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Guiding Principle for Modified

Gravitational Theores

Theorem: General Relativity (with a c.c.) is the Unique local
and Lorentz invariant theory describing an interacting single
massless spin two particle that couples to matter

Weinberg, Deser, Wald, Feynman, .....

Locality

Massless ? Lorentz Invariant

Single Spin 2



Guiding Principle for Modified

Gravitational Theores

Corollary: Any theory which preserves Lorentz invariance
and Locality leads to new degrees of freedom!

Locality (

Massless > Lorentz Invariant

4 | v

Single Spin 2

) &



Massive Gravity: Hard or Soft?

A generic local, Lorentz invariant theory at the linearized level
gives the following interaction between two stress energies

+ spin 0 + massless spin 2 contributions
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Soft Massive Grav1ton is a resonance (finite hfet1me)

(pole on the second Riemann sheet) v — k2 e

Hard Massive Graviton is a pole (infinite lifetime)
(pole on the first Riemann sheet)



Soft Massive Gravity: DGP Model

Soft Massive Gravity theories were constructed first!
B LGP 1o Naturally arise in Braneworld Models: DGP,
Cascading Gravity: Soft Massive Graviton is a
Resonance State localized on Brane

5D gravity, out here
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Dominates in UV Dominates in IR



What does hard massive gravity mean?

In Standard Model, Electroweak symmetry
is spontaneously broken by the VEV of the Higgs field

SUR2) xU(l)y — U(1)gm
Result, W and Z bosons become massive

Would-be-Goldstone-mode in Higgs field becomes
Stuckelberg field which gives boson mass

Higgs Vev  Higgs Boson Stuckelberg field

\\

v+,0

e.g. for Abelian Higgs
A, — A, +0,X T — T+ X



Symmetry Breaking Pattern
In Massive Gravity - Local Diffeomorphism Group and an
additional global Poincare group is broken down the diagonal

subgroup

Dif f(M) x Poincare — Poincaregiagonal

In Bigravity - Two copies of local Diffteomorphism Group are
broken down to a single copy of Diff group

Dif f(M) x Dif f(M) — Dif f(M)aiagonal



Higgs for Gravity

Despite much blood, sweat and tears an explicit
Higgs mechanism for gravity is not known

However if such a mechanism exists, we DO know how to write
down the low energy effective theory in the spontaneously broken

phase

For Abelian Higgs this corresponds to integrating out the Higgs boson and
working at energy scales lower that the mass of the Higgs boson

Higgs I&)Ason. Stuckelberg field
E < m, d=(v+pe™T

* Stuckelberg formulation of massive vector bosons



Stuckelberg Formulation for Massive Gravity

Arkani-Hamed, Georgi, Schwartz 2002
de Rham, Gabadadze 2009

Diffeomorphism invariance is spontaneously broken but
maintained by introducing Stueckelberg fields

Vev of spin 2 Higgs field

: = (0 Stuckelb
defines a ‘reference metric’ fuv = (Opv) uckelberg

reference metric fields

Dynamical Metric \

Gpuv ()
A B
F,LW — fAB(¢)8u€b e
helicity-1 mode of graviton
a __ _.a 1\a| 1 a A3:m2Mp
O¢ = x° A mMpA | AS(? T

helicity-o mode of graviton



de Rham, Gabadadze, AJT 2010
A3 Massive Gravity

Dif f(M) x Poincare — Poincaregiagonal

1

L=-v—g|M:R[g QZﬁnu + L
2
d Characteristic
Det|1 + A\K| = Z AU, (K) — Polynomials
n=0
0,0, m

K=1-— \/g—lf square root designed s.t.  f,, — Ag

Unique low energy EFT where the strong coupling scale is
Ag — (m2Mp)1/3



Hassan, Rosen 2011
Hinterbichler, Rosen 2012

A3 Bigravity + Multigravity

£ =y (MhvEaRlal + T S 00)) + o

d decoupling
Det|1 + AK| = Z AU (K) limit

n=0
K=1-Vg'f

Mf%OO

\4

4
. . £:%\/jg (M]%R[g]_m226nun) + Ly
Bigravity= n—0

massless graviton (2 d.o.f.)

+ massive graviton (5 d.o.f) +decoupled massless graviton f,,



General Relativity

M2
S:/\/jg - R

2 ‘tensors’ = helicity-2 modes

N N\



Loorenz Invariant Massive Gravity

/ Vv (R — Mass Term)

Constraint means only

21492192 _1=5 one scalar propagates

N .

