BOTTOM-UP APPROACH TO THE
MASSIVE SPIN-TWOQO THEORY IN
ARBITRARY SPACETIME



INTRODUCTION

In the flat spacetime, the ghost-free model describing the massive spin-two field
is well known. It is called the Fierz-Pauli model. On the other hand, in the
““fixed” curved background with the ““arbitrary” metric, it is well known that the
infinite series of the nonminimal coupling terms are necessary for the ghost-
freeness. Buchbinder et. al. denote the nonminimal coupling terms as the powers
of the curvature and consider the conditions for the ghost-freeness. They solve
the condition in the leading order approximation with respect to R/mz. The
action of the solution is given by,
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There are three free parameters which are not restricted by the leading order
condition. However, Buchbinder ef.al. have not removed the possibility that these
free parameters are restricted in the higher order calculation.



INTRODUCTION

Recently, some class of full completion of the nonminimal coupling terms have been
obtained by linearizing the dRGT Model. The leading teams of the linearized dRGT
model are included in the three free parameters of the Buchbinder’s model, but it
depends only on one free parameter S.
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In contrast to the Buchbinder’s model, it is guaranteed that there is the full completion
corresponding to the above free parameter region [L. Bernard et. al (201 5)].

In this talk, we solve the condition proposed by Buchbinder ef. a/ up to fourth order,

and investigate whether larger class than the dRGT class can be allowed or not. As a
result, we obtain a restriction between the three free parameters at the fourth order
condition with respect to curvatures.
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Using this notation, the Fierz-Puali theory can be expressed as:
1 A v VA m g 18 8)\ 1 2 1137 2
Lyp = — 58)\h“y8 h”" + a,uh,,)\a hH*" — auh L h + 3 \hO h — §m (hw,h —h )
1 H1VioVoU3V3 m2 H1V1p2V2
= 577 aﬂl huzl/zal/l hMSVS + 77} hM1V1hM2V2

. . U L i s e
As the same way, we would like to define g/'*"1H272  Hntn §ijit2jztnin,



OUTLINE

1. Lagrangian analysis

2. Irreducible decomposition of nonminimal coupling terms
3. Condition for ghost-freeness

4. Perturbative solution

5. Summary



LAGRANGIAN ANALYSIS

In order to count the DoF, we use the "“lagrangian analysis”. Here, we introduce the
““lagrangian analysis” by counting the DoF of Fierz-Pauli theory in the flat space.

Fierz-Pauli theory
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From Eqgs.(a), h%:! can be decided. On the other hand, Eqs.(b) do not contain }}’UM‘
We would like to decide the acceleration of the (Ol) component by taking the time
derivative of Eqgs.(b).



LAGRANGIAN ANALYSIS
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We consider the time derivative of the Egs.(b),
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Egs.(c) guarantee the conservation of the original Egs (b). Then if the Egs.(b) are only
satisfied in the initial time, the Egs.(b) are automatically valid in any time. Therefore,
the Eqgs.(b) can be regarded as the ““constraints” restricting the initial values. We
would like to express the equivalence on the initial time by using ~.
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We continue this procedure until the acceleration hg, appears in the equations. By
counting the numbers of all the constraint obtained through this procedure, the DoF
can be decided.

Next, we would like to deform the consistency condition (c).



LAGRANGIAN ANALYSIS

The consistency condition Egs.(c) can be deformed by adding the EoM as follows,
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We find that ¢(1)”does not also contain any second time derivative terms up to EoM
and constraints. Then, we regard again Eqs.(c’) as constraint and require the
consistency condition of (¢’) as follows,
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From the Egs.(d), the acceleration hg; is decided. On the other hand, Eq.(e) is the
constraint. We obtain more one constraint from the consistency condition of (e),
Hb = q'b('?’) ~ () - Because the consistency condition of gb(4) ~~ () contains the
acceleration }y,, there are no more constraints.



