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Context: Why lattice supersymmetry &

At strong coupling...

—Supersymmetric gauge theories are particularly interesting:
Dualities, holography, confinement, conformality, . ..

—Nonperturbative lattice discretization is particularly useful
Numerical analysis provides complementary approach to SCGT

Proven success for QCD; many potential susy applications:
@ Compute Wilson loops, spectrum, scaling dimensions, etc.,
complementing perturbation theory, holography, bootstrap, .. .

@ Further direct checks of conjectured dualities

@ Predict low-energy constants from dynamical susy breaking

@ Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)
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Context: Why not lattice supersymmetry

There is a problem with supersymmetry in discrete space-time
Recall: supersymmetry extends Poincaré symmetry
by spinorial generators Q!, and (_DiM withl=1,.-- N

The resulting algebra includes {Qa,(_Dd} =208 P,

P,, generates infinitesimal translations, which don't exist on the lattice
— supersymmetry explicitly broken at classical level

v

Consequence for lattice calculations
Quantum effects generate (typically many) susy-violating operators

Fine-tuning their couplings to restore susy is generally not practical
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Exact susy on the lattice: N' =4 SYM

In order to forbid generation of susy-violating operators
(some subset of) the susy algebra must be preserved

In four dimensions A/ = 4 supersymmetric Yang—Mills (SYM)
is the only known system with a supersymmetric lattice formulationJ

N =4 SYM is a particularly interesting theory
@ SU(N) gauge theory with four fermions W! and six scalars ¢V,
all massless and in adjoint rep.
@ Action consists of kinetic, Yukawa and four-scalar terms
@ Supersymmetric: 16 supercharges Q!, and 5; withi=1,..- 4
Fields and Q’s transform under global SU(4) ~ SO(6) R symmetry

@ Conformal: 3 function is zero for all 't Hooft couplings A
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Exact susy on the lattice: topological twisting

What is special about N' = 4 SYM
The 16 fermionic supercharges @', and (_DL fill a Kahler—Dirac multiplet:

Q @& @ &
a Ma Feo Yo )= Q49,0 +Vur Qv + V¥ Quvp + V5 Quuupo

1 —2 —3 —4 — Q +72Qa + Va7 Lab

Od Qd Od Qd W|tha,b=1775

v

This is a decomposition in representations of a “twisted rotation group”

SO(4);, = diag|SO(4).,. ® SO(4)r SO(4)r € SO(6)R

In this notation there is a susy subalgebra {Q, Q} =20? =0
This can be exactly preserved on the lattice
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Twisted N/ = 4 SYM

SO(4);, = diag|SO(4).,. ® SO(4)g

euc
@ 9,9, Qu, ...transform with integer spin — no longer spinors!
@ Fermion fields decompose in the same way, ¥/ — {1, ¥, xap}

@ Scalar fields transform as SO(4)s, vector B, plus two scalars ¢, ¢
Combine with A, in complexified five-component gauge field

Aa=Aa+iBa= (A, ¢) + i(B,, d) and similarly for A,

Complexified gauge field = U(N) = SU(N) ® U(1) gauge invariance

Irrelevant in the continuum, but will affect lattice calculations
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Twisted N/ = 4 SYM

SO(4);, = diag|SO(4).,. ® SO(4)g

euc

@ 9,9, Qu, ...transform with integer spin — no longer spinors!
@ Fermion fields decompose in the same way, ¥/ — {1, ¥, xap}

@ Scalar fields transform as SO(4)s, vector B, plus two scalars ¢, ¢
Combine with A, in complexified five-component gauge field

Aa=Aa+iBa= (A, ¢) + i(B,, d) and similarly for A,

In flat space twisting is just a change of variables, no effect on physics

Same lattice system also results
from orbifolding / dimensional deconstruction approach
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Now we can move directly to the lattice

Twisting gives manifestly supersymmetric lattice action for N' = 4 SYM

N

_ 1 _
S Q| xabFab +NDalda — snd | — s—=€abcde XabDPcXde
2 8)\lat

B 2/\]al

QS = 0 follows from Q? - = 0 and Bianchi identity

@ We have exact U(N) gauge invariance
@ We exactly preserve Q, one of 16 supersymmetries

