August 9, 2018 (Thu.) MOGRA2018@KMI, Nagoya University

Chameleonic Dark Matter and F(R) Gravity

Taishi Katsuragawa (桂川 大志)

華中師範大学 (Institute of Astrophysics, CCNU)

<u>Reference</u>

- "Dark matter in modified gravity?" Phys. Rev. D95 044040 (2017)
- "Cosmic History of Chameleonic Dark Matter in F(R) Gravity" Phys. Rev. D97, 064037 (2018)

Work in progress with

Shinya Matsuzaki (Jilin U.), Eibun Senaha (IBS, Korea), Hua Chen (IoA, CCNU)

Modified gravity can explain DM as well as DE?

Modified gravity is one solution to answer DE problem.

- Can we explain other problems or mysteries in the same framework (theory or model) at the same time?

New field introduced by modification of gravity

- Dynamical DE (Cosmological "constant"→"Field")
- Background to explain accelerated expansion
 + "Oscillation around background"
- When oscillation is quantized, we obtain particle picture
- Particle picture of new field = New particle = DM?

Difference from MOND-like theory

- Not a modification to explain only galaxy rotation curve
- "Particle DM" appears from the modified gravity

F(R) Gravity and Dynamical DE

F(R) Gravity Theory

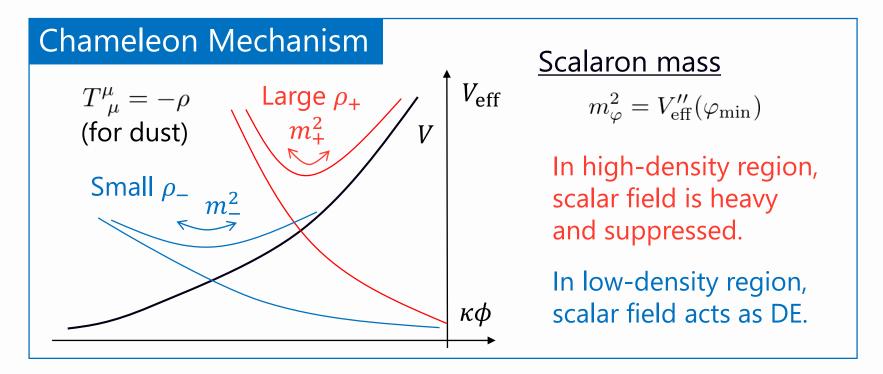
$$F(R) \text{ gravity in Jordan frame: } g_{\mu\nu}$$

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} F(R)$$

$$f(R) \text{ gravity in Einstein frame: } \tilde{g}_{\mu\nu}, \quad \Omega^2(x) = F_R(R) \equiv e^{2\sqrt{1/6}\kappa\varphi(x)}$$

$$F(R) \text{ gravity in Einstein frame: } \tilde{g}_{\mu\nu}$$

$$S = \int d^4x \sqrt{-\tilde{g}} \left[\frac{1}{2\kappa^2} \tilde{R} - \frac{1}{2} \tilde{g}^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - V(\varphi) \right]$$
where
$$V(\varphi) = \frac{1}{2\kappa^2} \frac{F_R(R)R - F(R)}{F_R^2(R)}$$


New scalar field "scalaron" $\varphi(x)$ appears from F(R)

Chameleon mechanism in F(R) gravity

[Khoury and Weltman, (2004)] [Brax et. al (2008)]

Potential of scalaron field $V(\varphi)$ couples with trace of $T_{\mu\nu}$

$$\tilde{\Box}\varphi = \partial_{\varphi}V_{\rm eff}(\varphi), \ V_{\rm eff}(\varphi) = V(\varphi) - \frac{1}{4}e^{-4\sqrt{1/6}\kappa\varphi}T^{\mu}_{\ \mu}$$

How to confirm scalaron can be DM?

Several suggestions in previous research

[Nojiri and Odintsov (2008)], [Cembranos (2009)] etc.

- Role of chameleon mechanism?
- Stability (Lifetime), Relic abundance, DM search experiments?
- Constraint on F(R) gravity ?

