bursts.
Construction of Hyper-Kamiokande, which has 8 times larger fiducial
mass than SK also starts in 2020. KMI has conducted precise neutrino

oscillation studies and is searching for neutrinos from dark matter.

XENONNT is a dark matter direct detection experiment that uses
approximately 8 tons of liquid xenon as a target medium. The KMI
Nagoya University group is contributing to the development of a
neutron veto detector, data analysis, and Monte Carlo simulation.
We are also developing new photodetectors and time projection
chambers for future experiments.

XRISM is a near-future X-ray observatory led by JAXA (Japan
Aerospace Exploration Agency), NASA (National Aeronautics and
Space Administration), and other institutions located in Japan and
around the world. Its energy resolution is an order of magnitude
better than that of existing observatories, and is therefore expected
to unveil a new field of atomic and velocity-field structures of high-
energy objects in the universe.

Kamioka Observatory, ICRR

Roberto Corrieri and Patrick De Perio

ISAS/JAXA
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