@ Restoration of twisted SO(4)s, in continuum limit
guarantees recovery of other 15 9, and Q,

The theory is almost suitable for practical numerical calculations. .. ]
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Stabilizing numerical calculations

We need to add two deformations to the O-invariant action

Both deal with features required by the supersymmetric construction

Scalar potential to regulate flat directions
Gauge links U/; must be elements of algebra, like fermions
— Add scalar potential (§Tr [Ualla] — 1)2 to lift flat directions

Otherwise U/ can wander far from continuum form 44, = Iy + A4

Plaquette determinant to suppress U(1) sector of U(N)

U complexified — Add approximate SU(N) projection |det P, — 1/°
where P, is the product of four U, around the elementary plaquette

Otherwise encounter strong-coupling U(1) confinement transition
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Soft susy breaking from naive stabilization

Directly adding scalar potential and plaquette determinant to action
explicitly breaks supersymmetryJ

_ 1 N _
Q| xXavFap + nDalda — *77d — o €abcde XabDcXde
2 8at

5= o

N 1 _ 2
—+ 2)\181[1/2 (NTF [Z/{aZ/{a] — 1) + K ‘detpab — 1 |2

Breaking is soft
Guaranteed to vanish as pi,k — 0 | ow

Also suppressed oc 1/N? a

N =4SYM, U(2)
44

1-10% effects in practice ansl

02 0.4 0.6 038 1
< K
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New development: Supersymmetric stabilization
Possible to construct Q-invariant scalar potential and plaquette det.

However, these result in positive vacuum energy (non-susy)

N — 1 N _
S= Q( Fap+n{Dalda + X —d)—e D
2 Mt Xab’ ab T 1] { alta } 277 8\ ar abcde Xab+ cXde

2

N
‘™= N =4SYM, U(2)
A a4 PRELIMINARY
2005+ ©
Again effects vanish as B,G — 0 ° s 4 oa
(ELI i A
Allows access to much stronger A s reducibe
with much smaller artifacts New acton —a—s
.2 Old action —&—

Alat
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Final thought on the lattice A/ = 4 SYM formulation

It over 100 gathers in the fermion operator

“  The construction
is obviously very complicated

0Dy () = () DY "aln)

2
Y N~ e I A .
+3 (n,, Ualn) + G Y Idet [Pus(n)] = 172y + vz 2 (0 ()] 4)%) ]

N s m | m (=)
= ¢ n i+ fic)T ab(’
Ty 20T s vl 47 D]

5t 5 (i) ) ot (For experts: 2100 inter-node data
g O Tt Rt (T ]+ 4 transfers in the fermion operator)

Setose

To reduce this barrier to others entering the field,
we make our efficient parallel code publicly available

github.com/daschaich/susy

Evolved from MILC lattice QCD code,
presented in arXiv:1410.6971 — CPC appeared yesterday
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https://github.com/daschaich/susy
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Physics result: Static potential is Coulombic at all A

Static potential V(r) from r x T Wilson loops: W(r, T) < e~ V() T

0.4
Fit V(r) to Coulombic 0.035 |
or confining form 51

VY 0.025 -

V(ir)=A-C/r wal
0015 |

V(r)=A-C/r+or

0.01

Fits to confining form always produce vanishing string tension o = 0

N =4SYM, UQ2)

83 x 24
(a1, ) = (0.5,0.2,0.6) PR
0 (;.5 ‘1 1I.5 2.5 3
r

Working on standard methods to reduce noise
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Coupling dependence of V(r) =A— C/r
—Perturbation theory predicts C(\) = \/(47) + O(\?)

—AdS/CFT predicts C()\) o< VA for N — 0o, A\ — 0o, A < N

02

0.15

C 01t

0.05

0.12
W=02,5=06 —b— N =4SYM, U(2)
H=02,k=08 —x%— 83 % 24
1= 04,k=06 —B— 0.1
f=04,k=08 —O— [
pn=08k=06 r—g—
u=08,k=08 ¥ 0.08
Perturbative |
tin = 6
0.06
] C
% 0.04
- 0.02
0
0 0.5 1 15 2
At / V5

izl ot N = 4SYM, UG3)
Ak 06 —a— 8 x 24
1=04,k=08 O
LO »
tuin =6 NLO oeoeeee e
NNLO covveeeees =
oy 2
- g k3
/,./"/
%
. PRELIMINARY
0 0.2 0.4 0.6 0.8 1 12 14
Atat / \/g

