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» Asymptotic Flat Space-time

* Conformal picture

Definition 1: A smooth (time- and space-orientable) space-time {.«'ﬁ., Jap) is called asymptotically
simple, if there erists another smooth Lorentz manifold (M, gup) such that
(1) M is an open submanifold of M with smooth boundary IM = I;

(2) there exists a smooth scalar field Q on M, such that gay = 02Gap on M, and so that Q = 0,
dQ # 0 on F;

(3) every null geodesic in M acquires a future and a past endpoint on %,

An asymptotically simple space-time is called asymptotically flat, if in addition Rap =0 ina neigh-
bourhood of 7.



 Uniqueness theorem for asymptotic flat case

Birkhoff theorem (Birkhoff, 1923)

Israel’s theorem (Israel, 1967)

Carter’s theorem (Carter, 1971)
Robinsons’ theorem (Robinsons, 1975)
Topological Censorship (Hawking, 1973)
Hawking rigidity theorem (Hawking, 1973)

N o U s W NhPE

Recent developments ( Review see Chrusciel, 1994; Chrusciel, Costa
and Heusler, 2012 )



Uniqueness of Kerr metric (Carter, 1971)

The Kerr metric is the only vacuum single black hole solution with
M? > a°, regular horizon and stationary and axial-symmetric, asymptotic
flat domain of outer communications.

More resent result (Chrusciel and Costa, 2008; Chrusciel and Nguyen,
2010)

Let (M, g) be a stationary, asymptotically-flat, Z"-regular, electrovacuum,
4 dimensional analytic spacetime. If the event horizon is connected and

either mean non-degenerate or rotating, then Mg is isometric to the
domain of outer communications of a Kerr-Newman spacetime.



* Multiple structure for stationary asymptotic flat space-time
l. Near special infinity

1. Geroch-Hanson multiple moments (R. Geroch, 1970, R. Hanson,
1976)

2. Geroch Conjecture : A vacuum stationary asymptotic flat space-time
is uniquely determined by its Geroch-Hanson multiples, at least near
special infinity.

3. Analyticity near special infinity (R. Beig and W. Simon, 1980)
Il. Near null infinity
1. Multiple monent near null infinity (P. Kundu, 1988)

2. Analyticity near null infinity (T. Damour and B. Schmidt, 1990, S. Dain,
2001, P. Tod, 2007)

3. Relation between multiples at null infinity and special infinity (H.
Friedrich, 2007)



* Relation with physics

1. Can we measure the Kerr metric ? (D. Gross, 2004)

2. Measure gravitational field
Jacobi equation: V:V:Z* =R/

abe
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Tidal force: A, = W, pgt°t9.
Bondi observer for gravitational wave observation.
Gravitational memory effect.



* Questions :

Can one rewrite the uniqueness theorem in terms of some physical
measurable conditions (at least measurable in principle) ?



* Newman-Penrose Formalism ( Characteristic method )

Null tetrad : {6'} = {/,n,m, m}, where | and n are real null vector and
m = %(91 + iey), which satisfy [ -n=—-1, m-m=1.
Denote D :=V,, D' :=V,, 6 .=V, and 6 := V5. Rename the

connection coefficients as

<mVI> <nVI> <mVm> <mVn>
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The Weyl components are
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 Petrov classification ( A. . Petrov, 1954 )

The basic symmetric property of Weyl curvature implies that it can be
seen as trace-less symmetric matrix on two-form space. One can
classify the Weyl curvature by considering its eigenvalues.

Principle null direction k : Wik, k,-)=0
Tuple of principle null direction :
Type | :(1,1,1,1) Type 1l : (2,1,1) Type Il : (3,1) Type D : (2,2) Type N : (4)
Algebraic special : at least one multiple PND
discriminant for algebraic special :

I3 =972

I = VoW — 4V W3 + 3111'2?,_ J
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> Local Uniqueness and Bondi form of Kerr metric

Add axial symmetric requirement, combining Einstein equations and Killing
equations, one can get following control

1. tetrad up to O(r=%).

2. connection coefficients up to O(r—>).

3. Weyl curvature up to O(r=°).

Using Kommar integral, one can find
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(3) Weyl curvature,
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For higher order coefficients, from Cartan structure equations and Bianchi
identities, one can get the k-th order coefficients in terms of wg, its
derivative and other coefficients of lower order. From Killing equations,

one can get following control equation

(k+4)(k+1)

Wk — ...
> 0

Jovg +

The general solution of the homogeneous part of above equation is
W = D¥;Ys.

so the general solution for 'LIIS 5
WE = Uk + .

