

Test of gravity with gravitational wave observations

Atsushi Nishizawa (KMI, Nagoya U.)

Aug. 8-10, 2018 MOGRA 2018 @ Nagoya U.

- 1. Introduction
- 2. GW propagation speed
- 3. GW amplitude damping
- 4. Generalized framework for testing GW propagation

- 1. Introduction
- 2. GW propagation speed
- 3. GW amplitude damping
- 4. Generalized framework for testing GW propagation

Gravitational Waves

5 GWs from BBH and 1 GW from BNS have been detected.

LIGO Scientific

Collaboration 2016 – 2017

ullet merger rate BBH: $12-213~
m Gpc^{-3}yr^{-1}$

BNS: $330 - 4740 \,\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$

aLIGO & aVIRGO are expected to detect more events

$$\sim 100-1000\,$$
 BBH up to $z\sim 1\,$

$$\sim 20-400\,$$
 BNS up to $\,z\sim 0.1\,$

This opens a new window to see the Universe.

GW detector network

GW detector network

Next joint observation O3 will start from the beginning of 2019 and last for 1 year. KAGRA will join at later time.

GW waveform

BH-BH, NS-BH, NS-NS binary

depends on neutron star or black hole

In case of neutron stars, mass ejection occurs. (waveform is not so clean)

LIGO Scientific Collaboration, PRL 2016 (GW150914)

GW in modified gravity

So far, various modified gravity theories have been suggested. (scalar-tensor theory, f(R) gravity, massive gravity etc.)

Those theories could alter tensor perturbations and predict the properties of GWs different from GR:

- different phase evolution of GWs
- additional GW polarizations (scalar & vector pols.)
- different propagation of GW
- massive gravitons

GW observation can be utilized for

- direct test of general relativity
- probe for the extended theories beyond GR

Gravity test with GW

Advantages for GW propagation

- 1. GW propagation can test gravity in dynamical regime at cosmological distance.
- 2. Even if modification on gravity is a tiny effect, propagation can accumulate the effect because of long distance.
- 3. Propagation equation is covariant, i.e. independent of GW sources and background spacetimes (NS, BH, supernova, pulsar, stochastic background etc.)
- 4. Parametrization is directly related to observables and physics behind them and is easy to combine with other observations (cosmology, binary pulsar, Solar system)

- 1. Introduction
- 2. GW propagation speed
- 3. GW amplitude damping
- 4. Generalized framework for testing GW propagation

Constraints on GW speed before GW170817

From the observations of ultra-high energy cosmic rays (UHECR)
Moore & Nelson 2001

If a graviton propagates with subluminal speed, it looses energy due to gravitational Cherenkov radiation.

$$\delta_g \equiv 1 - rac{v_g}{c} < 2 imes 10^{-15}$$
 applied only to subluminal case at $\sim 10^{33}\,{
m Hz}$

From arrival time difference between LIGOs

Cornish et al. 2017

GW150914
$$6.9 \pm 0.30 \,\mathrm{ms}$$
 GW151226 $1.1 \pm 0.18 \,\mathrm{ms}$ \longrightarrow $-0.42 < \delta_g < 0.45$ GW170104 $3.0 \pm 0.30 \,\mathrm{ms}$

Measuring GW speed

Nishizawa & Nakamura 2014

arrival time difference between GW and short GRB

$$|\delta_g| < \frac{c \, \Delta \tau_{\text{int}}}{D}$$
 $\delta_g \equiv \frac{c - v_g}{c}$

 $\Delta au_{
m int}$: uncertainty of intrinsic time delay

$$\Delta \tau_{\rm int} = 10 \sec$$
, $D = 200 \,\mathrm{Mpc} \implies |\delta_g| < 5 \times 10^{-16}$

GW170817/GRB170817A

LSC + Fermi + INTEGRAL, ApJL 848, L13

measured values
$$au_{
m obs} = 1.7\,{
m sec}$$
 , $D_{
m min} = 26\,{
m Mpc}$

 $au_{
m obs}$

$$\delta_g \equiv \frac{c - v_g}{c}$$

superluminal

$$\tau_{\rm int} > 0$$

photon

GW

$$-7 \times 10^{-16} < \delta_g \le 0$$

subluminal

$$\tau_{\rm int} < 10\,{\rm sec}$$

 $0 \le \delta_g < 3 \times 10^{-15}$

Wave effect of lensing

R. Takahashi 2017

The geometrical optics breaks down for GW lensed by mass of $\lesssim 10^5\,M_\odot\left(\frac{1\,{\rm Hz}}{f}\right)$

GW with frequency f can arrive earliar than EM wave by time lag of $0.1 \sec \left(\frac{1 \, \mathrm{Hz}}{f}\right)$ relevant to space-baced detectors (LISA, DECIGO)