We see agreement with perturbation theory for N =2, X < 2,
and a tantalizing discrepancy for N =3, A > 1

No dependence on p or kK — apparently insensitive to soft Q breaking
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Recapitulation

@ Strongly coupled supersymmetric field theories very interesting
to study through lattice calculations

@ Practical numerical calculations possible for lattice N' = 4 SYM
based on exact preservation of twisted susy subalgebra Q% = 0

@ The construction is complicated
— publicly-available code to reduce barriers to entry

@ The static potential is always Coulombic
For N =2 C(2) is consistent with perturbation theory
For N = 3 an intriguing discrepancy at stronger couplings

@ There are many more directions to pursue in the future
» Measuring anomalous dimension of Konishi operator

» Understanding the (absence of a) sign problem
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Thank you!
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Thank you!

Collaborators
Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt J

Funding and computing resources J

usQcb
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Supplement: Konishi operator scaling dimension

Recall N = 4 SYM is conformal
— All correlation functions decay algebraically oc r—2 J

The Konishi operator is the simplest conformal primary operator

Ok =Y T[] Ck(r) = Ok(x + r)Ok(x) = Ar24k

There are many predictions for the scaling dim. Ak (\) = 2 + yx(\)

@ From perturbation theory for small ),

related to A — oo by S duality under 42Y «— 2o
@ From holography for N — oo and A — oo but A < N

@ Bounds on max {Ak} from the conformal bootstrap program

We will add lattice gauge theory to this list J
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Konishi operator on the lattice
Ok =Y Tr[o'o] — Ok = Tr [@agb]
I a, b

with $% = Uald 5 — 1 il [Uald ] I

0.01

C(r) = Ox(x + 1Ok(x) o r-25« ’

0.001 -

N = 4SYM, UQ2)
(L1,G) = (1,0.4,0.1) |

Consistent with 00001 |
power laws using perturbative A €

le-05 -

PRELIMINARY
Need Q-invariant plaquette det. 1e06 | Mm/sjp"g,;“x;? —
for reasonable C(r) on 8* lattice 000U 1
0.5 1 2 3

Obviously not a stable way to determine Ax — we have other tools )
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Preliminary Konishi Ak from Monte Carlo RG

Scaling dimension is eigenvalue of MCRG “stability matrix” J

45

N =4SYM,UQ)
G=01

Simple trial (only statistical errors) 4T PRELIMINARY
correctly finds Ay —2as A — 0

Bootstrap bound ----------- 1

Significant volume dependence D oud

— approach perturbation theory s} / Pertaine o |
as L increases .

Need to check systematics:
different numbers of blocking steps, different operators, different G

Need to produce consistent results from independent approach(es)
such as finite-size scaling
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Supplement: The (absence of a) sign problem

In lattice gauge theory we compute operator expectation values

(0) = % / [aU][dtd] © &S 3 pi Dl Tl]

pf D = |pf D|e'® is generically complex for lattice ' = 4 SYM
— Complicates interpretation of [~ pf D] as Boltzmann weight

Have to reweight “phase-quenched” (pq) calculations

_ <(9e"°“>pq

(0) o

_ 1 ) oSl ]
m= g / [U[dT] O pfD|  (O)

Sign problem: This breaks down if (e"a> g is consistent with zero J
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lllustration of sign problem and its absence

@ With periodic temporal fermion boundary conditions
we have an obvious sign problem, (e’a>pq consistent with zero
~ 1

@ With anti-periodic BCs and all else the same (€"*)
— phase reweighting not even necessary

N =4SYM, U(2) [Anti-periodic BCs +
« & Periodic BCs X

3 L
3’ x4 GW&

X

Even stranger fg el XX>§<
Other (O), . nearly identical X  (LBG)

i LWL X (1,05,0.1)

despite sign problem... Al }

*
#
Can this be understood? &X y
X Xx>3<
W()Q)@( XX
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Pfaffian phase dependence on volume and N

No indication of a sign problem with anti-periodic BCs
o Pfaffian P = |P|e/® is nearly real and positive, 1 — (cos(a)) < 1

