
Congratulations KMI for the beginning of a new era in 
particle physics at Nagoya University!

1



CP Violation in the Renormalizable Theory of Weak Interaction.
Makoto Kobayashi, Toshihide Maskawa (Kyoto U.). KUNS-242. Feb 1973. 6 pp. 
Published in Prog.Theor.Phys. 49 (1973) 652-657

Talking about compositeness in Nagoya is like bringing coal to Newcastle

Sakata:
On a Composite Model for the New Particles.
Shoichi Sakata (Nagoya U.). Sep 1956. 
Published in Prog.Theor.Phys. 16 (1956) 686-688

Remarks on the unified model of elementary particles.
Ziro Maki, Masami Nakagawa, Shoichi Sakata (Nagoya U.). Nov 1962. 11 pp. 
Published in Prog.Theor.Phys. 28 (1962) 870-880

The Nobels

KMI collaboration members

• YA,   T.Aoyama,  M.Kurachi,  T.Maskawa,  K.Nagai,  H.Ohki, 

K.Yamawaki,   T.Yamazaki

• K.Hasebe                       A.Shibata
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KMI lattice collaboration

Conformal phase transition in gauge theories.
V.A. Miransky (BITP, Kiev & Nagoya U.), Koichi Yamawaki (Nagoya U.). DPNU-96-58. Nov 1996. 44 pp. 
Published in Phys.Rev. D55 (1997) 5051-5066 com

puter bridge betw
een 

generations?
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Julius Kuti

University of California, San Diego

   Sakata Centennial Symposium,   October 27-28, 2011

Lattice Methods in the Theory Space
Beyond the Standard Model 
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My colleagues in the Lattice Higgs Collaboration:

Zoltan Fodor, Kieran Holland, Daniel Nogradi, Chris Schroeder, Ricky Wong
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What this talk is not: reviewing work from all lattice groups
only Lattice Higgs Collaboration (LHC) results

although good progress is being made by all groups 

What this talk is: overview of lattice methods commonly faced in lattice 
work in theory space of strongly interacting gauge theories

Overall goal:  SM Higgs                  Composite Higgs Mechanism 
                                                          (Higgs without Higgs)

Lattice specific: cut-off, volume, fermion mass

Talk is mostly for off-lattice researchers 
while they are thinking about making proposals for us 

The 3 lattice specific “limitations” actually help to understand the basic 
physics of the models
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Outline

- Composite Higgs Mechanism at the LHC
  lattice BSM goals in Theory Space
  world-wide lattice BSM effort 
  lattice resources (GPU technology)

- Below the Conformal Window
  lattice specific: cut-off, volume, fermion mass
  RG flow and lattice continuum physics
  BSM specific    PT  
  m=0 chiral limit and finite volume issues
  

- Inside the conformal window 
  RG flow and lattice continuum physics  
  finite size scaling 
  running coupling and tunneling
  Nf=16 case study
 

- Outlook 
  from KMIIN conference discussions: new input into lattice projects?
 

!
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Large Hadron Collider   -   CERN

•   Is there a Standard Model Higgs particle?

•   If not, what generates the masses of the weak      
     bosons and fermions?

•   New strong dynamics?

•   Composite Higgs mechanism?

Primary focus of lattice BSM 
effort and of this talk

  primary mission:

- Search for Higgs particle

- Origin of Electroweak symmetry breaking
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 Two logical choices to accommodate heavy Higgs (or no Higgs) 
 scenario:

- use some effective theory with TeV scale higher dimensional  
   operators

- new microscopic theory on TeV scale

Composite Higgs mechanism  -  Technicolor 2.0 ?

- The paradigm is interesting again

- Requires non-perturbative lattice studies  

- It is difficult, but there will be real results-0.4
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FIG. 3: S parameter for Nf = 2 (red diamonds) and Nf = 6
(blue circles). For each of the solid points, MPL > 4.

S-Parameter Results The S parameter (Eq. 1) is sim-
ply the correlator slope multiplied by the number of elec-
troweak doublets, with the SM subtraction. We estimate
the SM subtraction by evaluating the ∆SSM integral in
Eq. 1 with an infrared cutoff at s = 4M 2

P
, and taking

mH = MV 0. For the case 2MP < MV 0,
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We use values for MP and MV 0 determined in Ref. [1].
The choice mH = MV 0 corresponds roughly to a 1 TeV
value for the reference Higgs mass.

In Fig. 3, we plot S ≡ 4π(Nf/2)Π�
V−A

(0) − ∆SSM .
For Nf = 2, the results are consistent with previous lattice
simulations [12, 13]. The SM subtraction at Nf = 2 is
small, reaching a value ∼ 0.04 for the lowest solid mass
point, corresponding to mf = 0.010. A smooth extrapo-
lation to m = 0 is expected since the LO chiral logs even-
tually appearing in Π�

V−A
(0) are canceled by the SM sub-

traction, Eq. 3. Given the linearity and small slope of the
solid data points, we include a linear fit and extrapolation.
An NLO term of the form M 2

P
logM 2

P
has not been ruled

out, but it is not visible in our data. The fit, with error band,
is shown in Fig. 3, giving Sm=0 = 0.35(6), consistent with
the value obtained using scaled-up QCD data [10].

The Nf = 6 results for S are also shown in Fig. 3. The
SM subtraction is again very small as at Nf = 2. The
important feature is that the value of S at the lower mass
points drops below a value obtained by simply multiplying
the Nf = 2 result by a factor of 3. (For an Nf = 6 theory
with only a single electroweak doublet, the value of S at
the lower mf values of Fig. 3 would be well below that
of the Nf = 2 theory.) This trend has set in at Nf = 6
even though 6 � N c

f
. As m is decreased further at Nf =

6, S as computed here will eventually turn up since the
SM subtraction leaves a chiral-log contribution. For Nf/2
electroweak doublets, S ∼ (1/12π)[N 2

f
/4 − 1] logM 2

P
.

In a realistic context, the PNGBs receive mass from SM
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FIG. 4: Axial and vector masses, MA and MV , and their ratio.
Straight lines show linear fits to the solid points (MPL > 4), with
the extrapolated values and errors shown to the left.

and other interactions not included here, and these masses
provide the infrared cutoff in the logs.

Vector and Axial Masses A question of general inter-
est for an SU(N) gauge theory is the form of the reso-
nance spectrum as Nf is increased toward N c

f
. A trend to-

ward parity doubling, for example, would provide a strik-
ing contrast with a QCD-like theory. If the gauge theory
plays a role in electroweak symmetry breaking, then this
trend could be associated with a diminished S parameter.

We have so far computed the masses, MV and MA, and
decay constants, FV and FA, of the lowest-lying vector and
axial resonances. We plot the masses along with their ratio
in Fig. 4. Since the data points for each case except MA

at Nf = 6 are quite linear, with a small slope, and since
in each case, the NLO term in chiral perturbation theory
is linear in M2

P
∝ m, we include a linear fit to the solid

points (MPL > 4). The error bars on the extrapolations
are also shown. MV extrapolates to 0.215(3) for Nf = 2,
and to 0.209(3) for Nf = 6.

For Nf = 2, the extrapolated value of MA/MV =
1.476(40) is roughly consistent with the experimental re-
sult of 1.585(52) [14]. The Nf = 6 data points for MA

do not yet allow a simple fit and extrapolation, but they
do indicate a substantial decrease in MA/MV in the chiral
limit. This trend toward parity doubling suggests that the
spectrum could become even more parity doubled as Nf is
increased further, toward N c

f
.