Horndeski theory

$$S = \int dx^4 \sqrt{-g} \left[\sum_{i=2}^5 \mathcal{L}_i + \mathcal{L}_m \right]$$

Horndeski 1974 $S = \int dx^4 \sqrt{-g} \left[\sum_{i=0}^{3} \mathcal{L}_i + \mathcal{L}_m \right]$ Horndeski 1974 Deffayet, Gao, Steer, and Zahariade 2011 Kobayashi, Yamaguchi, Yokoyama 2011 Kobayashi, Yamaguchi, Yokoyama 2011

$$\begin{split} \mathcal{L}_2 &= K(\phi, X) \;, \\ \mathcal{L}_3 &= -G_3(\phi, X) \Box \phi \;, \\ \mathcal{L}_4 &= G_4(\phi, X) R + G_{4,X}(\phi, X) \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi) (\nabla^{\mu} \nabla^{\nu} \phi) \right] \;, \\ \mathcal{L}_5 &= G_5(\phi, X) G_{\mu\nu} (\nabla^{\mu} \nabla^{\nu} \phi) \\ &\quad - \frac{1}{6} G_{5,X}(\phi, X) \left[(\Box \phi)^3 - 3 (\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi) (\nabla^{\mu} \nabla^{\nu} \phi) + 2 (\nabla^{\mu} \nabla_{\alpha} \phi) (\nabla^{\alpha} \nabla_{\beta} \phi) (\nabla^{\beta} \nabla_{\mu} \phi) \right] \end{split}$$

- Most general scalar-tensor theory containing up to 2nd order spacetime derivatives.
- A single scalar field, but with arbitrary functions of ϕ and $X = -\nabla_{\mu}\phi\nabla^{\mu}\phi/2 \longrightarrow G_2(K), G_3, G_4, G_5$

Constraint on gravity theories

GW propagation speed

$$c_{\rm T}^2 - 1 = \frac{X\{2G_{4,X} - 2G_{5,\phi} - (\ddot{\phi} - \dot{\phi}H)G_{5,X}\}}{G_4 - 2XG_{4,X} + XG_{5,\phi} - \dot{\phi}HXG_{5,X}}$$

Without fine-tuning for the cancellation,

$$G_{4,X}=0, G_5=0.$$

Baker et al. 2017 Creminelli & Vernizzi 2017 Ezquiaga & Zumalacarregui 2017 Sakstein & Jain 2017 Arai & Nishizawa 2018

Horndeski theory after GW170817

$$\mathcal{L}_{\text{Horn}} = K(\phi, X) - G_3(\phi, X) \square \phi + G_4(\phi) R$$

Now, without fine-tuning, specific modified gravity theories for cosmic acceleration are

still allowed

quintessence f(R) gravity nonlinear kinetic theory

ruled out

cubic galileons covariant galileons Fab four

- 1. Introduction
- 2. GW propagation speed
- 3. GW amplitude damping
- 4. Generalized framework for testing GW propagation

Standard siren

GW from a compact binary can be a cosmological tool to measure distance to a source. Schutz 1986, Holz & Hughes 2005

GW phase

from
$$L_{\mathrm{gw}} = -\frac{dE_{\mathrm{orbit}}}{dt}$$

$$\dot{f}(t) \propto \{(1+z)M_c\}^{5/3} f^{11/3}$$

GW amplitude

$$h(t) \propto \frac{\{(1+z)M_c\}^{5/3}f^{2/3}}{D_L}$$

From observational data,

$$h, f, f \dots$$

$$M_z \equiv (1+z)M_c$$

luminosity distance

$$D_L$$

Hubble constant from GW170817

LSC + optical telescopes, Nature 551, 85

at low redshift,

from GW observation

from EM observation of the host galaxy

Amplitude damping in MG

F(R) gravity

Hwang &Noh 1996

$$h_{ij}^{"} + \left(2\mathcal{H} + \frac{\dot{F}}{F}\right)h_{ij}^{"} + c^2k^2h_{ij} = 0 \qquad F \equiv \frac{df(R)}{dR}$$

If
$$\dot{F}/F=\mathrm{const.}$$
 , $d_L^{(\mathrm{eff})}(z)=(1+z)^{\dot{F}/2F}d_L(z)$

nonlocal RR gravity

Belgacem et al. 2018

$$\mathcal{L} \supset m^2 R \square^{-2} R$$

$$h_{ij}'' + \{2 - \delta(\tau)\} \mathcal{H} h_{ij}' + c^2 k^2 h_{ij} = 0$$

- 1. Introduction
- 2. GW propagation speed
- 3. GW amplitude damping
- 4. Generalized framework for testing GW propagation