_: :ﬁ . “% o \0\
2 ‘'vectors’ = helicity-t modes 5 ‘gcalars’ = helicity-o modes

5 propagating degrees of freedom
5 polarizations of gravitational waves!!!!




Vainshtein effect is strongly scale and density dependent
T Yukawa region

F —
=\ r>m!
|

Strong coupling

Weak coupling region
region
Vainshtein radius /
For Sun

Schwarzschild
region
r <nTe



Example: Binary Pulsars

Scalar Gravitational Waves:
Dominated by Quadrupole radiation

1808.021654!
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Scalar Gravitational Radiation from Binaries:
Vainshtein Mechanism in Time-dependent Systems
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ABSTRACT: We develop a full four-dimensional numerical code to study scalar gravitational
radiation emitted from binary systems and probe the Vainshtein mechanism in situations that
break the static and spherical symmetry, relevant for binary pulsars as well as black holes
and neutron stars binaries. The present study focuses on the cubic Galileon which arises as
the decoupling limit of massive theories of gravity. Limitations associated with the numerical
methods prevent us from reaching a physically realistic hierarchy of scales; nevertheless,
within this context we observe the same power law scaling of the radiated power as previous
analytic estimates, and confirm a strong suppression of the power emitted in the monopole
and dipole as compared with quadrupole radiation. Following the trend to more physically
realistic parameters, we confirm the suppression of the power emitted in scalar gravitational
radiation and the recovery of General Relativity with good accuracy. This paves the way
for future numerical work, probing more generic, physically relevant situations and sets of
interactions that may exhibit the Vainshtein mechanism.

Numerical Simulations:

Dar, de Rham,

Deskins, Giblin, AJT
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(PSUP)/(PXC)

Dar, de Rham, Deskins, Giblin, AJT
1808.021654!

Scalar Gravitational Wave Power

| Previous Analytic Work
P2cub1c 25 x 317/4.3/2 « —)—1(Q - )_3/2 de Rham, AJT, Wesley 2013
‘ P2KG T 1024T (%) p" pv de Rham, Matas, AJT 2013

3r2 4 E
P = 7 (1 + m?> fdQ 6{776741'

Static Source suppression (7/ry)3/2
Time-dependent enhancement (Q,7) 5% = 1/v°/?
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Constraints on the Graviton Mass
de Rham, Deskins, AJT, Zhou, 1606.08462

Yukawa
mg (eV) Ag (km)
10—2° 1012 Solar System tests Fyukawa
1032 1041 Weak lensing Foouoms 4
1029 10%Y Bound clusters -I11/m—> r
Dispersion Relation
my (V) A, (km)
1022 10! aLLIGO bound
1020 10? Pulsar timing M\/\/\/ |
10—3Y 102V B-mode’s in CMB
Fifth Force
mg (€V) Ag (km)
10~ 24 1042 Lunar Laser Ranging
10—27 10%7 Binary pulsar
1032 1042 Structure formation




Dispersion Relation

LA ) B Direct Detection of GW

10—20 10? Pulsar timing
Ly 1020 B-mode’s in CMB

Constraints modifications of the
dispersion relation

2 1,2 2
E* =k +m g Generic for the helicity-2 modes of any Lorentz
invariant model of massive gravity

GW signal would be more squeezed than in GR |
- e WOl
Speed increases with frequency ,Ug / c~1— 5 ( C / Ag f)
v 200Mpc At
— 2 =5%x 10717 ) (=
C D 1s

200Mpc\ /2
<4 x107% v( At / )
Mg S A X eV A G0, — D

D ~ 400Mpc, f ~ 100Hz, p~23 = m, < 10 **eV  Abbottetal., 2016




Does we know all the constraints on graviton

mass from al.1GO??

regime and, bound, for the first time several high-order post-Newtonian coefficients. We constrain the graviton

l \I O! l\/l any Other Compton wavelength in a hypothetical theory of gravity in which the graviton is massive and place a 90%-

confidence lower bound of 10" km. Within our statistical uncertainties, we find no evidence for violations of

effects to consider
LIGO & VIRGO, PRL116, 221101 (2016)
* Graviton Mass depends on environment, for instance Meraviton < 10 22 eV
it depends on distance to black holes GW150914
* Graviton Mass likely to vary non-adiabatically
during merger creating additional non-adiabatic inspira ' Merger Qérlil’n
effects in the waveform