Vector and Axial Decay Constants Our simulation re-
sults for FV and FA are shown in Fig. 5, using the nor-
malization conventions of Ref. [10]. The dependence on
M 2

P
/M 2

V 0 is mild, and once again, for each case except the
A at Nf = 6, quite linear with a small slope. Although
there is known to be an NLO chiral log for the decay con-
stants, it is not visible in the linear points, so we include
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Nf=2 and Nf=6 S-parameters 
Lattice Strong Dynamics Collaboration (LSD)

Parity Doubling and the S Parameter Below the Conformal Window.
LSD Collaboration (Thomas Appelquist , Ron Babich, Richard C. Brower, Michael Cheng, 

Michael A. Clark, Saul D. Cohen, George T. Fleming, Joe Kiskis, Meifeng Lin, Ethan T. Neil, 
James C. Osborn, Claudio Rebbi, David Schaich, Pavlos Vranas)   Phys.Rev.Lett. 

e-Print: arXiv:1009.5967 [hep-ph]

more phenomenology at this workshop (Fleming’s talk)

Lattice Higgs Collaboration (LHC) is working on it as well
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Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge
theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2

theory space and conformal window: critically 
important for composite Higgs and TC/ETC 
space of color, flavor, and fermion representation 

adjoint rep

2-index antisymmetric
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Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 16/19

for each rep BSM interest is below  
conformal window but close to it:

un-particles

lattice BSM interest

lattice results of last 3 years in 
3 reps including new projects 
just starting

not yet in BSM studies

it is stimulating to have controversial results 
close to the conformal window: these are the 
interesting candidate models

Sannino:

Which model(s) will pass the 
Electroweak precision tests?
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Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 15/19

Composite Higgs mechanism?            (Technicolor and Extended Technicolor in the past)

  Extended Technicolor paradigm:

- requires walking gauge coupling 
  chiral SB on                       scale

- fermion mass generation from   
  scale at  

- can solve problem of flavor changing  
  currents

- composite Higgs mechanism 

- broken Dilaton           unusual   
  composite Higgs particle in BSM ?  
    
- can avoid conflict with EW precision 
  constraints

- candidate models require non-
  perturbative lattice studies

!TC ~ TeV

!ETC ~ 100 "1000!TC

walking coupling 
separates two scales

target of lattice BSM effort

Chiral symmetry breaking 
turns conformal FP into 
walking

running coupling

non-conformal QCD-like
far from conformal window

  original textbook Technicolor paradigm:

- one massless fermion doublet
  chiral SB

- three Goldstone pions 

- become longitudinal   
  components of weak bosons

- composite Higgs mechanism  
  scale of Higgs condensate ~ F=250 GeV  
  

- flavor changing currents and fermion 
  mass generation would be problems

- conflicts with EW precision constraints

!TC ~ TeV

u
d
!

"
#

$

%
&

This is what lattice studies in BSM theory space potentially 
could deliver 
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If we knew what we were doing, it wouldn’t be called 
research

                                           A. Einstein

This is all difficult and not QCD-like!
We do not know the answer, but:                                        
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It is a world-wide effort:
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US BSM project sites using USQCD hardware & software support

(three years ago map was almost empty)

Kudos to the Yale group for stimulation and letting the genie out !

Yale

UCSD

UoP

LLNL
U Colorado

FNAL

Argonne

Syracuse

RPI
Columbia

 BU

Lattice BSM groups study the composite Higgs mechanism   
TC scale - perhaps stretched to ETC scale by walking coupling?

fermion mass generation has to be built on the top of it  
- some new theory on ETC scale
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                   growing resources:   Lattice BSM GPU computing
                                             video games in technicolor

                                             Clusters

                                             BG/P
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QUDA Parallelization

1D decomposition
(in ‘time’ direction)

Assign sub-lattice 
to GPU

face
exchange

face
exchange

face
exchange

face
exchange

wrap
around

Friday, January 28, 2011

NVIDIA Tesla C2050 (Fermi) GPU
Silicon Mechanics Part Number: 19417
Manufacturer Part Number: 900-21030-2200-000

• NVIDIA® Tesla™ third-generation 40nm GPU
• 448 CUDA cores
• 3 GB GDDR5 Memory (2.625 GB w/ ECC)
• Dual Precision 515 GFlops
• Single Precision 1003 GFlops
• PCIe 2.0 x16 full-length, dual slot

Comparison
• Edge scales best for 

inversions
• But JLab nodes has more 

internal PCI Bandwidth
• Difference due to 

interconnect speed(?)
– caveat funny 4 GPU 

PCI behavior
• Teslas ‘catch up’ to 480s

– Teslas DDR IB
– GTX480-s SDR IB ?

• 8x GTX480 => 2 Tflops 
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We have new computing technology for lattice BSM effort

Lattice Higgs Collaboration
Wuppertal technology

USQCD
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Dirac spectrum - integrated eigenvalue distributions of RMT



One-loop chiral expansion in p-regime:

chiral p-regime
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For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by

M2
π = M2

�
1 − M2

8π2Nf F2 ln
�
Λ3

M

��
, (11)

Fπ = F
�
1 +

Nf M2

16π2F2 ln
�
Λ4

M

��
, (12)

where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
per unit flavor [53]. It is important to note that the one-loop cor-
rection to the pion coupling constant Fπ is enhanced by a factor
N2

f compared to M2
π. The chiral expansion for large Nf will

break down for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by

Mπ(Ls, η) = Mπ
�
1 +

1
2Nf

M2

16π2F2 ·�g1(λ, η)
�
, (13)

Fπ(Ls, η) = Fπ
�
1 − Nf

2
M2

16π2F2 ·�g1(λ, η)
�
, (14)

where�g1(λ, η) describes the finite volume corrections with λ =
M · Ls and aspect ratio η = Lt/Ls. The form of �g1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and �-regime
At fixed Ls and in cylindrical geometry Lt/Ls � 1, a

crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs � 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and �-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The �-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion
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for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion

3

Note 1/Nf scaling of pion mass!
warning: 2-loop ~ (Nf)2  (Bijnens)

! = MLs

M 2 = 2Bm+ O((Nf)2)

+ O((Nf)2)

 

Chiral expansion parameter is N f
M 2

16! 2F2  with !  1 condition

N f = 8 fundamental rep in USQCD BSM project

set N f
M 2

16! 2F2  =0.3, with a "m# = 0.25 (to keep cut-off under control), and m# / F $ 10 (as expected),  a "M! $ 0.10 is needed

The M! " Ls $ 10 condition (to control FSS) will require Ls $ 100!  Same scale as largest QCD projects!
N f = 2 higher reps (like sextet) are more favorable for chiral expansion

Condition of reaching the chiral expansion regime can also be estimated from rotator spectrum  %

 
!g1(!,") # 24K1(!) / !  for " =

Lt
Ls
" 1
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El =
1

2!
l(l + 2) with l = 0,1,2,...    rotator spectrum for SU(2) f " SU(2) f

with ! = F2L3
s (1+

C(N f = 2)
F2L2

s

+O(1 / F 4L4
s ))   (P. Hasenfratz and F. Niedermayer)

(there is  in El  an overall factor 
N 2

f #1
N f

 for arbitrary N f )

C(N f = 2) = 0.45,   C will grow with  ~  N f ,  (P.Hasenfratz,  O(N f ) model)
there are similar considerations in the $-regime

 

The rotator spectrum has the expansion parameter ~ C
N f / 2
F2L2

s

 with !  1 condition

with C
N f / 2
F2L2

s

= 0.3  FLs ! 2.5 for N f = 8  (USQCD project)

with a "m# = 0.25 (to keep cut-off under control), and m# / F ! 10 (as expected),  Ls ! 100 is needed!

When expansion breaks down in $ % regime, same is expected in the p-regime

Condition of reaching the chiral expansion regime can also be estimated from rotator spectrum  !
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if model had conformal IRFP 
 
two interchangeable RT descriptions?

continuum mass deformed conformal theory is on RT coming 
out of IRFP

I worked out as an example all the details of 3D scalar theory 
(Ising model) with IRFP

textbook material

critical surface (massless) irrelevant 

g2  

m (fermion 

RT massless continuum physics (gapless)
UVF

IRFP 

RT mass deformed 

RT group A RT B

        conformal scaling and scaling violations

f (u1,u2 ,...) = g(u1,u2 ,...) +  b!d fs (b
y1u1,b

y2u2 ...)

 free energy on RT:

 analytic           singular

 y1  > 0 only relevant exponent in our case
 u1  = t ~ m identified,  y1 = ym in Technicolor notation

 y2  controls scaling violations,   leading correction term

 analytic function which can have terms like ~mk are typically sub-leading
 

 RG scaling of 2-point function:

 

G (2) (r,m,u2 ,...) = b!2dG(r / b,bym m,by2u2 ,...)
from  G (2) (r,m,u2 ,...) ! e!Mr  asymptotics with M ! m1/ym  scaling follows
leading correction to the scaling term should be ! m"  where " = #$ (g%)
analysis would change with second relevant operator at IRFP!