Fundamental properties depend on "environment"

- To specify the situation which we consider
- To "reproduce" environment by hand (how to choose T^{μ}_{μ})

Scalaron changes in the cosmic history

- To discuss scalaron at a given epoch
- To "patchwork" independent results and examine the cosmic history of scalaron

Matter Coupling

Matter Sectorexponential form
$$e^{Q\kappa\varphi}$$
 $S_{\text{Matter}} = \int d^4x \sqrt{-g} \mathcal{L}(g^{\mu\nu}, \Psi)$ $= \int d^4x \sqrt{-\tilde{g}} e^{-4\sqrt{1/6}\kappa\varphi(x)} \mathcal{L}\left(e^{2\sqrt{1/6}\kappa\varphi(x)}\tilde{g}^{\mu\nu}, \Psi\right)$ $\varphi \rightarrow \varphi_{\min} + \varphi$ $e^{Q\kappa\varphi(x)} \rightarrow e^{Q\kappa\varphi_{\min}}e^{Q\kappa\varphi(x)}$ $\varphi \rightarrow \varphi_{\min} + \varphi$ $e^{Q\kappa\varphi(x)} \rightarrow e^{Q\kappa\varphi_{\min}}e^{Q\kappa\varphi(x)}$ $\varphi \rightarrow \varphi_{\min} + \varphi$ $e^{Q\kappa\varphi_{\min}} \cdot (1 + Q\kappa\varphi + \mathcal{O}(\kappa^2\varphi^2))$ Frame-deferenceCoupling to matterMassless vector field: $\mathcal{L} \supset g^2 \frac{\varphi}{M_{\text{pl}}} F_{\mu\nu}^2$ (induced from anomaly)Massive fields: $\mathcal{L} \supset m^2 \frac{\varphi}{M_{\text{pl}}} \bar{\psi} \psi, m^2 \frac{\varphi}{M_{\text{pl}}} \tilde{g}^{\mu\nu} A_{\mu} A_{\nu}$ cf.) Coupling similar to Axion or Dilatonic DM

Coupling to SM Particles

Scalaron universally couples with SM particles

For massless vector field (Photon, Gluon)

$$\mathcal{L} = -\frac{3g_V^2}{4(4\pi)^2} \left(\frac{3}{2}\sqrt{\frac{1}{6}}\kappa\varphi\right) \operatorname{tr}\left[F_{\mu\nu}^2(V)\right] + \mathcal{O}(\kappa^2\varphi^2)$$

For photon $F_{\mu\nu}(A) = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \ g_A = e$ For gluon $F_{\mu\nu}(G) = \partial_{\mu}G_{\nu} - \partial_{\nu}G_{\mu} - ig_G[G_{\mu}, G_{\nu}], \ g_G = g_s$

For massive vector field (Weak bosons)

$$\mathcal{L} = \frac{2\kappa\varphi}{\sqrt{6}} \cdot \frac{1}{2} m_V^2 \tilde{g}^{\mu\nu} A_\mu A_\nu + \mathcal{O}(\kappa^2 \varphi^2)$$

For massive fermion field (Quarks, Leptons)

$$\mathcal{L} = \frac{\kappa\varphi}{\sqrt{6}} \cdot m_F \bar{\psi}' \psi' + \mathcal{O}(\kappa^2 \varphi^2) \quad \psi \to \psi' = e^{-3/2} \sqrt{1/6} \kappa \varphi \psi$$

Cosmic Environment in Early Universe

To construct the time evolution of $T^{\mu}_{\mu} = -(\rho - 3p)$ $V_{\text{eff}}(\varphi) = V(\varphi) + \frac{1}{4}e^{-4\sqrt{1/6}\kappa\varphi}(\rho - 3p)$

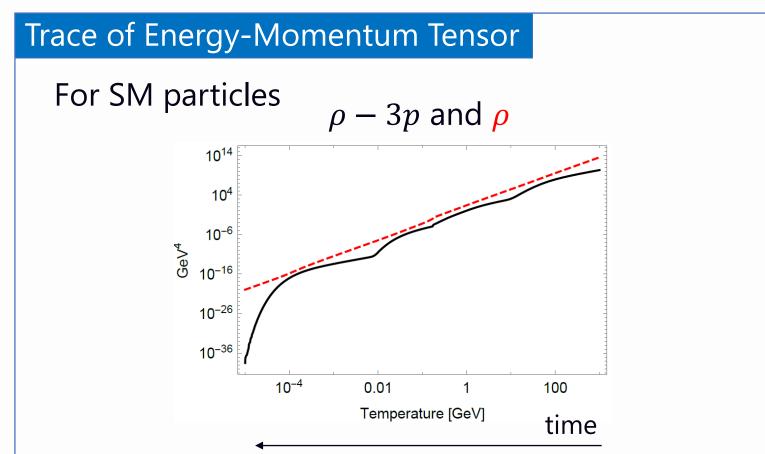
Trace of Energy-Momentum Tensor

$$\rho - 3p = \frac{gT^4}{2\pi^2} x^2 \int_0^\infty d\xi \frac{\xi^2}{\sqrt{\xi^2 + x^2}} \frac{1}{e^{\sqrt{\xi^2 + x^2}} \pm 1} \quad x = \frac{m}{T}, \ \xi = \frac{p}{T}$$