Now the problem is how to fix Dk ?



It is well-known that Kerr metric is algebraic special. Let lﬂl}g to be the
special solution corresponds to Kerr solution, if lllg corresponds to another
algebraic special solution, the algebraic special condition implies

BTN — BA(WL)F (T3)%| Ty + [R1(TH) T — 54(WH) (W) 4o =0
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which implies DX = 0, i.e. following theorem holds.



Further more, consider the algebraic special condition order by order, one
can get the concrete form of ‘LIJ'S, i.e. one can get the concrete form of
Kerr metric in Bondi coordinates, for example

D° = Magﬂ liﬂ + iverM?a.

Theorem (Wu and Bai, Phys. Rev. D 2010)

All stationary, vacuum, asymptotic flat, algebraic special space-time
will be iIsomorphic to Kerr metric in a neighborhood of null infinity.




» Generalize to Asymptotic AdS Case
* Asymptotic AdS space-time

A d-dimensional space-time (ﬂ?,ﬁrﬂb] will be said to be asymptotically anti-de Sitter if
there exists a manifold M with boundary 7, equipped with a metric g4, and a diffeomorphism
from M onto M — T of M (with which we identify M and M — I) and the interior of M

such that:
1. there exists a function €2 on M for which g.;, = Q%§.s on M:
2. T is topologically S92 x R. Q vanishes on Z but its gradient V,{2 is nowhere vanishing
on 7;
3. On ﬂ-l‘rﬂ Jap satisfies J?a.g. — %-E%,‘ﬁ'ab + Agap = B?TGMJT@.&., where A is a negative constant,
G(q4) is Newton’s constant in d-dimensions, and the matter stress-energy T, is such

that Qg_d'ﬂb admits a smooth limit to 7.

4. The Weyl tensor of g, is such that Q*9C, ., is smooth on M and vanishes at 7.

e Strong asymptotic AdS spacetime : Induced metric on conformal
boundary is conformal flat. (Ashtekar, 2015)



e Gravitational wave in Asymptotic AdS space-time (X. Zhang et. al., 2011,
2017)

e Uniqueness for stationary AdS black hole ? (Black ring ? Topological
Censorship and Higher Genus Black Holes, Galloway et.al. 1999, the
sum of the genera of the cross-sections in which such a hypersurface
meets black hole horizons is bounded above by the genus of the cut of
infinity defined by the hypersurface.)

* Multiple structure of asymptotic AdS space-time ?
* Local uniqueness for AdS black hole ?



* Bondi coordinates for asymptotic AdS metric (X. Zhang,
et. al. G. R. G, 2011)
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Some facts :

If one want the metric has following form, i.e. the strong asymptotic
AdS condition holds (Schouten tensor of conformal boundary vanishes),
ds? = ds?,4¢ + higher order term

which means

B=X=Y=0
A(c?+d?) =0

This means no gravitational wave (or Bondi news function) !



Stating from the asymptotic AdS metric, combining Einstein equations
and static condition, one can get following control on Weyl curvature :

1. For lower order coefficients (O(r %) , k < 5)
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2. For higher order coefficients
: Ak —3) s
a. Master equation : T

b. All order coefficients can be got by algebraic combination of ‘Pé‘

and its spherical derivatives.
c. Compare with the master equation for asymptotic flat case,

(k + 4)(k + ]}q,s;_
0o

AdVE +
One can find there is no multiple structure in higher order
coefficients for asymptotic ads metric. Detail calculation also

shows the function W and LP(()) are not independent. Only one

is free.



» Multiple structure of asymptotic AdS space-time

One can express function W5 in terms of spherical harmonics, i.e. ¥ =
l 0, “om AimYim , then {A;,,,} are multiples of asymptotic AdS space-time.

» Uniqueness result for asymptotic AdS space-time

To get a uniqueness result for asymptotic AdS space-time, it is clear that the
central issue is to fix the only free function W5 .

1. If function ¥ only contains finite multiples, i.e.
LPZO — Z;;O,mAlelm ’ k <+ ’
one can prove that such space-time must be Schwarzschild-AdS
space-time, at least in a neighborhood of infinity.
(He and Wu, 2018, in preparing )
2. For general case, the uniqueness problem of asymptotic AdS space-time is
still open. More work and new idea are needed.
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