- analytic terms exists, but no reason to be leading conformal  
  scaling correction

- correlators of composite operators require inhomogeneous RG!
 similarly, in conformal finite size scaling analysis:

! / L = f1(x) + L"# f2 (x)  with  x = Lm1/ym

 correlation length measured in L units

This directly transcribes to hadron masses and F!
finite size scaling correction terms require 
very accurate data

 Fisher and  Brezin  worked out most of what we know!

Del Debbio and collaborators
early conform apps
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(M!
2 )LO = 2B "m + a2#B

(M!
2 )NLO = (M!

2 )LO + ("M!
2 )1# loop + ("M!

2 )
m2

+ ("M!
2 )

a2m
+ ("M!

2 )
a4

 would require more data

(!M"
2 )1# loop = [(M"

2 )LO + a2 ]2 ln(M"
2 )LO

 ! a2m

chiral logs not reached yet in important models! 
(like Nf=8, or Nf=12)

 ! m2

kept   cutoff term in B  see  LO a2 term
 ! a4

M!
2 = c1m + c2m

2   + logs fitted function for all Goldstones 

nucleon states, rho, a1, higgs, ...Mnuc = c0 + c1m +  logs 

(F! )LO = F,    ("F! )1# loop = [(M!
2 )LO + a2 ]ln(M!

2 )LO    

F! = F + c1m + logs fitted function  

 (!F" )
m2 ! m,    (!F" )

a2m
= a2    

kept     cutoff term in F

!! = !! 0 + c1m + c2m
2+logs chiral condensate 

        Chiral hypothesis          incomplete analysis on each side      Conformal hypothesis

M! = c! "m
1/ym ,      ym = 1+ #

leading conformal scaling 
functional form for all hadron masses 

F! = cF "m
1/ym ,       ym = 1+ #

chiral log regime was not reached in fermion mass range

same critical exponent 

!! = c" #m
(3$" )/ym + c1m

infinite volume conformal scaling violation analysis ?

conformal finite size scaling analysis and its scaling 
violations ? 

Del Debbio and Zwicky

Asymptotic infinite volume limit has not been reached 
yet in important candidate models for conformal window
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Table 1: Measured masses and Fπ with the three largest volumes in the m = 0.010 − 0.015 range and the largest volumes for m ≥ 0.02. Two additional smaller
volume data at m = 0.020, not in the table, are displayed for Mπ and Fπ in Figure 9. Asterisks indicate Ls = 32 when different from the spatial volume of the second
column. Mpnuc is the mass of the nucleon’s parity partner. Finite volume extrapolations were done at the three lowest fermion masses. They agree within errors
with the largest volume entries in the three hadron channels used in the global fits.

mass lattice Mπ Fπ Mi5 Msc Mi j Mnuc Mpnuc MHiggs Mrho MA1

0.0100 323 × 64 0.2195(35) 0.02234(46) 0.2171(31) 0.194(10) 0.195(11) 0.386(16) 0.387(22) 0.2162(53) 0.239(19) 0.246(21)
0.0100 403 × 80 0.1819(28) 0.02382(39) 0.1842(29) 0.1835(35) 0.1844(44) 0.3553(93) 0.352(16) 0.2143(81) 0.2166(73) 0.237(12)
0.0100 483 × 96 0.1647(23) 0.02474(49) 0.1650(13) 0.16437(95) 0.1657(10) 0.3066(69) 0.3051(81) 0.247(13) 0.1992(28) 0.2569(83)
0.0150 323 × 64 0.2322(34) 0.03168(64) 0.2319(11) 0.2318(17) 0.2341(16) 0.4387(60) 0.4333(84) 0.2847(33) 0.2699(41) 0.324(16)
0.0150 403 × 80 0.2200(23) 0.03167(53) 0.2210(21) 0.2218(30) 0.2239(34) 0.4095(84) 0.411(10) 0.291(11) 0.2574(36) 0.327(14)
0.0150 483 × 96 0.2140(14) 0.03153(51) 0.2167(16) 0.2165(17) 0.2185(18) 0.3902(67) 0.3881(84) 0.296(13) 0.2506(33) 0.3245(87)
0.0200 403 × 80 0.2615(17) 0.03934(56) 0.2736(22)∗ 0.2651(8) 0.2766(42)∗ 0.4673(62) 0.4699(66) 0.330(17) 0.3049(28) 0.361(32)
0.0250 323 × 64 0.3098(18) 0.04762(53) 0.3179(17) 0.3183(18) 0.3231(20) 0.563(12) 0.563(14) 0.4137(88) 0.3683(19) 0.469(14)
0.0275 243 × 48 0.3348(29) 0.05218(85) 0.3430(18) 0.3425(25) 0.3471(26) 0.609(21) 0.628(23) 0.460(16) 0.4050(69) 0.523(34)
0.0300 243 × 48 0.3576(15) 0.0561(11) 0.3578(15)∗ 0.3726(29) 0.3790(40) 0.640(12)∗ 0.633(16)∗ 0.470(15) 0.4160(26)∗ 0.5222(90)∗

0.0325 243 × 48 0.3699(66) 0.0588(15) 0.3790(34) 0.3814(62) 0.3879(62) 0.680(18) 0.686(26) 0.500(21) 0.4481(39) 0.548(31)
0.0350 243 × 48 0.3927(17) 0.06422(57) 0.4065(18) 0.4074(19) 0.4149(26) 0.703(28) 0.741(20) 0.538(30) 0.4725(64) 0.669(65)
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Figure 1: The Goldstone pion and Fπ from chiral symmetry breaking are shown with the fitting procedure described in the text. A representative finite volume fit is
also shown. The infinite volume limit of Mπ was used in fits to Fπ and other composite hadron states, like the nucleon.
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Figure 2: The non-Goldstone pion spectrum is shown. The composite left plot displays the i5Pion data and fit together with fits to the Goldstone pion (magenta),
i5Pion (solid blue), scPion (black), and ijPion (cyan).

governed by the single exponent γ, is sufficient to differentiate
the two hypotheses.

2.1. Goldstone spectrum and Fπ from χSB

Figure 1 shows the Goldstone pion and Fπ as a function of
the fermion mass m in the range where we can reach the in-
finite volume limit with confidence. The power functions of
the fitting procedure in m contain the analytic contributions of
the fourth order chiral Lagrangian to Mπ and Fπ. Although we
could fit the pion spectrum with the logarithmic term included,
its significance remains unclear. The rapid variation of Fπ with

m clearly shows that we would need a dense set of data in the
m = 0.003 − 0.01 range to reach chiral logs at this gauge cou-
pling. This requires lattice volumes well beyond the largest size
483 × 96 which we could deploy in our simulations.