At high temp. (relativistic)

 $\rho - 3p \approx \frac{g}{24}m^2T^2 \begin{cases} 2 \text{ for bosons} \\ 1 \text{ for fermions} \end{cases}$

At low temp. (non-relativistic)


$$\rho - 3p \approx \rho \approx mg \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$

For massless particles $\rho - 3p = 0$ (Radiation)

T. Katsuragawa "Chameleonic Dark Matter and F(R) Gravity" @ MOGRA2018

Cosmic Environment in Early Universe

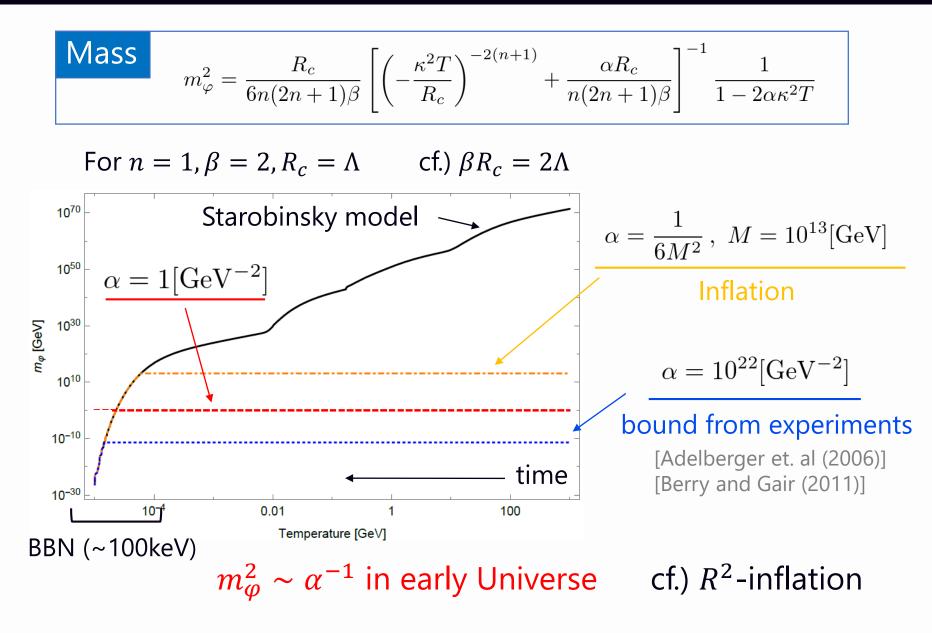
To construct the time evolution of $T^{\mu}_{\mu} = -(\rho - 3p)$ $V_{\text{eff}}(\varphi) = V(\varphi) + \frac{1}{4}e^{-4\sqrt{1/6}\kappa\varphi}(\rho - 3p)$

R²-corrected Starobinsky model

F(R) model for DE

We consider the Starobinsky model with R^2 correction

Starobinsky model with R^2 correction


$$F(R) = R - \beta R_c \left[1 - \left(1 + \frac{R^2}{R_c^2} \right)^{-n} \right] + \alpha R^2 \quad \text{where } R_c \sim \Lambda \\ \text{and } \alpha, \beta, n > 0$$

In large-curvature limit $R > R_c$ (chameleon mechanism works in high-density region),

$$F(R) \simeq R - \beta R_c + \beta R_c \left(\frac{R_c}{R}\right)^{2n} + \alpha R^2 \quad \text{where} \quad \frac{\beta R_c \approx 2\Lambda}{\beta \gtrsim \mathcal{O}(1)}$$

To convert it into scalaron potential $V(\varphi) = \frac{1}{2\kappa^2} \frac{F_R(R)R - F(R)}{F_R^2(R)}$

Scalaron Mass in Early Universe

Scalaron Mass in Current Universe

Scalaron mass in the current Universe.

