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1. Introduction
Six polarization modes

(two spin-0; two spin-1; two spin-2) 
of gravitational waves (GWs)

are possible 
in general metric theories of gravity
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We need construct  
six (non-co-aligned)  
GW detectors 
in order to test  

six polarization modes

This is correct but …
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In today’s my talk,

        First, GW detector signals are given. 
                               Then, we want to know the GW polarizations.

GW Inverse Problem

Please do not be confused with 
a forward problem on GWs; 

            Next, we calculate GW generation (and propagation).

First,  we assume GW sources. 

Thirdly, we compute what signals are detected. 



Assume

We know the sky location of 
a GW event with an EM counterpart

such as GW170817.

(1) 

(2) 
Four (less than 6) unaligned GW detectors ---

aLIGO-Hanford (H)

aLIGO-Livingston (L)

Advanced Virgo (V)

KAGRA (K)



GW sources are generally very far from the Earth.

GW170817 tells us  
                  GW speed = Light speed at O(10−15)

In my talk, GW speed = Light speed .

By the assumption (1) that we know the GW/EM source 
position, we can shift the arrival time from detector to 

detector. 

The plane wave approximation of GWs can be thus used 
and hence the GW propagation direction (θ, Φ) is 

the same for all four detectors 
(with respect to Earth frame but not the detector frame).



2. What is a null stream?
Idea behind the null stream(NS)

Gursel and Tinto(1989)

In GR with ignoring detectors’ noise, 
we assume three detectors

S1 = C1h+ + D1h×

S2 = C2h+ + D2h×

S3 = C3h+ + D3h×

Overdetermined System: 3 equations for 2 variables 



(C2D3 − C3D2)S1

+(C3D1 − C1D3)S2

+(C1D2 − C2D1)S3 = 0
This is often called Null Stream

Here, our idea is that spin-0 and/or spin-1 GW modes 
will make the R.H.S. of the NS non-zero and hence they 

may be probed in the null steam approach.

See also Eq. (9) in Wen and Schutz (2005)



3.  Four unaligned GW detectors
GW source seen from a detector 



paper, we use the information only on the direction of the GW source but not on the dis-

tance to the GW source. As a useful tool for our study, we consider null streams. A general

method used in data analysis of GWs to separate signals from noise is that of null streams.

The null stream approach was first introduced by Gürsel and Tinto [15] and was extended

later by Wen and Schutz [16] and Chatterji et al. [17]. The idea behind this method is that

there exists a linear combination of the data from a network of detectors, which contains no

tensor modes but only noise in GR cases. Chatziioannou, Yunes and Cornish have argued

null streams for six (or more) GW detectors to probe GW polarizations [18].

This paper is organized as follows. In Section II, we describe null streams for four un-

aligned detectors and it is shown, by explicit calculations, that there are two independent

null streams. By using two independent null streams, in Section III, we study a certain

source location on the sky, exactly at which the null streams contain no spin-0 GW modes.

We examine also superpositions of null streams for probing GW polarizations. Section IV

is devoted to the Conclusion. Throughout this paper, Latin indices a, b, · · · run from 1 to 4

corresponding to four detectors.

II. NULL STREAMS FOR FOUR UNALIGNED DETECTORS

Let us assume that there exist four detectors with uncorrelated noise and that, for a

given source, we know its sky position, as the case of GW events with an electromagnetic

counterpart such as GW170817. Then, one knows exactly how to shift the arrival time of

the GW from detector to detector.

For a detector labeled by a (a = 1, 2, 3 and 4), the noise-weighted signal from a GW

source at location denoted as (θ,φ) on the sky is

Sa =F+
a h+ + F×

a h×

+ F S
a h

S + FL
a h

L

+ F V
a hV + FW

a hW + na, (1)

where na denotes noise, h+ and h× denote the spin-2 modes called the plus and cross mode,

respectively, hS and hL denote the spin-1 modes called the breathing and longitudinal mode,

respectively, and hV and hW denote the spin-1 modes often called the vector-x and vector-

y mode, respectively [19] and F+
a , F×

a , F S
a , F

L
a , F

V
a and FW

a are the antenna patterns for

3

Signal at the a-th detector

F_a^* = Antenna Pattern Function

= f(θ, Φ; ψ)

Sky position Polarization angle (w.r.t detector x-arm)



Nishizawa et al (2009) proved 

polarizations of GWs [5, 10, 20]. The antenna patterns are functions of a GW source location

θ and φ [21]. In our numerical calculations, θ and φ denote the latitude and longitude,

respectively.