Efforts were made for extrapolations to the infinite volume
limit. At the lowest three m values, for finite volume corrections
to Mπ and Fπ, and for all other states, we used the form

Mπ(Ls, η) = Mπ

�
1 +

1
2Nf

M
2

16π2F2 ·�g1(λ, η)
�
, (1)

3

Nf=12 flavors with fermions in the fundamental rep of SU(3) color gauge group
just below the conformal window?
fermion condensate, Fps and hadron spectrum were determined

published data set (condensate in separate table):        

tested with two opposite hypotheses (chiSB vs. conformal symmetry)

assumptions:
- with exception of condensate only minimal leading functions are applied in both hypotheses
- global analysis is used in different channel combinations and linear term is added to condensate to 
  account for UV effects
- continuum fitting at fixed gauge coupling without further tests of cutoff effects (will be addressed)

Twelve massless flavors and three colors below the conformal window.
Phys.Lett. B703 (2011) 348-358 
e-Print: arXiv:1104.3124 [hep-lat]      Lattice Higgs Collaboration

30

http://inspirehep.net/record/896239
http://inspirehep.net/record/896239


Table 1: Measured masses and Fπ with the three largest volumes in the m = 0.010 − 0.015 range and the largest volumes for m ≥ 0.02. Two additional smaller
volume data at m = 0.020, not in the table, are displayed for Mπ and Fπ in Figure 9. Asterisks indicate Ls = 32 when different from the spatial volume of the second
column. Mpnuc is the mass of the nucleon’s parity partner. Finite volume extrapolations were done at the three lowest fermion masses. They agree within errors
with the largest volume entries in the three hadron channels used in the global fits.

mass lattice Mπ Fπ Mi5 Msc Mi j Mnuc Mpnuc MHiggs Mrho MA1

0.0100 323 × 64 0.2195(35) 0.02234(46) 0.2171(31) 0.194(10) 0.195(11) 0.386(16) 0.387(22) 0.2162(53) 0.239(19) 0.246(21)
0.0100 403 × 80 0.1819(28) 0.02382(39) 0.1842(29) 0.1835(35) 0.1844(44) 0.3553(93) 0.352(16) 0.2143(81) 0.2166(73) 0.237(12)
0.0100 483 × 96 0.1647(23) 0.02474(49) 0.1650(13) 0.16437(95) 0.1657(10) 0.3066(69) 0.3051(81) 0.247(13) 0.1992(28) 0.2569(83)
0.0150 323 × 64 0.2322(34) 0.03168(64) 0.2319(11) 0.2318(17) 0.2341(16) 0.4387(60) 0.4333(84) 0.2847(33) 0.2699(41) 0.324(16)
0.0150 403 × 80 0.2200(23) 0.03167(53) 0.2210(21) 0.2218(30) 0.2239(34) 0.4095(84) 0.411(10) 0.291(11) 0.2574(36) 0.327(14)
0.0150 483 × 96 0.2140(14) 0.03153(51) 0.2167(16) 0.2165(17) 0.2185(18) 0.3902(67) 0.3881(84) 0.296(13) 0.2506(33) 0.3245(87)
0.0200 403 × 80 0.2615(17) 0.03934(56) 0.2736(22)∗ 0.2651(8) 0.2766(42)∗ 0.4673(62) 0.4699(66) 0.330(17) 0.3049(28) 0.361(32)
0.0250 323 × 64 0.3098(18) 0.04762(53) 0.3179(17) 0.3183(18) 0.3231(20) 0.563(12) 0.563(14) 0.4137(88) 0.3683(19) 0.469(14)
0.0275 243 × 48 0.3348(29) 0.05218(85) 0.3430(18) 0.3425(25) 0.3471(26) 0.609(21) 0.628(23) 0.460(16) 0.4050(69) 0.523(34)
0.0300 243 × 48 0.3576(15) 0.0561(11) 0.3578(15)∗ 0.3726(29) 0.3790(40) 0.640(12)∗ 0.633(16)∗ 0.470(15) 0.4160(26)∗ 0.5222(90)∗

0.0325 243 × 48 0.3699(66) 0.0588(15) 0.3790(34) 0.3814(62) 0.3879(62) 0.680(18) 0.686(26) 0.500(21) 0.4481(39) 0.548(31)
0.0350 243 × 48 0.3927(17) 0.06422(57) 0.4065(18) 0.4074(19) 0.4149(26) 0.703(28) 0.741(20) 0.538(30) 0.4725(64) 0.669(65)
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Figure 1: The Goldstone pion and Fπ from chiral symmetry breaking are shown with the fitting procedure described in the text. A representative finite volume fit is
also shown. The infinite volume limit of Mπ was used in fits to Fπ and other composite hadron states, like the nucleon.
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Figure 2: The non-Goldstone pion spectrum is shown. The composite left plot displays the i5Pion data and fit together with fits to the Goldstone pion (magenta),
i5Pion (solid blue), scPion (black), and ijPion (cyan).

governed by the single exponent γ, is sufficient to differentiate
the two hypotheses.

2.1. Goldstone spectrum and Fπ from χSB

Figure 1 shows the Goldstone pion and Fπ as a function of
the fermion mass m in the range where we can reach the in-
finite volume limit with confidence. The power functions of
the fitting procedure in m contain the analytic contributions of
the fourth order chiral Lagrangian to Mπ and Fπ. Although we
could fit the pion spectrum with the logarithmic term included,
its significance remains unclear. The rapid variation of Fπ with

m clearly shows that we would need a dense set of data in the
m = 0.003 − 0.01 range to reach chiral logs at this gauge cou-
pling. This requires lattice volumes well beyond the largest size
483 × 96 which we could deploy in our simulations.

Efforts were made for extrapolations to the infinite volume
limit. At the lowest three m values, for finite volume corrections
to Mπ and Fπ, and for all other states, we used the form

Mπ(Ls, η) = Mπ

�
1 +

1
2Nf

M
2

16π2F2 ·�g1(λ, η)
�
, (1)
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Table 1: Measured masses and Fπ with the three largest volumes in the m = 0.010 − 0.015 range and the largest volumes for m ≥ 0.02. Two additional smaller
volume data at m = 0.020, not in the table, are displayed for Mπ and Fπ in Figure 9. Asterisks indicate Ls = 32 when different from the spatial volume of the second
column. Mpnuc is the mass of the nucleon’s parity partner. Finite volume extrapolations were done at the three lowest fermion masses. They agree within errors
with the largest volume entries in the three hadron channels used in the global fits.

mass lattice Mπ Fπ Mi5 Msc Mi j Mnuc Mpnuc MHiggs Mrho MA1

0.0100 323 × 64 0.2195(35) 0.02234(46) 0.2171(31) 0.194(10) 0.195(11) 0.386(16) 0.387(22) 0.2162(53) 0.239(19) 0.246(21)
0.0100 403 × 80 0.1819(28) 0.02382(39) 0.1842(29) 0.1835(35) 0.1844(44) 0.3553(93) 0.352(16) 0.2143(81) 0.2166(73) 0.237(12)
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0.0150 483 × 96 0.2140(14) 0.03153(51) 0.2167(16) 0.2165(17) 0.2185(18) 0.3902(67) 0.3881(84) 0.296(13) 0.2506(33) 0.3245(87)
0.0200 403 × 80 0.2615(17) 0.03934(56) 0.2736(22)∗ 0.2651(8) 0.2766(42)∗ 0.4673(62) 0.4699(66) 0.330(17) 0.3049(28) 0.361(32)
0.0250 323 × 64 0.3098(18) 0.04762(53) 0.3179(17) 0.3183(18) 0.3231(20) 0.563(12) 0.563(14) 0.4137(88) 0.3683(19) 0.469(14)
0.0275 243 × 48 0.3348(29) 0.05218(85) 0.3430(18) 0.3425(25) 0.3471(26) 0.609(21) 0.628(23) 0.460(16) 0.4050(69) 0.523(34)
0.0300 243 × 48 0.3576(15) 0.0561(11) 0.3578(15)∗ 0.3726(29) 0.3790(40) 0.640(12)∗ 0.633(16)∗ 0.470(15) 0.4160(26)∗ 0.5222(90)∗

0.0325 243 × 48 0.3699(66) 0.0588(15) 0.3790(34) 0.3814(62) 0.3879(62) 0.680(18) 0.686(26) 0.500(21) 0.4481(39) 0.548(31)
0.0350 243 × 48 0.3927(17) 0.06422(57) 0.4065(18) 0.4074(19) 0.4149(26) 0.703(28) 0.741(20) 0.538(30) 0.4725(64) 0.669(65)
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Figure 1: The Goldstone pion and Fπ from chiral symmetry breaking are shown with the fitting procedure described in the text. A representative finite volume fit is
also shown. The infinite volume limit of Mπ was used in fits to Fπ and other composite hadron states, like the nucleon.
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Figure 2: The non-Goldstone pion spectrum is shown. The composite left plot displays the i5Pion data and fit together with fits to the Goldstone pion (magenta),
i5Pion (solid blue), scPion (black), and ijPion (cyan).

governed by the single exponent γ, is sufficient to differentiate
the two hypotheses.