* Additional scalar (and vector) gravitational Q O c .

radiation. Scalar radiation may dominate effects on

tensors. P 7
* Black hole/NS solution modified, in particular 5 °°K A \ [\ i
quasi-normal modes may be different =M\ / ""-.', f\fw’
* Vainshtein suppression may not be active in & | Vv |
merger region - needs proper numerical simulation - [[ Fmerearertiy | |
* PN expansion almost certainly doesn’t work in 030 035 0.40 045
Vainshtein region Time (s)

AJT Conjecture: Likely real constraints on LI MG are stronger!



What about Black hole solution, 1s horizon modified?

Many attempts to construct Black Hole solutions of massive (bi) gravity have
focused on special symmetric solutions many in non-standard branches.

Babichev, Brito, Volkov, Comelli, Pilo... many more

There should be a solution with
Yukawa asymptotics!
= Schwarschild as m — 0

Nonsingular Black Holes in Massive Gravity:

L ; . . "
Tlme—Depen dent Solutions Black Hole Mechanics for Massive Gravitons

Rachel A. Rosen!

! Department of Physics, Columbia University,
Rachel A. Rosen New York, NY 10027, USA

It has been argued that black hole solutions become unavoidably time-dependent when the gravi-
ton has a mass. In this work we show that, if the apparent horizon of the black hole is a null surface
coordinate-invariant singularities at the horizon. In this work we investigate the possi- with respect to a fiducial Minkowski reference metric, then the location of the horizon is necessarily

bility of black hole solutions which can accommodate both a nonsingular horizon and time-independent, despite the dynamical metric possessing no time-like Killing vector. This result is

. . . . . non-perturbative and model-independent. We derive a second law of black hole mechanics for these
Yukawa asymptotics. In particular, by adopting a time-dependent ansatz, we derive black holes and determine their surface gravity. An additional assumption establishes a zeroth and

perturbative analytic solutions which possess nonsingular horizons. These black hole a first law of black hole mechanics. We apply these results to the specific model of dRGT ghost-free
solutions are indistinguishable from Schwarzschild black holes in the massless limit. At massive gravity and show that consistent solutions exist which obey the required assumptions. We
finite mass, they depend explicitly on time. However, we demonstrate that the loca- determine the time-dependent scalar curvature at the horizon of these black holes.

Y * Y
tion of the apparent horizon is not necessarily time-dependent, indicating that these
black holes are not necessarily accreting or evaporating (classically). In deriving these



Massive Gravity as an EF T

Ghost free massive gravity, bigravity and multigravity
are Effective Field Theories (EFT), which breaks down

at the scale A5 = (m2 MPlanck)l/ 3

(Generic one-loop Graviton diagram needs
counter-terms at the scale (principally due to % _
helicity zero mode interactions)

AS — (mZMPlanck) 1/3

Counter-terms which are not needed in GR!

Vainshtein radius LARGER than Schwarzschild radius



Massive Gravity as an EF T

One-loop Graviton diagram needs counter-terms at the scale
2 1/3
AS — (m MPlanck) /

K=1-+/g7'f %
In decoupling limit: Mp1,anck — 0o, m — 0 {é(ﬁ -

0,0, O
K, — =
o Ag

: 3
EFT corrections then take the form
(even away from the decoupling limit) de Rham, Melville, Tolley 2017

ALy = _MQR A M EE 4_”K”_ At VY Kk, (Fuwer)
o= [t At S (3) 0 (5

Infinite number of derivative suppressed operators




Existential Crisis of MG, does a UV

completion exist?

Can I describe theories of massive
gravity/multi-gravity at energy scales higher than Az ?

Is there a UV completion?

Is there a Lorentz Invariant Higgs mechanism for gravity?

If not, what do we give up? Lorentz invariance? Locality?



Part of a larger question:

Are all EF1s allowed?

aka Swampland!

With typical assumption that:
UV completion is Local, Causal, Poincare Invariant and Unitary

Answer: NO! Certain low energy effective theories do not
admit well defined UV completions

Recent Recognition: Positivity Bounds!