@ Fluctuations in pfaffian phase don’t grow with the lattice volume
@ Insensitive to number of colors N =2, 3, 4

1 24 3Px4  Fx6 33Px§ 4 x5 #x6
%z;* N =4 SYM, U(N)
Hard calculations o0 (V=4 —a— a9 = (1L, 11
x ® x X x x X
Each 42 x 6 measurement 00001
requires ~8 days, | 1-(s® ooy ' ' 1]
~10GB memory 0.002 } } ]
1e-08 }
Parallel O(n®) algorithm N 20 N
50 150 250 350
\4
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Backup: Failure of Leibnitz rule in discrete space-time
Given that {Oa,éd} = 20", P, = 2ic" .0, is problematic,

why not try {Qa,bd} = 2i0!,V,, for a discrete translation?
Here V,6(x) = 3 [o(x + afi) — ¢(x)] = 9.6(x) + §056(x) + O(&%)
Essential difference between 9, and V,, on the lattice (a > 0)

Vi [60)x(0] = @ [¢(x + an)x(x + an) — (x)x(x)]
= [Vuo()] x(X) + () Vux(x) + a[V .o (x)] V,x(X)

We only recover the Leibnitz rule 0,,(fg) = (0,.f)g + f0,g when a — 0
— “Discrete supersymmetry” breaks down on the lattice
(Dondi & Nicolai, “Lattice Supersymmetry”, 1977)
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Backup: Twisting «—— Kahler—Dirac fermions

The Ké&hler-Dirac representation is related to the usual o;,di by

Q @@ @& &
o « « « P Q + ’.Y,UQ;U' + PY/JPYVQ;UIV + Py‘u,’)/S Q/J,yp + ’YSQ,U,V/)O'

—1 —2 —3 —a4 — Q4+ vaQa+ Va7V Qab

Qu Qu Qu Qq witha,b=1,--- .5

The 4 x 4 matrix involves R symmetry transformations along each row
and (euclidean) Lorentz transformations along each cquan

= Kahler—Dirac components transform under “twisted rotation group”

SO(4),, = diag [80(4)euc ® SO(4)R]

TonIy SO(4)r C SO(B)R
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Backup: Details of Q? = 0 on the lattice

Goal: Preserve Q supersymmetry on the lattice
Q@ 9% =0
© Q directly interchanges bosonic «—— fermionic d.o.f.

Both conditions are easy to verify in five-component notation:

Qua:¢a Q¢a:O
QXab:*?ab Qﬁa:0
On=d Qd=0

@ Gauge field U, and ¢4 live on links between lattice sites
U must be elements of algebra gi(N, C) > ¢,
— Non-trivial to ensure U; — I+ A, in the continuum limit

@ Field strength F ., and x4 live on diagonals of oriented faces

@ Bosonic auxiliary field d and 7 live on sites
Usual equation of motion: d = D, U,

v
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Backup: Aj lattice with five links in four dimensions

Aa = (A, ¢) may remind you of dimensional reduction J

On the lattice we need to treat all five Uz symmetrically

—Start with hypercubic lattice _ °
in 5d momentum space a

—Symmetric constraint ), 0, =0 . o o é 6 &

projects to 4d momentumspace / © © @O & &
. o .é =Y @ g
@@ 8 &02
—Result is A4 lattice %‘ ¢ @
— dual A; lattice in real space ~ 0. ‘@
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Backup: Twisted SO(4) symmetry on the Aj lattice

—Can picture A} lattice
as 4d analog of 2d triangular lattice

—Five basis vectors are non-orthogonal
and linearly dependent

—Preserves Ss point group symmetry

Ss irreps precisely match onto irreps of twisted SO(4)

5=401: Uy — Ay, ¢
Ya — Yu, Nuvpo
10=694: Xab — Xuv> Q,[),ul/p
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Backup: Analytic results for exact lattice susy

N

S= 2)\lat

_ 1 N _
Q <Xab]:ab +nNDaldg — 277d> - Weabcde XabDcXde

lat

Gauge invariant, Q supersymmetric, Ss symmetric
The high degree of symmetry has important consequences

@ Moduli space preserved to all orders of lattice perturbation theory
— no scalar potential induced by radiative corrections