2.1. Goldstone spectrum and Fπ from χSB

Figure 1 shows the Goldstone pion and Fπ as a function of
the fermion mass m in the range where we can reach the in-
finite volume limit with confidence. The power functions of
the fitting procedure in m contain the analytic contributions of
the fourth order chiral Lagrangian to Mπ and Fπ. Although we
could fit the pion spectrum with the logarithmic term included,
its significance remains unclear. The rapid variation of Fπ with

m clearly shows that we would need a dense set of data in the
m = 0.003 − 0.01 range to reach chiral logs at this gauge cou-
pling. This requires lattice volumes well beyond the largest size
483 × 96 which we could deploy in our simulations.

Efforts were made for extrapolations to the infinite volume
limit. At the lowest three m values, for finite volume corrections
to Mπ and Fπ, and for all other states, we used the form

Mπ(Ls, η) = Mπ

�
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1
2Nf

M
2

16π2F2 ·�g1(λ, η)
�
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Fπ(Ls, η) = Fπ
�
1 − Nf

2

M2

16π2F2
·�g1(λ, η)

�
, (2)

where �g1(λ, η) describes the finite volume corrections with

λ = Mπ · Ls and aspect ratio η = Lt/Ls from the lightest

pion wrapping around the lattice and coupled to the measured

state [61]. The form of �g1(λ, η) is a complicated infinite sum

which contains Bessel functions and requires numerical eval-

uation [62]. Since we are not in the chiral log regime, the

prefactor of the �g1(λ, η) function was replaced by a fitted co-

efficient. The leading term of the function �g1(λ, η) is a special

exponential Bessel function K1(λ) which dominates in the sim-

ulation range. The fitting procedure could be viewed as the

approximate leading treatment of the pion which wraps around

the finite volume, whether in chiral perturbation theory, or in

Lüscher’s non-perturbative finite volume analysis [63] which

does not require the chiral limit as long as the pion is the light-

est state dominating the corrections. The MπLs > 4 lore for

volume independence is clearly not applicable in the model.

We need MπLs > 8 to reach volume independence. The infinite

volume limits of Mπ and Fπ for each m were determined self-

consistently from the fitting procedure using Eqs. (1,2) based

on a set of Ls values with representative fit results shown in

Figures 1 and 4. In the higher m range finite volume effects

were hard to detect and a systematic finite volume analysis was

not applied. Even for the lowest m values sometimes volume

dependence was hardly detectable for the largest lattice sizes.

Non-Goldstone pion spectra, quite different from those found

in QCD, are shown in Figure 2 using standard notation. They

are not used in our global analysis. The three states we desig-

nate as i5Pion, ijPion and scPion do not show any noticeable

taste breaking or residual mass in the m → 0 chiral limit. The

scPion is degenerate with the i5Pion and both are somewhat

split from the true Goldstone pion. The ijPion state is further

split as expected but the overall taste breaking is very small

across the four pion states. This is a fairly strong indication

that the coupling constant β = 2.2 where all runs are performed

is close to the continuum limit. A very small residual mass at

m = 0 is not excluded for some non-Goldstone pion states de-

pending on the details of the fitting procedure.

The staggered meson and baryon states and correlators we

use are defined in [64]. For example, what we call the scPion

and the f0 meson are identified in correlator I of Table 1 in [64].

Similarly, the i5Pion is from correlator VII, the ijPion is from

correlator VIII, the rho and A1 mesons are from correlator III

of Table 1. We measure the Goldstone pion in two different

ways, with one of them defined in correlator II of Table 1 in the

reference. The nucleon state and its parity partner are defined

in correlator I of Table 2 in [64].

2.2. Chiral condensate
The chiral condensate �ψψ� summed over all flavors has the

spectral representation [65]

�ψψ� = −2m ·
� µ

0

dλρ(λ)
m2 + λ2

= −2m5 ·
� ∞

µ

dλ
λ4

ρ(λ)

m2 + λ2
+ c1 · m + c3 · m3

(3)

where the UV-divergent integral is written in a twice-subtracted

form in the second line [66]. The UV contribution, which is

divergent when the cutoff a−1
is removed, has a linear term

≈ a−2 · m and there is a third-order term ≈m3
which is hard to

detect for small m and has never been tested in simulations be-

fore. It is small in the the free theory limit and c3 is zero within

errors in our data and therefore omitted from the fits. The IR fi-

nite contributions to the chiral Lagrangian have a constant term

≈ BF2
, a linear term ≈ B2 · m, a quadratic term ≈ B3F−2 · m2

,

and higher order terms in addition to

Table 2: The chiral condensate �ψψ� and �ψψ� − m · χcon, defined in the text

and directly measured from zero momentum sum rules and independently from

functions of the inverse staggered fermion matrix, are tabulated and used in the

fits of Figure 3.

mass lattice �ψψ� �ψψ� − m · χcon

0.0100 48
3 × 96 0.134896(47) 0.006305(73)

0.0150 48
3 × 96 0.200647(31) 0.012685(56)

0.0200 40
3 × 80 0.266151(72) 0.022069(76)

0.0250 32
3 × 64 0.33147(10) 0.03462(12)

0.0275 24
3 × 48 0.36372(40) 0.04133(59)

0.0300 32
3 × 32 0.396526(84) 0.04974(13)

0.0325 24
3 × 48 0.42879(33) 0.05781(45)

0.0350 24
3 × 48 0.46187(27) 0.06807(40)

We kept a constant IR term, the linear term with UV and

IR contributions, and the quadratic IR term in our fitting pro-

cedure of �ψψ�. The quadratic fit in Figure 3 gives a small

non-vanishing condensate in the chiral limit which is roughly

consistent with the GMOR [68] relation �ψψ� = 12F2B with

the measured low value of F and O(1) value for B which cor-

respond to the Goldstone pion fits in Figure 1. The deficit be-

tween the two sides of the GMOR relation is sensitive to the

fitting procedure and the uncertain determination of B. The

quadratic term in the fit is a relatively small contribution and

trying to identify chiral logs is beyond the scope of our simula-

tion range.

For an independent determination, we also studied the sub-

tracted chiral condensate operator defined with the help of the

connected part χcon of the chiral susceptibility χ,

(1 − mv
d

dmv
)�ψψ� |mv=m= �ψψ� − m · χcon , (4)

χ =
d

dm
�ψψ� = χcon + χdisc ,

χcon =
d

dmv
�ψψ�pq |mv=m .

The derivatives d/dm and d/dmv are taken at fixed gauge

coupling β. The derivative d/dmv is defined in the partially

quenched functional integral of �ψψ�pq with respect to the va-

lence mass mv and the limit mv = m is taken after differentia-

tion. The removal of the derivative term significantly reduces

the dominant linear part of the �ψψ� condensate. We find it

reassuring that the two independent determinations give con-

sistent non-vanishing results in the chiral limit as clearly shown

in Figure 3.
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Fπ(Ls, η) = Fπ
�
1 − Nf

2

M2

16π2F2
·�g1(λ, η)

�
, (2)

where �g1(λ, η) describes the finite volume corrections with

λ = Mπ · Ls and aspect ratio η = Lt/Ls from the lightest

pion wrapping around the lattice and coupled to the measured

state [61]. The form of �g1(λ, η) is a complicated infinite sum

which contains Bessel functions and requires numerical eval-

uation [62]. Since we are not in the chiral log regime, the

prefactor of the �g1(λ, η) function was replaced by a fitted co-

efficient. The leading term of the function �g1(λ, η) is a special

exponential Bessel function K1(λ) which dominates in the sim-

ulation range. The fitting procedure could be viewed as the

approximate leading treatment of the pion which wraps around

the finite volume, whether in chiral perturbation theory, or in

Lüscher’s non-perturbative finite volume analysis [63] which

does not require the chiral limit as long as the pion is the light-

est state dominating the corrections. The MπLs > 4 lore for

volume independence is clearly not applicable in the model.