‘Older’ work by Adams et al 2006, recent related work by Cheung, Remmen,
Hinterbichler, Rosen, Joyce, Bonifacio, de Rham, Tolley, Melville, Zhou 2016/2017/2018



A N S

1960’s S-matrix assumptions

Unitarity STS =1 |A(K)| < aePl®!
Locality: Scattering Amplitude Polynomially (Exponentially) Bounded
Causality: ~ Analytic Function of Mandelstam variables (modulo poles+cuts)
Poincare Invariance
Crossing Symmetry:  Follows from above assumptions
Mass Gap:  Existence of Mandelstam Triangle and Validity of Froissart Bound
s-channel u-channel
_ _ 2
A+B—-C+D A+D—->C+B Sstittu=dm
2
Ap p O AR RO s=(p1+p2)
2
= (p1 — p3)
2
= (p1 — pa)

BR oo 5 M Iz S u



Forward Scattering Limit Dispersion relation
Complex s plane

t =10 Im(s) Physical scattering

% region is § > Am?

Re(s)

Crossing: /

u=4m? — s

As Au < ps(p) / * pu(p)
s(8,0) = b ? ?
A0 = Lt bt [ [
Positivity/Unitarity

No. of subtractions =2

p(6) = Ll A(s,0)) = IR 7(s) < 3 (log(s/s0))?



Forward Limit Positivity Bounds

Recipe: Subtract pole, differentiate to remove subtraction
constants

As Ay

m2—s m?2—u

Al (s,t) = As(s, t)

L d* AL(2m?,0) = /00 ps() | /oo pu (1) >0
M'dsM ™ ’ 4m?2 (ﬂ’ T 2m2)M+1 | 4m?2 (M o 2m2)M+1
RH Cut LH Cut M > 2
Assume Weak Coupling Adams et. al. 2006

1 dM 00 tree o0 tree
ps (1) / Pub)

/tree 2 .
M! dsMAS (2m”,0) _/A2 (p—2m2)M+1 * [ 5 (pu — 2m2)M+1

Directly translates into constraints on Wilsonian action



Extension away from forward scattering hmait

de Rham, Melville, AJ'T, Zhou 1702.06134

S >
A(s ) = 167,/ > 20+ 1) Py(eos D)a(s

=0

Unitarity

Ima;(s) >0, s>4m? Tm ay(s) = |ag(s)[® + - --

d" ing  — p
@ TmA(s, 1) -0 using  —— ()
dt™ t=0

ImA(s,t) >0, 0<t<4m®, s> 4m?

M > 2

am? (6 — 2m2 + ¢/2)MH1 T 7

- 1 [° ImA,(u,t 1 [ ImA,(u,t
/ mAs(p, 1) / m Ay, (i, ) < 0

/ 2 2 t —
M1 asi A (2met) = o iz (o — 2m? + £/2)M T



What about general spins,
e.g. spin 2 = massive gravity?

In forward limit, dispersion relation holds for helicity amplitudes

Ay a0, (8,0) has dispersion relation with 2 subtractions

.. Jp
Helicity: o P, S, A) = Alp, S, \)

‘Also applies to INDEFINITE helicity

Alowed i Cheung Remmen 2016 have used this to place
owe ]

’ _ constrains on the mass parameters
d in massive gravity

Cheung & Remmen (2016)

And for spin -1 Proca field, see Bonifacio,
Hinterbichler & Rosen (2016)

-04 -02 0.0 0.2 0.4

ca both in the forward scattering limit



see also Bellazzini 2017

Analyticity for Spins

IHAl(S)

In addition to usual scalar
poles and branch cuts
we have ........

1. Kinematic (unphysical) poles at s = 4m°

2. +/stu branch cuts
3. For Boson-Fermion scattering +/—su branch cuts

Origin: non-analyticities of polarization vectors/spinors



Iransversitas, lransversitatum, et omnia lransversitas
Kotanski, 1965

Helicity ransversity

~ ~
-

E: S1,, 52, S1% ) Sox
1727374 u>\171uAQTzuT?,)\SuMMH)‘l)‘?)‘?))“l
A1A2A3)4

Change of Basis uy, = (S, Ne '27ze "2 lvel 2 72| G, 1)

1?2 (s,t,u) = et 2 TIXTY (u,t,s)

T1T2T3T4 —T1—T4—T3—T2

Crossing is Simple!!