As an example, we study the environment in the galaxy

Typical density
$$-T^{\mu}_{\ \mu} = \rho \sim 3-5 \times 10^{-25} [g/cm^3]$$

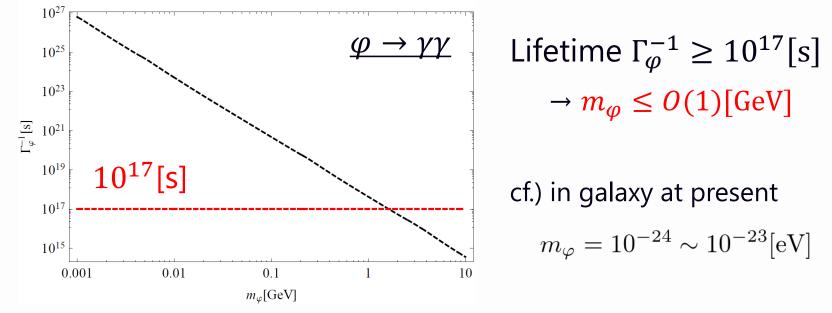
Scalaron mass

 $m_{\varphi} = 10^{-24} \sim 10^{-23} [\mathrm{eV}]$ in typical galaxies

Scalaron is very light in the current Universe.

cf.) Ultralight axion ($m \sim 10^{-23} \sim 10^{-22}$ [eV])

– "Ultralight scalaron" also solves the small-scale problems?

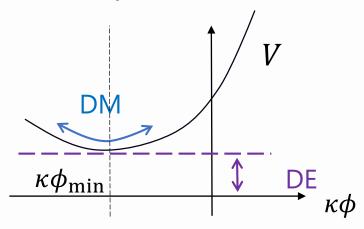

Scalaron can decay to other particles

- We need to check stability (long-lived?)

Stability in Late-time Universe

Scalaron lifetime in the late-time Universe

Scalaron mainly decays into diphotons because scalaron mass becomes smaller and smaller.

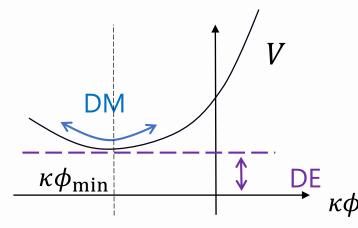

Scalaron is stable in current Universe

- Stability in early Universe is controlled by parameter α
- What about relic density?

Scalaron Relic Density

How to estimate relic abundance of scalaron?

Non-thermal production cf.) Coherent oscillation of Axion



$$\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi)$$

To assume harmonic oscillation of scalaron at present $\kappa \varphi \approx \kappa \varphi_0 \cos(mt) + \kappa \varphi_{\min}, \quad V(\varphi) \approx V(\varphi_{\min}) + \frac{1}{2}m^2(\varphi - \varphi_{\min})^2$ Amplitude $\ll 1$ $V'(\varphi_{\min}) = 0$ Scalaron energy is (approximately) decomposed $\rho \approx \frac{1}{2}m^2 \varphi_0^2 + V(\varphi_{\min})$

How to estimate relic abundance of scalaron?

Non-thermal production cf.) Coherent oscillation of Axion

$$\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi)$$
harmonic oscillation
approximation

$$\rho \approx \frac{1}{2}m^2\varphi_0^2 + V(\varphi_{\min})$$

 $V(\varphi_{\min}) = \frac{\Lambda}{\kappa^2}$ for scalaron potential energy to be DE

 $m_{\varphi} > 3H_0$ for scalaron to harmonically oscillate at present

If we input DM:DE \approx 3:7, we get $\kappa \varphi_0 < 0.3$

- Consistent with approximation, $\kappa \varphi_0 < 1$
- Need all cosmic history to predict precise DM density
 - (= Origin of oscillation? Initial condition/value of scalaron?)

We studied scalaron as new DM candidate

Interaction to SM particles

- Very weak and suppressed by Planck mass scale
- No thermal production (out of thermal equilibrium)

Chameleonic properties

- Mass changes according to cosmic environment
- Very light in current Universe, heavy in early Universe

Stability and Lifetime

- Decaying modes to SM particles
- Long enough to be DM candidate at late-time

Relic Abundance

- Estimation based on coherent oscillation
- Possibility to address the coincidence problem

Remaining Issues

Lifetime

- Scalaron in early Universe \rightarrow Can be heavy?
- To survive in early Universe (<1[s]) \rightarrow Constraints in each epoch
- To include the particle physics beyond SM
- Not perfect fluid, but Lagrangian based on QFT

Relic Abundance

- Origin of coherent oscillation? \rightarrow In early Universe?
- Time evolution of "field" → Damping harmonic oscillation?
- Validity of particle picture? \rightarrow Behaves as dust?

Unification of Dark Sector

- Coupling b/w two dark components is introduced
- Interacting DE model [Farrar and Peebles (2004)]
- How to embed our scenario into interacting DE model?