By noting F S
a = −FL

a that was shown by Nishizawa et al. in [14], Eq. (1) can be simplified

as

Sa =Cah
+ +Dah

×

+ Ea(h
S − hL)

+ Vah
V +Wah

W + na. (2)

Here, we introduce a notation as Ca ≡ F+
a , Da ≡ F×

a , Ea ≡ F S
a = −FL

a , Va ≡ F V
a

and Wa ≡ FW
a , in order to avoid confusions for readers. Note that the effects of hS on

the detector are exactly the same with the opposite sign as those of hL. Hence, only the

difference as hS − hL can be tested as one combined spin-0 mode.

In this and next paragraphs of the present paper, we follow Gürsel and Tinto [15] to

consider only the purely tensorial modes h× and h+. In addition, let us imagine, for its

simplicity, an ideal case that noise is negligible in Eq. (2). By eliminating the two TT

modes in signals at three detectors in the ideal case, we obtain a null stream [15] as, for

a = 1, 2 and 3 for instance,

δ23S1 + δ31S2 + δ12S3 = 0, (3)

where we define

δab ≡ CaDb − CbDa. (4)

Similarly, the other null streams are obtained as

δ34S2 + δ42S3 + δ23S4 = 0, (5)

δ41S3 + δ13S4 + δ34S1 = 0, (6)

δ12S4 + δ24S1 + δ41S2 = 0. (7)

By explicit calculations, we shall show that any two out of the null streams Eqs. (3) and

(5)-(7) can construct the remaining two null streams. Note that Reference [17] suggests

that two null streams are likely to be enough for four unaligned detectors. Without loss of
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We thus rewrite
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Four null streams in GR with ignoring noise

Hagihara+(2018) shows that two of the four null streams 
can construct the remaining two almost everywhere. 



FIG. 1: Curves for δ23 = 0 in the sky, where L=2 and V=3 are assumed.
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Without loss of generality, we choose two NSs

generality, we take Eqs. (3) and (5) as two null streams and multiply them by δ34 and δ31,

respectively. The difference between them is rearranged as

δ23(δ41S3 + δ13S4 + δ34S1) = 0, (8)

where we use an identity as

δ12δ34 − δ42δ31 = δ23δ41. (9)

We thus obtain Eq. (6). Note that δ23 is nonvanishing almost everywhere in the sky for

the nonaligned a = 2 and 3 detectors. See Figure 1 for the zero points of δ23 in the sky,

where we assume a case of L=2 and V=3. In our numerical calculations, the reference for

polarization angles is chosen as aLIGO-Livingston (L=2) and we assume that the source is

located sufficiently far from the detectors, so that the plane wave approximation of GWs can

be used. In the same way, we can obtain Eq. (7) from Eqs. (3) and (5) almost everywhere

in the sky.

Actually, a real GW detector has noise. Eqs. (3), (5), (6) and (7) are thus modified with

noise as

δ23S1 + δ31S2 + δ12S3 = δ23n1 + δ31n2 + δ12n3, (10)

δ34S2 + δ42S3 + δ23S4 = δ34n2 + δ42n3 + δ23n4, (11)

δ41S3 + δ13S4 + δ34S1 = δ41n3 + δ13n4 + δ34n1, (12)

δ12S4 + δ24S1 + δ41S2 = δ12n4 + δ24n1 + δ41n2. (13)

By using identities such as Eq. (9) again, it is clear that any pair among Eqs. (10)-(13) can

derive the remaining two equations.

Next, we incorporate scalar and vector polarization modes. Let us denote two null streams

including spin-0 and spin-1 polarizations as

PaSa = (PbEb)(h
S − hL) + (PcVc)hV + (PdWd)hW + Pene, (14)

QfSf = (QgEg)(h
S − hL) + (QhVh)hV + (QiWi)hW +Qjnj , (15)

where we use Eq. (2) and the summation is taken over a, · · · , j = 1, 2, 3 and 4. Without loss

of generality, we can choose Pa and Qa as (Pa) = (δ23, δ31, δ12, 0) and (Qa) = (0, δ34, δ42, δ23)

for its simplicity, which are corresponding to Eqs. (10) and (11) in the previous paragraph.
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In our numerical study,  H=1, L=2, V=3 and K=4.