Generalized propagation of GW

Saltas et al. 2014

GW propagation eq. in the effective field theory at the linear level

$$h_{ij}'' + (2 + \nu)\mathcal{H}h_{ij}' + (c_T^2 k^2 + a^2 \mu^2)h_{ij} = a^2 \Gamma \gamma_{ij}$$

 C_T : GW propagation speed μ : graviton mass

 $\nu = \mathcal{H}^{-1} \frac{d \ln M_*^2}{dt} \; : \mbox{effective Planck mass run rate} \label{eq:number}$ (variation of G)

 Γ : source for GW

Classification of gravity theories

gravity theory	ν	$c_T^2 - 1$	μ	Γ
general relativity	0	0	0	0
Horndeski theory	α_M	$lpha_T$	0	0
f(R) gravity	$F'/\mathcal{H}F$	0	0	0
Einstein-aether theory	0	$c_\sigma/(1+c_\sigma)$	0	0
bimetric massive gravity theory	0	0	m^2f_1	m^2f_1
quantum gravity phenom.	0	$(n_{\rm QG}-1)\mathbb{A}E^{n_{\rm QG}-2}$	when $n_{\mathrm{QG}} = 0$	0

$$E^{2} = p^{2} \left[1 + \xi \left(\frac{E}{E_{QG}} \right)^{n_{QG}-2} \right]$$

doubly special relativity extra dimensional theories Horava-Lifshitz theory gravitational SME

•

WKB solution

Nishizawa 2018

For $\Gamma=0$, the eq. can be solved analytically, if the amplitude is a slowly varying function with cosmo timescale.

$$h = \mathcal{C}_{\rm MG} h_{\rm GR} \qquad \mathcal{C}_{\rm MG} = e^{-\mathcal{D}} e^{-ik\Delta T}$$
 damping factor
$$\mathcal{D} = \frac{1}{2} \int_0^z \frac{\nu}{1+z'} dz' \qquad c_T \equiv 1 - \delta_g$$
 extra time delay
$$\Delta T = \int_0^z \frac{1}{\mathcal{H}} \left(\frac{\delta_g}{1+z'} - \frac{\mu^2}{2k^2(1+z')^3} \right) dz'$$

Even when $\Gamma \neq 0$, an analytical solution is also obtained.

GR solution

MG numerical solution

MG WKB solution

Constraining the time evolution

Expansion up to linear order in time

Arai & Nishizawa 2018

$$\nu = \nu_0 - \nu_1 H_0 t_{\rm LB}$$
$$\delta_g = \delta_{g0} - \delta_{g1} H_0 t_{\rm LB}$$

 $t_{\mathrm{LB}}(t)$: lookback time in the standard Λ CDM universe

Observables are expressed in terms of new parameters

$$\mathcal{D} \approx \frac{1}{2} \left\{ \nu_0 \ln(1+z) - \frac{\nu_1}{2} (H_0 t_{\rm LB})^2 \right\}$$
$$\Delta T \approx \frac{1}{H_0} \left\{ \delta_{g0} H_0 t_{\rm LB} - \frac{\delta_{g1}}{2} (H_0 t_{\rm LB})^2 \right\}$$

GW170817 was the first opportunity to measure them.

Observational limit on model parameters

Arai & Nishizawa 2018

Future forecast

Nishizawa 2018

HLV network, redshift prior $\Delta z = 10^{-3}$

constant ν, μ

$$--30M_{\odot} - 30M_{\odot}$$

$$-10M_{\odot} - 10M_{\odot}$$

$$10M_{\odot} - 1.4M_{\odot}$$

$$---$$
 1.4 M_{\odot} – 1.4 M_{\odot}

$m_1(M_{\odot})$	$m_2(M_{\odot})$	$\Delta \nu$ (median)	$\Delta \nu$ (top 10%)	$\Delta\mu(eV)$ (median)	$\Delta\mu(eV)$ (top 10%)
30	30	3.21	1.33	5.85×10^{-23}	4.74×10^{-23}
10	10	6.37	2.46	2.03×10^{-22}	1.82×10^{-22}
10	1.4	16.1	6.54	4.89×10^{-22}	3.87×10^{-22}
1.4	1.4	35.9	9.92	4.09×10^{-22}	3.71×10^{-22}

Summary

- GW propagation can be a powerful probe for testing gravity in dynamical regime and at cosmological distance.
- GW propagation speed has been measured so tightly from GW170817.
- With the GW speed constraint, viable cosmological models in Horndeski theory are those with simpler Lagrangians, G₂ and G₄.
- Constraint on GW amplitude damping is still too weak to discuss the implication for the test of gravity, but would be important in the future.