Light composite flavor-singlet scalar in large N_f QCD

Takeshi Yamazaki

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

NAGOYA UNIVERSITY

Y. Aoki, T. Aoyama, E. Bennett, M. Kurachi, T. Maskawa, K. Miura, K.-i. Nagai, H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki (LatKMI Collaboration)

Refs. PRD86(2012)054506, PRD87(2013)094511,

PRL111(2013)162001, PoS(LATTICE 2013)070;arXiv:1309.0711, and updates

Sakata Memorial KMI Mini-Workshop on

"Strong Coupling Gauge Theories Beyond the Standard Model" (SCGT14Mini)

@ Nagoya University, March 5-7, 2014

Contents

- Introduction
 - Recent studies in our project
- Results of flavor-singlet scalar
 - Difficulty of calculation
 - Result of $N_f = 12 \text{ QCD}$
 - Preliminary result of $N_f = 8 \text{ QCD}$
- Summary

Walking technicolor

 N_f massless fermions + SU(N_{TC}) gauge at O(1) TeV

Model requirement:

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension $\gamma^* \sim 1$ in walking region
- Higgs \approx Light composite scalar pNGB (technidilaton) of scale symmetry breaking

 $m_{\rm Higgs}/v_{\rm EW} \sim 0.5 = m_\sigma/(\sqrt{N_d}F)$ F : decay constant, N_d : number of weak doublets usual QCD $m_\sigma/F \sim 4-5$

Conditions of walking technicolor

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension $\gamma^* \sim \mathbf{1}$ in walking region
- Light composite scalar

Question: Such a theory really exists?

Nonperturbative calculation is important.

 \rightarrow numerical calculation with lattice gauge theory

Conditions of walking technicolor

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension $\gamma^* \sim \mathbf{1}$ in walking region
- Light composite scalar

Question: Such a theory really exists?

Nonperturbative calculation is important.

 \rightarrow numerical calculation with lattice gauge theory

Recent studies in our project

Purpose in our project Search for candidate of walking technicolor

Systematic investigation of N_f dependence SU(3) gauge theory with $N_f = 0, 4, 8, 12, 16$ fermions Common setup for all N_f : Improved staggered action (HISQ/Tree) Cheaper calculation cost + small lattice systematic error HISQ: '07 HPQCD and UKQCD; HISQ/Tree: '12 Bazakov *et al.*

Basic physical quantities: m_{π} , F_{π} , m_{ρ} , $\langle \overline{\psi}\psi \rangle$ $N_f = 4$: PRD86(2012)054506:PRD87(2013)094511 [Poster: Kurachi] $N_f = 8$: PRD87(2013)094511 [Talk: Nagai (Thu.)] $N_f = 12$: PRD86(2012)054506 [Talk: Ohki (Thu.)] $N_f = 8$ may be candidate of walking theory some results updated from papers

[Poster]

 $N_f = 12$ glueball: [Rinaldi], $N_f = 16$: [Yamazaki]

Recent study of LatKMI Collaboration

Search for candidate of walking technicolor

 $N_f =$ 12: PRD86(2012)054506; $N_f =$ 8: PRD87(2013)094511 chiral broken \rightarrow walking \rightarrow conformal increasing N_f

Signal of phase

S

• Chiral broken phase

imulations at
$$m_f \neq 0$$

 $m_f \rightarrow 0: m_\pi \rightarrow 0 \text{ and } F_\pi \neq 0 \Rightarrow \frac{F_\pi}{m_\pi} \xrightarrow{m_\pi \rightarrow 0} \infty$

• Conformal phase

Simulations at $m_f \neq 0$: scale invariance breaking

 \rightarrow bound states (mesons)

Hyperscaling with anomalous dimension γ^* at small m_f

$$m_H = C_H \ m_f^{1/(1+\gamma^*)}$$

$$F_\pi = C_F \ m_f^{1/(1+\gamma^*)} \Rightarrow \frac{F_\pi}{m_\pi} \xrightarrow{m_\pi \to 0} \text{ constant}$$