FIG. 2: Contour map of the coefficients in the null stream as Eq. (14), where θ and φ denote

the latitude and longitude, respectively. The detectors are labeled as H=1, L=2, V=3 and K=4.

In this figure, white (in color) means zero, red (in color) is positive and blue (in color) denotes

negative. From top to bottom: PaEa, PbVb and PcWc.
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FIG. 3: Contour map of the coefficients in the null stream as Eq. (15). This corresponds to

Figure 2. From top to bottom: QaEa, QbVb and QcWc.

13



In the next section, we shall examine Eqs. (14) and (15) in more detail. In numerical

calculations for the HLVK network, we choose H=1, L=2, V=3 and K=4 for a = 1, 2, 3 and

4 for its simplicity. See Figures 2 and 3 for the network of HLVK.

III. SPIN-0 SILENT LOCATION ON THE SKY AND CANCELING METHOD

A. Source locations on the sky at which null streams contain no spin-0 modes

Let us examine spin-0 modes in the null streams by Eqs. (14) and (15), in which the

coefficients in front of hS−hL are PaEa and QaEa. If PaEa and QaEa vanish simultaneously,

spin-0 GW components do not contribute to the null streams, even if these waves had a

nonnegligible amplitude. For a source location satisfying simultaneously PaEa = 0 and

QaEa = 0, therefore, the null streams can be used for testing only the vector modes hV and

hW .

As Section II suggests, hS − hL for this very particular case will disappear in any null

stream that is made of Eqs. (3), (5), (6) and (7), though the strain output at a detector may

contain spin-0 modes. This can be explicitly shown as follows. Without loss of generality,

we can consider Eq. (12) as another null stream, for which we define (Ra) = (δ34, 0, δ41, δ13).

The coefficient of hS − hL in this null stream is written as RaEa. One can find a relation as

δ34(PaEa)− δ31(QbEb) = δ23(RcEc), (16)

by the same way to obtain Eq. (8). Here, δ23 is nonvanishing almost everywhere for unaligned

detectors. Therefore, if PaEa = 0 and QbEb = 0 are satisfied simultaneously, RcEc vanishes.

See Figure 4 for numerical plots of the sky locations that satisfy both PaEa = 0 andQbEb = 0

for the HLVK network. There are seventy-two sky positions that kill the spin-0 modes in

the null streams for HLVK.

If we are extremely lucky to observe such a GW event with an electromagnetic counterpart

at the location at which spin-0 modes fade out from the null streams, Eqs. (14) and (15)

will enable to constrain (or perhaps detect) hV and hW , separately. They are solved for hV

and hW as
⎛

⎝

hV

hW

⎞

⎠ =

⎛

⎝

PaVa PbWb

QcVc QdWd

⎞

⎠

−1⎛

⎝

Pe(Se − ne)

Qf(Sf − nf )

⎞

⎠ , (17)
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for which the spin-0 modes are killed in NSs.
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detectors. Therefore, if PaEa = 0 and QbEb = 0 are satisfied simultaneously, RcEc vanishes.

See Figure 4 for numerical plots of the sky locations that satisfy both PaEa = 0 andQbEb = 0

for the HLVK network. There are seventy-two sky positions that kill the spin-0 modes in

the null streams for HLVK.

If we are extremely lucky to observe such a GW event with an electromagnetic counterpart

at the location at which spin-0 modes fade out from the null streams, Eqs. (14) and (15)

will enable to constrain (or perhaps detect) hV and hW , separately. They are solved for hV

and hW as
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How small (or large) is the probability

FIG. 4: The seventy-two sky positions that satisfy simultaneously PaEa = 0 and QaEa = 0, where

we assume H=1, L=2, V=3 and K=4.
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4. Conclusion
Even with the only four detectors HLVK,  
we will be able to probe separately 

GW spin-0 and/or  spin-1 polarizations,  
if someone of HLVK members is  

super-lucky  
(like Professor Koshiba-sensei)  
to observe a GW/EM source  

in one of the nearly one hundred sky 
positions. 
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