Dispersion Relation with Positivity along

BO'TH cuts

de Rham, Melville, AJ'T, Zhou 1706.02712
Punch line: The specific combinations:

7:-—1:-27-37-4 (37 9) — (\/ _Su)g‘S’Sl—FSQ (7'71727374 (37 6) + 7;1727374 (57 _0))

Im(s .o
) have the same analyticity structure

Re(s) Implies Dispersion Relation

m? 3m? 4m?

1 dVs -,
f7172(87t) — NS' dSNS,];'lTQTlTQ(S7t)

1 [*® Abs T4 (u,t 1 (*©  Abs,T* 4m? —t — p,t
f7-17-2 (v,t) = —J d 52 17271 2('u ) 4 _J d,u U 7'17'27'17'2< M )
T Jamz  (p—2m2 + /2 —v)Nstl 7 )00 (p—2m?2 +t/2 + v)Ns+1



ds

Application to Massive Gravity
Unitary (Gauge Massive Gravity

Einstein-Hilbert Mass Term

M m?

L5 7 (R 9] =~ V(g,h)>

Parameterize generic mass term (without dRGT tuning) as

V(g,h) 2[h*] = [A]* + (e = 2)[W*] + (2 + g)[hz] ]

©(dy + 3 — 3¢)[hY] + (ds — Z _ e)[h2]?

+ ...

where [n] = #hu, [12] = 0#huan®Phs,,

04 02 00 02 04 ds = —d1/2+3/32+ Ad, ¢y =—3c1/2+1/4+ Ac

3



Application to Massive Gravity

Forward Limit

0” 352
2M];2)1m6wfa5|t=0 :T|OKSBS|2 (AC (—6 + 901 — 4AC) — 6Ad)

176

+ ?Ckikgﬁ;(avl 5\/1 — Ckv2ﬁv2) Ac (3 — 3¢y + 4AC)

Positivity for general helicity implies: Ac =10

Beyond forward % oo (0,1) o LAd+o<—) > 0

10 10
A5 A5

Ad =0
These are precisely the tunings that raise the cutoft from

Ay = (m4MPlaan)1/5 — Ag = (rrn2]\4Plamck)1/3



Raising the Cutofl- the Third Way?

1 d'k Puvas (k) > p(1) Puvap (k)
AS ~ TH (k T oo —tr b / d praf T8 (k
/(2#)4 () Z Pole 2 1 m?2 ” 0 K k% 4+ p (%)

2
MPlanck




No vDVZ discontinuity on AdS

Its an old result, that on AdS you can take the massless limit of
massive gravity and recover GR plus a decoupled sector

= NO vDVZ discontinuity!
KEKD = 6 = 9" fap($) 009" 08"

1 _ 1
L = §MglaickR B 2‘2\4]:€)z1a121(:k([(2 K2)
dd—3) 4o (d—2)+1dof
L2
On AdS fabp(®) = —5 74 we can take
d

Mpianck — 00 A = (mZMgl_a?le)l/d fixed

Ao > Ag Only Problem: We don’t live in AdS!!!!




Warped Massive Gravity

(Gabadadze 2017

Solution: Do AdS Massive gravity in § dimensions, with our
universe localized on a 3+1 brane

Einstein Hilbert + mass term

on the brane 1 87
2 2 2(1.2 2
5D Massive Gravity on AdS
in the Bulk
L2
/ fa,b(¢) — 5 Tab
5

1 1
£b111k — 5M§R5 o §m2M]§lanck(Kil/ o Kz)




Soft and Hard (nonlocal) massive gravity

Cutoff is raise to Gabadadze 2017

1
22 r2\1/4 3 2\1/5
A2:(m M4)/ NZN(M5m)/ >>A3
This is achieved because of a continuum/resonance of
soft gravitons whose masses are smaller than usual hard mass

graviton

Ay

Result: Low energy effective theory is more non-local
(although full theory is completely local)



Summary

Massive Gravity theories come in several types:
Soft and Hard

Vainshtein mechanism works for static sources and
time-dependent like binary pulsars
- time-dependence can suppress screening

Full understanding of dynamics, e.g. even for black hole solutions is
far from understood due to necessary time dependence of the
additional degrees of freedom, however some progress being made ...

Recent Recognition: S-matrix Positivity Bounds applied to massive
gravity automatically raise the cutoft from

As = (m4MP1anck)1/ G— VN5 MPlaan)l/S

In the context of AdS braneworlds, cutoft of 4d theory can potentially
be raised to A, = (m2M?2)/4 while maintaining Lorentz invariance