Different $m_f(m_\pi)$ dependence in two phases

Recent study of LatKMI Collaboration

Recent study of LatKMI Collaboration

7-b

Recent study of LatKMI Collaboration

Search for candidate of walking technicolor

 $N_f = 12$: PRD86(2012)054506; $N_f = 8$: PRD87(2013)094511 + updates

 $N_f = 4$ QCD: Spontaneous chiral symmetry breaking

 $N_f = 12$ QCD: Consistent with conformal phase

- $N_f = 8$ QCD may be a candidate of Walking technicolor
 - Spontaneous chiral symmetry breaking

 $F_{\pi}/m_{\pi} \to \infty$ and $F_{\pi} \neq 0$ towards $m_f \to 0$

- Slow running (walking) coupling in wide scale range Approximate hyperscaling in F_{π}
- Large anomalous mass dimension $\gamma^* \sim 1$ in walking region $\gamma = 0.6-1.0$: Hyperscaling-like behavior of m_{π} , F_{π} , m_{ρ}
- Light composite scalar \leftarrow Important to check!

Next: Flavor-singlet scalar in (approximate) conformal theory

Recent study of LatKMI Collaboration

Search for candidate of walking technicolor

 $N_f = 12$: PRD86(2012)054506; $N_f = 8$: PRD87(2013)094511 + updates

 $N_f = 4$ QCD: Spontaneous chiral symmetry breaking

 $N_f = 12$ QCD: Consistent with conformal phase

- $N_f = 8$ QCD may be a candidate of Walking technicolor
 - Spontaneous chiral symmetry breaking

 $F_{\pi}/m_{\pi} \to \infty$ and $F_{\pi} \neq 0$ towards $m_f \to 0$

- Slow running (walking) coupling in wide scale range Approximate hyperscaling in F_{π}
- Large anomalous mass dimension $\gamma^* \sim 1$ in walking region $\gamma = 0.6-1.0$: Hyperscaling-like behavior of m_{π} , F_{π} , m_{ρ}
- Light composite scalar \leftarrow Important to check!

Next: Flavor-singlet scalar in (approximate) conformal theory

Composite flavor-singlet scalar $\label{eq:link} \text{in } N_f = \text{12 and 8 QCD}$

Difficulty of flavor-singlet scalar meson

• Flavor non-singlet scalar meson $S_{NS}(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_b(\vec{x}, t) \ (a \neq b)$

$$\langle 0|S_{NS}(t)S_{NS}^{\dagger}(0)|0\rangle = \left\langle \underbrace{\left\langle \cdots \right\rangle}_{\text{c.f. }m_{\pi},F_{\pi}} \text{ from non-singlet pseudoscalar} \right\rangle$$

O(100) configurations $\times O(1) D^{-1}[U](x,y)$

• Flavor-singlet scalar meson $S(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_a(\vec{x}, t)$ $\langle 0|S(t)S^{\dagger}(0)|0 \rangle = -C(t) + (N_f/4)D(t)$ (disconnected) $D(t) = \left\langle \times \right\rangle - \left\langle \times \right\rangle^2$

Much harder but essential for flavor-singlet

O(10000) configurations \times O(100) $D^{-1}[U](x,x)$

Difficulty of flavor-singlet scalar meson

• Flavor non-singlet scalar meson $S_{NS}(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_b(\vec{x}, t) \ (a \neq b)$

$$\langle 0|S_{NS}(t)S_{NS}^{\dagger}(0)|0\rangle = \langle \times) = -C(t)$$

c.f. m_{π}, F_{π} from non-singlet pseudoscalar O(100) configurations $\times O(1) D^{-1}[U](x,y)$

• Flavor-singlet scalar meson $S(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_a(\vec{x}, t)$ $\langle 0|S(t)S^{\dagger}(0)|0 \rangle = -C(t) + (N_f/4)D(t)$ (disconnected) $D(t) = \langle \times \rangle - \langle \times \rangle^2$