We need MπLs > 8 to reach volume independence. The infinite

volume limits of Mπ and Fπ for each m were determined self-

consistently from the fitting procedure using Eqs. (1,2) based

on a set of Ls values with representative fit results shown in

Figures 1 and 4. In the higher m range finite volume effects

were hard to detect and a systematic finite volume analysis was

not applied. Even for the lowest m values sometimes volume

dependence was hardly detectable for the largest lattice sizes.

Non-Goldstone pion spectra, quite different from those found

in QCD, are shown in Figure 2 using standard notation. They

are not used in our global analysis. The three states we desig-

nate as i5Pion, ijPion and scPion do not show any noticeable

taste breaking or residual mass in the m → 0 chiral limit. The

scPion is degenerate with the i5Pion and both are somewhat

split from the true Goldstone pion. The ijPion state is further

split as expected but the overall taste breaking is very small

across the four pion states. This is a fairly strong indication

that the coupling constant β = 2.2 where all runs are performed

is close to the continuum limit. A very small residual mass at

m = 0 is not excluded for some non-Goldstone pion states de-

pending on the details of the fitting procedure.

The staggered meson and baryon states and correlators we

use are defined in [64]. For example, what we call the scPion

and the f0 meson are identified in correlator I of Table 1 in [64].

Similarly, the i5Pion is from correlator VII, the ijPion is from

correlator VIII, the rho and A1 mesons are from correlator III

of Table 1. We measure the Goldstone pion in two different

ways, with one of them defined in correlator II of Table 1 in the

reference. The nucleon state and its parity partner are defined

in correlator I of Table 2 in [64].

2.2. Chiral condensate
The chiral condensate �ψψ� summed over all flavors has the

spectral representation [65]

�ψψ� = −2m ·
� µ

0

dλρ(λ)
m2 + λ2

= −2m5 ·
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µ

dλ
λ4

ρ(λ)

m2 + λ2
+ c1 · m + c3 · m3

(3)

where the UV-divergent integral is written in a twice-subtracted

form in the second line [66]. The UV contribution, which is

divergent when the cutoff a−1
is removed, has a linear term

≈ a−2 · m and there is a third-order term ≈m3
which is hard to

detect for small m and has never been tested in simulations be-

fore. It is small in the the free theory limit and c3 is zero within

errors in our data and therefore omitted from the fits. The IR fi-

nite contributions to the chiral Lagrangian have a constant term

≈ BF2
, a linear term ≈ B2 · m, a quadratic term ≈ B3F−2 · m2

,

and higher order terms in addition to

Table 2: The chiral condensate �ψψ� and �ψψ� − m · χcon, defined in the text

and directly measured from zero momentum sum rules and independently from

functions of the inverse staggered fermion matrix, are tabulated and used in the

fits of Figure 3.

mass lattice �ψψ� �ψψ� − m · χcon

0.0100 48
3 × 96 0.134896(47) 0.006305(73)

0.0150 48
3 × 96 0.200647(31) 0.012685(56)

0.0200 40
3 × 80 0.266151(72) 0.022069(76)

0.0250 32
3 × 64 0.33147(10) 0.03462(12)

0.0275 24
3 × 48 0.36372(40) 0.04133(59)

0.0300 32
3 × 32 0.396526(84) 0.04974(13)

0.0325 24
3 × 48 0.42879(33) 0.05781(45)

0.0350 24
3 × 48 0.46187(27) 0.06807(40)

We kept a constant IR term, the linear term with UV and

IR contributions, and the quadratic IR term in our fitting pro-

cedure of �ψψ�. The quadratic fit in Figure 3 gives a small

non-vanishing condensate in the chiral limit which is roughly

consistent with the GMOR [68] relation �ψψ� = 12F2B with

the measured low value of F and O(1) value for B which cor-

respond to the Goldstone pion fits in Figure 1. The deficit be-

tween the two sides of the GMOR relation is sensitive to the

fitting procedure and the uncertain determination of B. The

quadratic term in the fit is a relatively small contribution and

trying to identify chiral logs is beyond the scope of our simula-

tion range.

For an independent determination, we also studied the sub-

tracted chiral condensate operator defined with the help of the

connected part χcon of the chiral susceptibility χ,

(1 − mv
d

dmv
)�ψψ� |mv=m= �ψψ� − m · χcon , (4)

χ =
d

dm
�ψψ� = χcon + χdisc ,

χcon =
d

dmv
�ψψ�pq |mv=m .

The derivatives d/dm and d/dmv are taken at fixed gauge

coupling β. The derivative d/dmv is defined in the partially

quenched functional integral of �ψψ�pq with respect to the va-

lence mass mv and the limit mv = m is taken after differentia-

tion. The removal of the derivative term significantly reduces

the dominant linear part of the �ψψ� condensate. We find it

reassuring that the two independent determinations give con-

sistent non-vanishing results in the chiral limit as clearly shown

in Figure 3.
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Figure 3: The chiral condensate is shown on the left. After the coefficients of the quadratic fitting function were determined, the plot shows data for �ψψ�−c1m+c2m2

for better visual display of the chiral limit at m = 0 and its error (in magenta) coming from the fitted c0 constant part. The right side is the quadratic fit to

�ψψ� − m · χcon which is defined in the text and directly measured from zero momentum sum rules and independently from functions of the inverse staggered

fermion matrix. The fitting function is c0con + c1conm + c2conm2
. After the coefficients of the quadratic fitting function were determined, the plot shows data (blue

points) for �ψψ� − m · χcon − c1conm − c2conm2
for better visual display of the chiral limit at m = 0 and its error (in cyan) coming from the fitted c0con constant

part. For comparison, the left side plot is redisplayed showing consistency between the two different and independent determinations of the chiral condensate in the

chiral limit. For any given m always the largest volume chiral condensate data is used since the finite volume analysis is not complete. We will continue extended

systematics at the lowest two or three m values which play an important role in the analysis.
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Figure 4: Nucleon and its parity partner are fitted to the constant plus linear form which are the leading contributions of the chiral Lagrangian. The blue points in

the middle plot are the replotted nucleon data from the left to show the degeneracy of the two states. The plot on the right shows a representative finite volume fit.

It should be pertinent to the analysis of the condensate to

note again that the Mπ values in the fitting range of m in our

analysis are below the fitting range of previous Nf = 12 work on

the chiral condensate work with considerably more uncertainty

from using the higher range [27]. In all fits we were on a fine-

grained lattice in the pion mass range aMπ = 0.16 − 0.39 and

rho mass range Mρ = 0.2 − 0.47. In contrast, the previous

extended study [27] which reported conformal behavior was in

the aMπ = 0.35 − 0.67 range and rho mass range Mρ = 0.39 −
0.77. Although our new results should be made more definitive

with higher accuracy and better control on the systematics, the

evidence is quite suggestive for a small non-vanishing chiral

condensate in the chiral limit.

2.3. Composite hadron spectrum in the chiral limit

It is important to investigate the chiral limit of other com-

posite hadron states. They further test the mass splittings be-
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Figure 5: The Higgs ( f0) state and its splitting from the scPion state are shown.