IRREDUCIBLE DECOMPOSITION

We consider the action with the non-derivative nonminimal coupling terms.
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We would like to proceed our calculation with using the symmetries of these tensors,
without giving the specific forms, until the specific forms become necessary.



CONDITION FOR GHOST-FREENESS

Let us start the lagrangian analysis in the arbitrary curved background. The EoM
obtained by variating the action S is given by,
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Same as the case of flat space, Egs. E" = 0 decide the acceleration hij, and Eqgs
cb(l)” = E" ~ 0 can be regarded as constraints. The consistency conditions of the
constraints are given by,
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CONDITION FOR GHOST-FREENESS
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This conditions can be regarded as the constraints ¢(** = ¢1)¥ ~ 0 . However, for

the existence of additional constraints, we have to restrict the integrable terms

St NP The condition for the existence of additional constraint is given by,

Condition for ghost-freeness
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PERTURBATIVE SOLUTION

We would like to find the covariant tensor SH”H1¥t  NHVHE1Pigqtisfying the condition
Det(VY,“") = 0 by taking the perturbation with respect to B/m” . Let us expand the
tensor SHVH1IVL - NHVELVL with respect to the powers of the curvatures,
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Here, the superscript (n) means the n th-order terms with respect to curvature.
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(1) Leading order
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There are no restrictions for the mixed symmetric tensorS(V#1v1#2v2 | This result is
consistent with the Buchbinder’s result:

— |1 1
Sgeneral = /de —g [§QN1V1M2V2M3VBV,UJ1 h,uugl/zvmh,ugm + 5 {m29M1V1M2V2 ot ’YleNlVlMQb‘z

Y2 v U vy UV Vv
_|_? (RM[ g 2lue _ puel g 2]#1) + g RH1H2V1 2}h,u1u1h,u2u2 + 0 (R2/m2)}



PERTURBATIVE SOLUTION

(2) Second order
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Because N MHiViH22 s the perfect symmetric tensor, it is not necessary to note
the order of the superscript (11V112v2). We find that the nonminimal coupling
terms cannot truncate at the leading order, because N (2)#1¥1k2v2 myst be not
equal to zero no matter how we choose the §(VH1virave

(3) Third order
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In contrast to second order, N (3)11v1k2v2 depends purely on S(DH1V1H222 Then, we
find that NV#t"1#2¥2 cannot be chosen independently of SH1¥1H2"2,




PERTURBATIVE SOLUTION

(4) Fourth order
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In contrast to the case of lower order conditions, the fourth order condition
includes the noncovariant term, that is the fourth term. This term cannot be
canceled by the first term. This fact means that §(D#1¥1k2v24s restricted so that it
satisfies the condition,
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for some covariant tensor /Y999, This condition reduce the three free parameters
of s(Wrivinzva 1o the following two free parameters.
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SUMMARY

In this talk, we investigate the restriction of the massive spin-two theory in arbitrary
background. We decompose the general nonminimal coupling terms into the perfect
symmetric tensor and the mixed symmetric tensor, and solve perturbatively the
condition for the ghost-freeness up to fourth order.

In all the order, all the free parameters belong to the mixed symmetric tensor. At the
time of solving the leading order condition, the three free parameters are allowed as
the leading nonminimal coupling terms with respect to curvature. However, by the
fourth order condition, these free parameters are reduced to the two free parameters.
On the other hand, perfect symmetric parts are uniquely defined as the function of
the mixed symmetric tensor and the Richi curvatures.

Although the mixed symmetric tensors over the second order are not restricted by up
to the forth order conditions, we can easily predict that all the mixed symmetric
tensors will be restricted by higher order conditions. This is the future works for this
direction.
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CONDITION FOR GHOST-FREENESS
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IRREDUCIBLE DECOMPOSITION

We consider the model with the nonderivative nonminimal coupling terms expressed
by general tensor A#1"1H2¥2 constructed by curvature and metric,
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The tensor A#1"1H2¥2 can be decomposed as follows,
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PERTURBATIVE SOLUTION

Restriction up to fourth order caluculation
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