Much harder but essential for flavor-singlet O(10000) configurations $\times O(10) D^{-1}[U](x,x)$ using noise reduction method

'97 Venkataraman and Kilcup

used in $N_f = 2 + 1 \eta'$: Gregory *et al.*; $N_f = 12 \sigma$: Jin and Mawhinney

Composite flavor-singlet scalar in $N_f = 12$ QCD

Purpose of $N_f = 12$ QCD calculation

Why $N_f = 12$

• Investigated by many groups

'08,'09 Appelquist *et al.*, '10 Deuzeman *et al.*, '10,'12 Hasenfratz,
'11 Fodor *et al.*, '11 Appelquist *et al.*, '11 DeGrand, '11 Ogawa *et al.*,
'12 Lin *et al.*, '12,'13 Iwasaki *et al.*, '12,'13 Itou, '12 Jin and Mawhinney, and ...

In our work PRD86(2012)054506 [Talk: Ohki (Thu.)] consistent behavior with conformal phase

A few studies of flavor-singlet scalar in conformal theory

SU(2) Adjoint N_f = 2 glueball: '09 Del Debbio *et al.*SU(3) N_f = 12 meson: '12 Jin and Mawhinney

SU(3) N_f = 12 meson: '13 LH Collaboration

Purpouse of this work

Understand properties of flavor-singlet scalar in $N_f = 12$ regarded as pilot study of $N_f = 8$ theory

Flavor-singlet scalar in $N_f = 12$ QCD PRL111(2013)162001

Simulation parameters

- $\beta = 4$ HISQ/Tree action calculation of m_{σ}
- Huge number of configurations measuring every 2 tarj.
- Four m_f on more than two volumes
- Noise reduction method with $N_r = 64$
- Local meson operator of $(1 \otimes 1)$

L, T	m_{f}	confs
24,32	0.05	11000
	0.06	14000
	0.08	15000
	0.10	9000
30,40	0.05	10000
	0.06	15000
	0.08	15000
	0.10	4000
36,48	0.05	5000
	0.06	6000

Machines: φ at KMI, CX400 at Kyushu Univ.

Effective mass in $N_f = 12$

PRL111(2013)162001

Good signal of m_{σ} from D(t)

Effective mass in $N_f = 12$

PRL111(2013)162001

Good signal of m_{σ} from D(t)

PRL111(2013)162001

Reasonable signals with almost 10% statistical error Systematic error from fit range dependence of m_{σ} Finite volume effect under control \leftarrow 2 larger volumes agree

Near the continuum limit, it is possible to identify the masses of spin J glueballs by

Comparison of effective mass in $N_f = 12$ Results: comparison \overline{W} and \overline{W} and \overline{W} and \overline{W} and $\overline{$

Larger error in glueball correlator Reasonably consistent in large t

Tuesday, 19 March 13

PRL111(2013)162001

Consistent mass from glueball operator calculation \rightarrow show only meson results in the following pages

PRL111(2013)162001

Hyperscaling test with fixed γ using larget volume at each m_f

$$m_{\sigma} = C m_f^{1/(1+\gamma)}$$
 with $\gamma = 0.414$ from hyperscaling of m_{π}
PRD86(2012)054506

Consistent hyperscaling as m_π

PRL111(2013)162001

 m_{σ} from fit of 3D(t) with t = 4-8

Lighter than π in all m_f

PRL111(2013)162001

Lighter than π in all m_f Much different from usual QCD

PRL111(2013)162001

Composite flavor-singlet scalar in $N_f = 8$ QCD

Flavor-singlet scalar in $N_f = 8 \text{ QCD}$

 $N_f = 8$ QCD may be candidate of walking theory; PRD87(2013)094511 [Talk: Nagai (Thu.)]