The linear fit on the right works well for the Higgs ( f0) state with little change

when a quadratic term is included on the left. The blue scPion data points on

the right and the dashed magenta fit show the fit to the scPion state. The Higgs

will become a resonance in the chiral limit, the missing disconnected part also

contributing, so that Higgs predictions will be challenging in future work.

tween physical states as the fermion mass m is varied and the

measured hadron masses are subjected to chiral analysis in the
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grained lattice in the pion mass range aMπ = 0.16 − 0.39 and

rho mass range Mρ = 0.2 − 0.47. In contrast, the previous

extended study [27] which reported conformal behavior was in

the aMπ = 0.35 − 0.67 range and rho mass range Mρ = 0.39 −
0.77. Although our new results should be made more definitive
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Figure 5: The Higgs ( f0) state and its splitting from the scPion state are shown.

The linear fit on the right works well for the Higgs ( f0) state with little change

when a quadratic term is included on the left. The blue scPion data points on

the right and the dashed magenta fit show the fit to the scPion state. The Higgs

will become a resonance in the chiral limit, the missing disconnected part also

contributing, so that Higgs predictions will be challenging in future work.

tween physical states as the fermion mass m is varied and the

measured hadron masses are subjected to chiral analysis in the

5

Table 3: V(R) tabulated at fermion masses m = 0.010 and m = 0.015 for lattice volume 483 × 96, and at m = 0.020 for lattice volume 403 × 80.
m\R 4 5 6 7 8 9 10 11 12 13 14
0.010 0.20005(49) 0.22686(84) 0.24638(12) 0.26000(28) 0.27059(55) 0.27957(82) 0.2872(10) 0.2933(21) 0.2979(42) 0.30771(31) 0.31250(82)
0.015 0.20439(21) 0.23332(35) 0.25270(39) 0.26737(85) 0.2789(17) 0.2892(28) 0.30214(36) 0.3129(11) 0.3220(31) 0.3289(12) 0.33576(43)
0.020 0.20819(39) 0.2372(16) 0.25961(99) 0.27727(55) 0.29132(74) 0.3040(11) 0.31718(24) 0.32862(31) 0.33973(78) 0.34921(77) 0.3543(55)
m\R 15 16 17 18 19 20 21 22 23 24
0.010 0.31755(43) 0.32186(78) 0.3263(19) 0.3308(23) 0.3339(40) 0.3364(47) 0.3417(27) 0.3453(29) 0.3466(62) 0.3554(25)
0.015 0.34295(46) 0.35050(37) 0.35863(78) 0.36506(45) 0.36928(69) 0.3708(31) 0.3741(55) 0.3817(59) 0.3897(71)
0.020 0.3625(58) 0.3768(24) 0.3939(107) 0.3946(10) 0.4026(13) 0.4085(30)
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Figure 7: V(R) data and fit for m = 0.01 is plotted on the left and comparison with perturbation theory is shown in the middle plot. The right side plot shows the
string tension measured in nucleon mass units at m = 0.01, 0.015, 0.02 and extrapolated to the chiral limit. The finite nucleon mass gap in the chiral limit implies a
finite string tension at m = 0.
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m → 0 limit for important residual mass gaps above the vac-
uum after infinite volume extrapolation. Hadron masses also
provide useful information on parity splits in several channels.
One composite state of great interest is the Higgs particle, if
there is a chiral condensate close to the conformal window. We
will briefly review new results on the nucleon state with its par-
ity partner, the isospin partner of the Higgs ( f0) state, and the
ρ − A1 splitting.

The fermion mass dependence of the nucleon and its parity
partner is shown in Figure 4 with finite volume analysis at one
selected fermion mass m = 0.015. The same finite volume fit
is applied as described earlier for the pion state. The leading
chiral linear term in the fermion mass m extrapolates to a non-
vanishing chiral limit. The parity partner is practically degen-
erate but this is not a surprise. Already with four flavors a near
degeneracy was reported before by the Columbia group [69].

Figure 5 shows the fermion mass dependence of the Higgs
particle without including the disconnected part of the relevant

correlator. Strictly speaking, therefore, the state is the f0 meson
with non-zero isospin. Disconnected contributions in the cor-
relator might shift the Higgs mass, an important issue left for
future clarifications. Both the linear and the quadratic fits are
shown together with the non-Goldstone scPion which is split
down from the Higgs ( f0) state. The two states would be de-
generate in the chiral limit with unbroken symmetry. The Higgs
( f0) state extrapolates to a nonvanishing mass in the chiral limit
with an MH( f0)/F ratio between 10 and 15. Finally, Figure 6
shows the ρ-meson and its A1 parity partner. Both states ex-
trapolate to non-vanishing mass in the chiral limit. The split re-
mains significant for all fermion masses and in the chiral limit.

2.4. String tension and running coupling from the static force

There are several ways to define a renormalized gauge cou-
pling, for example, the Schrödinger Functional scheme or from
square Wilson loops. We take the renormalized coupling as
defined via the quark-antiquark potential V(R), extracted from
R×T Wilson loops where the time extent T can be large. From
the potential, one defines the force F(R) and coupling αqq(R) as

F(R) =
dV

dR
= CF

αqq(R)
R2 , αqq(R) =

g
2
qq

(R)
4π
. (5)

The coupling is defined at the scale R of the quark-antiquark
separation, in the infinite-volume limit L → ∞. This is differ-
ent from the scheme using square Wilson loops, where one has
αW (R, L) and one can choose finite R with L → ∞, or finite
L and fixed R/L ratio. In the former case, these schemes are
related via

αqq(R) = αW (R)[1 + 0.31551αW (R) + O(αW (R)2)]. (6)
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are consistent with the chiral symmetry breaking hypothesis.
The pion state is consistent with a vanishing mass in the chi-
ral limit and easy to fit with a simple quadratic function of
the fermion mass. The non-Goldstone pion spectrum shows
very little taste breaking at β = 2.2 and the small splittings are
consistent with expectations for staggered fermions with stout
smearing. The SO(4) degeneracies and splittings appear to fol-
low the pattern of QCD although the fermion mass dependence
is significantly different. The fundamental scale-setting param-
eter F of chiral symmetry breaking is finite in the chiral limit.

A non-vanishing chiral condensate is found in the chiral limit
which is in the ballpark of the GMOR relation as suggested by
the small value of F. We find a consistent, non-vanishing chi-
ral limit for the subtracted chiral condensate, with the domi-
nant linear UV-contribution removed. The nucleon states, the
Higgs ( f0) meson, the ρ meson and A1 meson extrapolate to
non-vanishing masses in the chiral limit and considerable splits
of some of the parity partner states persist at very low fermion
masses close to the chiral limit. There seems to be an effective
string tension indicating confinement-like behavior below the
string-breaking scale and the running coupling has not shown
signs of a fixed point slowdown. In addition, there seems to be
a rapid finite temperature transition whose nature is unclear but
hardly favors a conformal bulk phase. Our results are consistent
with results reported in [30] but disagree with the chiral analy-
sis of [27] and do not support the infrared fixed point reported
in [23].

But is it possible that we mislead ourselves with the χSB
interpretation? Can we interpret the results as conformal chi-
ral symmetry? To decide this question, a fairly stringent test
is possible. With the conformal hypothesis the mass depen-
dence of all physical states is controlled by the anomalous di-
mension γ for small fermion masses [36]. Each hadron and Fπ

should scale as Mπ ≈ m
1/ym and Fπ ≈ m

1/ym for small m where
ym = 1 + γ. For small enough m the value of γ should be inter-
preted as γ∗ at the infrared fixed point. The chiral condensate
is expected to have the behavior �ψψ� ≈ c · m + m

3−γ
1+γ when

m→ 0. We selected various subsets of states for a combined fit
with universal critical exponent γ. We also fitted all measured
states combined. In our conformal fits the entries of Table 1
were subjected to conformal finite size scaling analysis [38].