@ [ function vanishes at one loop (at least)

@ Real-space RG blocking transformations preserve Q & Ss

@ Only one marginal tuning to recover Q5 and Q_, in the continuum

v
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Backup: Hypercubic basis for A} lattice

It is very convenient to represent the A; lattice
as a hypercube with a backwards diagonaIJ
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Backup: Code performance—weak and strong scaling

Left: Strong scaling for U(2) and U(3) 16° x32 RHMC

Right: Weak scaling for O(N3) pfaffian calculation (fixed local volume)
Ny = 16N?L3N7 is number of fermion degrees of freedom

Local volume: st 4 x 8 4 F x4 Fx6 3 x8
A N =4SYM, UN) 0+ A7 = 4 SYM, U2)
10 v 163 x 32 (A, 0) = (1,1,1)
5 p— (A p6) = (1,1,1) 50
2 Rl W
Hours -, v Core-hours
per MDTU 1 ., v 2
05 e) h
e ° 10
02 N3 e @
feint S " ® § [Pover: 2867
0.1
16 32 64 128 256 512 100 150 200 250
# of cores |4

Both plots on log—log axes with power-law fits
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Backup: Code performance for 2, 3 and 4 colors

Red: Find RHMC costs scaling ~N° (recall adjoint fermion d.o.f. <N?)

Blue: Pfaffian costs consistent with expected N® scaling

100

10 -

Core-hours

0.1

David Schaich (Syracuse)

N =4 SYM, UQN)

Ao =@LL) )
....... v
------------------ s
L Ay
@ "
X 24 HMC —s—
) I23 X 4 pfaffian l—eTc
2 3 4

Lattice N = 4 SYM

N
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Backup: Thermalization
Thermalization becomes increasingly painful as N or L3 x Ny increase
Example: Evolution of smallest DD eigenvalue | \g|?

0.03

WO '!v v". N

0.027

] N =4 SYM, U(2)
0.024 kj (Vi 124
|20l
0.021
0.018 Cold start ———
ottt (k) = (1L,1,1)
_0 1 L 1 L
0018 0 1000 2000 3000 4000 5000

MDTU

Should be possible to address this with better initial configuration
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Backup: The problem with flat directions

Gauge fields U/, can move far away from continuum form I+ A,
if Nu? /(21 ) becomes too small

Example for two-color (A, i, k) = (5,0.2,0.8) on 8% x 24 volume
Left: Ward identity violations are stable at ~9%

Right: Polyakov loop wanders off to ~10°

N =4SYM,UQ2)
83 x24

UPLD oo
100
N =4SYM, U(2)
83 x 24
(Ap.k) = (5.0.2,0.8) ! (A pt.K) = (5,0.2,0.8)
s 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
MDTU
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Backup: Lattice phase due to U(1) sector

N =4SYM, U(2) [y N =4SYM, U@2) ) [t o B 3
(. x) = (1,0) @A 8 x24 —e— N—A_e—syw ve
- (%) = (1,0) =4SYM, U(2)
u " (1K) = (1,0) R
°

03

02 =

06 06 °

PL)y (Re detP) {oa)

o

04 04

x [

o®

@ Polyakov loop collapses = confining phase
(not present in continuum A/ = 4 SYM)

© Plaquette determinant is variable in U(1) sector
Drops at same coupling A as Polyakov loop

© o is density of U(1) monopole world lines (DeGrand & Toussaint)
Non-zero when Polyakov loop and plaquette det. collapse
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Backup: Suppressing the U(1) sector

AS = k|detP — 1]2 suppresses the lattice strong-coupling phase

Produces 2xF,, F*” term in U(1) sector
— QED critical 8, = 0.99 — critical k¢ ~ 0.5

1

"N =4SYM, UQ2)

08 L ‘:.:; " VoV V V% 64 |
0.6 -
(Re detP)
04+
u=1
K=2 —F—i
ozl =05 —o—
- k=035 —A—
k=025 —83—
ol PR ErEE k=0 —¥%—

David Schaich (Syracuse) Lattice N = 4 SYM SCGT15, KMI Nagoya 21/21



Backup: Plaquette and determinant distributions

10 3nt4_APBC

Larger couplings B and G produce
the desired sharper peaks

TrlU.UdaglN-1

3 4
|det-1]~2

Price: Larger Ward identity violations
and larger computational costs

1
Re(det)

0
Im(det)
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Backup: Restoration of Q, and Qg supersymmetries

Restoration of the other 15 Q4 and Q4 in the continuum limit
follows from restoration of R symmetry (motivation for Ay lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing

David Schaich (Syracuse)

N = 4SYM, UQ2)
8 x 24
| PRELIMINARY

ﬂlat
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Backup: N = 4 static potential from Wilson loops

Extract static potential V(r)
from r x T Wilson loops: W(r,T) x e V()T

Coulomb gauge trick from lattice QCD reduces A} lattice complications
/\ -
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Backup: Perturbation theory for Coulomb coefficient

For range of A\, currently being studied, the perturbative series
for the U(3) Coulomb coefficient appears well convergent
1
0.01 -
0.0001 |
1e-06 —
AC 7
1e-08 | ¢
te-10 |
le-12 —
i A4 LL+NLL
(=1) - 2° LLANLL ----neee-
le-14 L 1 1 | L
0 0.2 04 0.6 0.8 1 1.2 14

Xt / V5
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Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2) — SU(2)

— factor of X1 — 3/4

N2

Right: Unitarizing links removes scalars — factor of 1/2

15
1
N =4SYM, U(2) N =4SYM, UQ2)
125 8’ x24 83 x 24
08
i % %
b D 06
Cb o725 Cpa ‘{* 13
oo Cput t
C § ¢ P %
04
05
0.25 U=02,k=06 —A—  p=04,k=08 —O 02 U=02,k=06 —A—  p=04k=08 — O
H=02,k=08 —%—  p=08,k=06 —g— U=02,k=08 —%—  j=08,k=06 ——
. H=045=06 —B—  u=08,k=08 . P=04 k=06 —B—  u=08x=08
0 0.5 15 2 0 0.5 15 2

1
Arat / V5

1
Aat / V3

Both expected factors present, although (again) noisily
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Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3) — SU(3)

N2—1 _
= factor of =z~ = 8/9
Right: Unitarizing links removes scalars —> factor of 1/2
15
N =4SYM, U(3) PRELIMINARY ! N = 4SYM, U(3) PRELIMINARY
125 8% x24 osl 83 %24
: . ﬁ
' - A i e 0.6 % {AE@
Cb g5 Cpu o X
‘ “ul B
05
u=02k=06 —~A—
025 1=02,k=08 —>— 02
p=04,k=06 —F— p=02,k=06 —A—  p=04,x=06 —F—
pu=04,k=08 —— N H=02,k=08 —x— pn=04,k=08 ——
0.2 04 0.6 0.8 1 1.2 14 0 0.2 04 0.6 0.8 1 1.2 14
Aot /5 At / V3

Ratios look slightly higher than expected,
less noise in SU(3)-projected results
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Backup: Smearing for noise reduction

Smearing may reduce noise in static potential (etc.) measurements
—Stout smearing implemented and tested
—APE or HYP (without unitary projection) may work better for Konishi

2.05

N =4SYM, UQ2)
6000 163 x 32

Twice-smeared
Once-smeared A
Unsmeared - - - - - -

0 0.05 0.1 0.15 0.2
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Backup: Konishi operator on the lattice

Ok =) Tr[o'o]]

On the lattice the scalars ®' are twisted
and wrapped up in the complexified gauge field U/,

Given Uy ~ T + A, the most obvious way to extract the scalars is

@a - Uaaa - 1NTF [Z/{aaa] ]I

This is still twisted, so all {a, b} contribute to R-singlet Konishi

Ox = ZTr [Aaﬂ
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Backup: Scaling dimensions from Monte Carlo RG

Couplings flow under RG blocking transformation Ry,
n-times-blocked system is H(" = R,H("™=1) = 3", c,(”)O,(”) J

Consider linear expansion around fixed point H* with couplings c;

R R EDLICRR
/ 1

H*

T} is the “stability matrix”

Eigenvalues of T* are scaling dimensions of corresponding operators J
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Backup: Pfaffian phase dependence on Ay, u,

We observe little dependence on

Fluctuations in phase grow as A, increases
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