If flavor-singlet scalar is light

 \rightarrow Possibility of composite Higgs (technidilaton)

Required conditon to explain $m_{\rm Higgs}/v_{\rm EW}\sim 0.5$ $m_\sigma/F\sim 1~{\rm in}~m_f=0~{\rm limit}$

c.f. usual QCD $m_\sigma/F \sim 4-5$

Purpose

- 1. Different from usual QCD?
- 2. Estimate m_{σ}/F in $m_f = 0$ limit

Flavor-singlet scalar in $N_f = 8$ QCD report of preliminary results arXiv:1309.0711 Maybe candidate of walking theory; PRD87(2013)094511

Simulation parameters

- $\beta = 3.8$ HISQ/Tree action calculation of m_{σ}
- Huge number of configurations measuring every 2 tarj.
- Five m_f with three volumes
- Noise reduction method with $N_r = 64$
- Local meson operator of $(1\otimes 1)$

All results are preliminary.

Machines: φ at KMI, CX400 at Nagoya Univ.,

CX400 and HA8000 at Kyushu Univ.

L, T	m_{f}	confs
24,32	0.03	36000
	0.04	50000
	0.06	18000
30,40	0.02	8000
	0.03	16500
	0.04	12900
36,48	0.02	5000
	0.015	3200

Reasonable signals with statistical error < 20%Systematic error from fit range dependence of m_{σ} Finite volume effect seems under control

Reasonable signals with statistical error < 20% Systematic error from fit range dependence of m_σ $m_\sigma \sim m_\pi$ in all m_f

Reasonable signals with statistical error < 20% Systematic error from fit range dependence of m_{σ} $m_{\sigma} \sim m_{\pi}$ in all m_f , much different from $N_f = 2$ QCD Chiral extrapolation (1) in $N_f = 8$

Chiral extrapolation (2) in $N_f = 8$

 $m_{\sigma} \sim m_{\pi} \rightarrow C \sim 1$

21

Chiral extrapolation (2) in $N_f = 8$

 $m_{\sigma} \sim m_{\pi} \rightarrow C \sim 1$: different from $N_f = 2 \text{ QCD}$

21-a

Chiral extrapolation (2) in $N_f = 8$

 $m_0^2 < 0$: data not in $m_\sigma > m_\pi$ region Need to check $m_\sigma > m_\pi$ at smaller m_f as in usual QCD

Comparison of m_{σ} in $N_f = 8$ with m_{Higgs}

 $F/\sqrt{2} = 123$ GeV; One-family model (four-doublet fermions)

• Simple linear fit

 $\frac{m_\sigma}{F/\sqrt{2}} = 3.8(2.0) \binom{1.4}{5.0}$ consistent with $m_{\rm Higgs} = 125~{\rm GeV} \sim F/\sqrt{2}$ within lower error

• ChPT with spontaneous scale symmetry breaking

 $m_\sigma^2 = -0.015(10) (^3_{19})$ consistent with $m_{\rm Higgs}^2 \sim F^2/2$ within 1.6 standard deviations

• Several other fits, e.g., $m_{\sigma}^2/(F_{\pi}/\sqrt{2})^2 = d_0 + d_1 m_{\pi}^2$

reasonably consistent results with above

Possibility to reproduce m_{Higgs}

Summary

Flavor-singlet scalar is important in walking technicolor theory. Difficult due to huge noise in lattice simulation

 \Rightarrow Noise reduction method and large $N_{\text{conf}} O(10000)$

Results of $N_f = 12$ QCD (consistent behaviors with conformal phase)

- $m_{\sigma} < m_{\pi}$; much different from small N_f QCD
- Conformal symmetry may make σ light

Results of $N_f = 8$ QCD (maybe candidate of walking technicolor)

- $m_{\sigma} \sim m_{\pi}$; much different from small N_f QCD
- Might be reflection of approximate conformal symmetry
- Need more data at smaller m_f for reliable chiral extrapolation
- Several fit results suggest

Possibility of light composite scalar $\rightarrow m_{\text{Higgs}} \sim v_{EW}$ (technidilaton)