Conformal fits and finite size scaling

Assuming the scaling form MH = L
−1

f (x) with x = L ·m1/1+γ

for meson and nucleon masses and for Fπ, we probed the large
x behavior with two different scaling functions. The first form
f (x) = c1x, when applied to the largest spatial volumes for
each of the eight fermion mass entries, implies that the infinite
volume limit is reached for those data. The second form f (x) =
c0 + c1x implies finite volume corrections even for the largest
spatial volumes if c0 is non-vanishing. To illustrate the fitting
procedure for the second form, we show separate fits of Mπ

and Fπ in Figure 9. The anomalous dimensions ym = 1 + γ of
the separate fits significantly differ in the two channels. There
is a similar situation for the simple fitting function of the first
scaling form as well.
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Figure 9: The upper plot is the conformal fit to Mπ using the second form of the
fitting function and only using the largest volume for each of the eight fermion
masses. The blue points indicate the location of 6 smaller volume entries on the
scaling curve and they are not fitted. Using all 14 data for Mπ would require
a scaling function which breaks away from the linear form at small x values.
Two blue points on the fitted straight line could have been included in the linear
scaling fit. In the lower plot, the Fπ channel is fitted with the second linear
scaling form using fourteen data points including the smaller volumes marked
by blue color and fitted. Two data points on each plot at m = 0.020 are smaller
volumes which are not shown in Table 1 but used in the finite volume analysis
of both hypotheses.

We applied two different conformal finite size fitting proce-
dures to the data of Table 1. The first form f (x) = c1x ap-
plied to the combined fit of the chiral condensate, Fπ, the pion
state, and the stable nucleon state yields a total χ2 = 229 for
26 degrees of freedom with χ2/dof = 9.05 using these 4 ob-
servables for the 8 largest volumes. This was the result quoted
in Section 1 and it indicates a low level of confidence in the
hypothesis. The χSB hypothesis gives χ2/dof = 1.22 for the
same set of states. The second form f (x) = c0 + c1x has nearly
identical confidence level for the combined fit of the four chan-
nels with χ2/dof = 8.99 using again the same 4 observables
for the 8 largest volumes. If the four smaller volume entries
of Fπ from Table 1 are added to the global fit, using the sec-
ond form, we obtain χ2/dof = 10.47. The chiral and conformal
finite size scaling fits for two of the four fitted states with the
quoted global results for the first form of the scaling function
are shown in Figure 10. The plots are nearly identical if residu-
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Figure 10: The N f = 12 chiral and conformal simultaneous fits in four channels are displayed for comparison in two select channels.

als from global fits using the second form are displayed.

It is important to note that in the analysis of the chiral hy-

pothesis each channel is fitted separately so that the global fit

remains good, if individual channels have low χ2/dof values.

To obtain high level of confidence in the conformal hypothe-

sis, it is required to demonstrate low χ2/dof fits for any subset
of channel selections. Lowering the global χ2/dof by adding

channels which do not have conflicts with the fitting param-

eters are lowering the global χ2
fits by diluting the tests and

will not make the conformal hypothesis more favorable. We

can easily vary χ2/dof in the 4-12 range depending on different

channel combinations of the global tests. We chose a typical

representative example in the fits far from the worst possible

combination. An extended conformal analysis by relaxing the

important assumption of leading mass-deformed conformality

with its conformal finite size scaling will require added theoret-

ical understanding of the scaling violation terms. Introducing

ad-hoc changes in the fitting functions and re-analyzing our re-

ported tables in order to increase the confidence level of the

conformal hypothesis is not a procedure we endorse. Besides

it would be required to show increased confidence levels in all
channel combinations of the conformal fits.

The results disfavoring the conformal hypothesis are signifi-

cant. More work is needed for higher accuracy and full control

of the systematics, yet it is worth noting that as the volumes are

increased at the lower quark masses, empirically the results for

Fπ and �ψψ� appear to increase with potential further tension

in the conformal finite volume analysis. We are extending our

on-going analysis to investigate our own published and unpub-

lished data sets, including larger variations of volumes, gauge

couplings, and fermion masses.

4. Conclusions and outlook

We reported new results for a frequently discussed gauge the-

ory with twelve fermion flavors in the fundamental representa-

tion of the SU(3) color gauge group. Our results favor the χSB

scenario but we also noted that close to the conformal window

several features of this gauge theory clearly differ from QCD.

We find a large B/F ratio which is often interpreted as strong

chiral condensate enhancement. This could be correlated with

the fermion mass dependence of the Goldstone pion and the

non-Goldstone pion spectra which are different from what is

observed in QCD with staggered fermions. In comparison with

QCD, we also observe significantly smaller mass splittings be-

tween parity partners in several hadron channels. The near de-

generacy of parity partner states is expected to lead to an S-

parameter quite different from what was projected when QCD

was scaled up by the number of flavors [71]. To gain more con-

fidence in the χSB and conformal analyses, it will be important

to push even deeper toward the chiral limit and closer to the

continuum limit. The analysis reported earlier [27] was prob-

ably not close enough to the chiral limit but only future work

with high precision simulations will be able to explain whether

this is the source of our qualitatively different findings.

The infrared fixed point (IRFP) of the gauge coupling re-

ported earlier [23] is not in agreement with the picture we pre-

sented. It seems to be very difficult to differentiate between
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Nf=16 inside conformal window femto volume with tunneling
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Nf=2 sextet representation
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                           Limited comparison of Nf=2 sextet hypotheses      (LHC)
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Figure 2: Discrete beta function for scale ratio s= 2.

4. Anomalous dimension

An extended technicolor theory faces the challenge of suppressing flavor-changing neutral cur-
rents without suppressing quark masses as well. In walking technicolor, one envisages enhancing
the techniquark condensate from the !TC scale to up to !ETC according to

〈

"̄"
〉

ETC =
〈

"̄"
〉

TC × exp
[

∫ !ETC

!TC

dµ
µ

#(g2(µ))
]

(4.1)

The main feature of walking is that the coupling g2 is nearly constant at an almost-fixed-point value
g2 between these scales, so this formula simplifies to

〈

"̄"
〉

ETC

〈

"̄"
〉

TC ×
(

!ETC
!TC

)#(g2)
(4.2)

Phenomenology [7] requires #(g2) = 1 (or very close to 1).
It is straightforward to calculate # , the anomalous dimension of "̄", in the framework of the

Schrödinger functional [12]. First, because the scalar operator is hard to calculate on the lattice,
we note that it is related by a chiral transformation to the isovector–pseudoscalar operator Pa =
"̄($a/2)#5", which is the pion field. To calculate the anomalous dimension of the latter, we
calculate its correlation function with a Schrödinger-functional wall source O , propagated with
zero momentum to the temporal mid-plane of the lattice according to

〈

Pb(t) O
b(t = 0)

〉
∣

∣

∣

t=L/2
= ZPZO e−m%L/2. (4.3)

4

DeGrand and collaborators claim: 
Nf=2 sextet beta function has an IRFP zero
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But from this calculation γ ~ 0.4 is almost three times 
smaller than the Lattice Higgs Collaboration value  



Outline

- Composite Higgs Mechanism at the LHC
  lattice BSM goals in Theory Space
  world-wide lattice BSM effort 
  lattice resources (GPU technology)

- Below the Conformal Window
  lattice specific: cut-off, volume, fermion mass
  RG flow and lattice continuum physics
  BSM specific    PT  
  m=0 chiral limit and finite volume issues
  

- Inside the conformal window 
  RG flow and lattice continuum physics  
  finite size scaling 
  running coupling and tunneling
  Nf=16 case study
 

- Outlook 
  from KMIIN conference discussions: new input into lattice projects?
 

!
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Summary and outlook

- We have technology to deal with lattice specific issues: cut-off, volume, fermion mass
  RG flow and lattice continuum physics
  BSM specific    PT  
  m=0 chiral limit and finite volume issues
  Two model studies

- Inside the conformal window 
  RG flow and lattice continuum physics  
  importance of finite size scaling 
  running coupling and tunneling
  Nf=16 case study
 

- Outlook 
  we have only seen so far  the tip of the iceberg of what lattice BSM can do
  for example: FSS analysis of current correlators in m->0 limit    Lattice Higgs Collaboration
   phenomenology    Strong Lattice Dynamics Collaboration
  workshop discussions: new input into lattice projects?
 

!
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