Study of SU(2) gauge theory with six flavors

Norikazu Yamada (KEK/GUAS)

in collaboration with

Masashi Hayakawa (Nagoya) Ken-Ichi Ishikawa (Hiroshima), Shinji Takeda (Kanazawa) Masaaki Tomii (GUAS)

Based on Phys.Rev. D88 (2013) 094504 and Phys.Rev. D88 (2013) 094506

SCGT14 mini@KMI Feb. 7th 2014

- Phenomenologically, N_c=2 and 3 equally interesting e.g.) A. Hietanen, R. Lewis, C. Pica, F. Sannino, arXiv:1308.4130
- Different feature from SU(3) gauge theory
 - Deconfine transition is of 2nd order when $N_f=0$.
 - Pattern of χ -symmetry breaking: SU($_2N_f$) \rightarrow Sp($_2N_f$)
- Open question: vacuum alignment problem $SU_L(2) \times U_Y(1)$ may not be broken.

To see whether this theory is IR conformal or not,

- running coupling and mass
- spectroscopy
- are independently studied on the lattice.

I. Introduction II.Running coupling and mass III.Spectroscopy IV.Summary and Outlook

II. Running coupling and mass

Phys.Rev. D88 (2013) 094504

Perturbation Theory

Perturbative predictions for g^2_{FP} for SU(2) gauge theory in the MS scheme

N_{f}	5	6	7	8	9	10
2-loop	-	143.56	35.59	15.79	7.48	2.90
3 -loop $\overline{\mathrm{MS}}$	38.10	20.68	13.25	8.65	5.26	2.47
4 -loop $\overline{\mathrm{MS}}$	_	30.10	15.21	9.55	5.58	2.52

Far from convergence

Schrödinger Functional (SF) scheme

Luscher, Weisz, Wolff, NPB(1991)

$$e^{-\Gamma[B]} = \int DUD\overline{\psi}D\psi \ e^{-S[U,\overline{\psi},\psi,C,C']}$$

C, *C*': gauge link at boundaries set by hand *B* : background gauge field set by *C* and *C*' *Γ*[*B*] : effective action

Tree level:
$$\Gamma_0[B] = -1/[2 g_0^2] \int d^4x \operatorname{Tr}[B_{\mu\nu}B_{\mu\nu}]$$

 $\Gamma[B] = -1/[2 g_{SF}(L)^2] \int d^4x \operatorname{Tr}[B_{\mu\nu}B_{\mu\nu}] + \dots$

By changing L, "running" is measured.

Previous studies with SF

Consistent with IR conformal

- F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, PLB 696, 374 (2011)
 - Unimproved Wilson. Max $V=16^4$
 - $g^2(IRFP) \sim 4$ or larger
- T. Karavirta, J. Rantaharju, K. Rummukainen and K. Tuominen, JHEP 1205,003(2012)
 - Improved Wilson (clover). Max $V = 16^4$ for coupling (20⁴ for running mass)
 - $-g^{2}(IRFP) \sim 12$

No indication of IRFP

- Fleming's talk [arXiv:1311.4889]
 - Unimproved Wilson with smeared links. Max V=24⁴
 - No evidence for IRFP below $g^2 \sim 30$

Previous studies with SF

Consistent with IR conformal

- F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, PLB 696, 374 (2011)
 - Unimproved Wilson. Max $V=16^4$
 - $g^2(IRFP) \sim 4$ or larger
- T. Karavirta, J. Rantaharju, K. Rummukainen and K. Tuominen, JHEP 1205,003(2012)
 - Improved Wilson (clover). Max $V = 16^4$ for coupling (20⁴ for running mass)
 - $-g^{2}(IRFP) \sim 12$

No indication of IRFP

- Fleming's talk [arXiv:1311.4889]
 - Unimproved Wilson with smeared links. Max V=24⁴
 - No evidence for IRFP below $g^2 \sim 30$

This work

- Unimproved Wilson, Max V=24⁴
- Perturbative improvement of scaling violation

Perturbative improvement

Define Discrete Beta Function B(u,s) by

 $B(u,s) = 1/g^2(s L) - 1/u$ where $u = g^2(L)$, s: step scaling factor

Lattice DBF can be expressed as double expansion in 1/l (=a/L) and u;

$$B^{\text{Lat}}(u,s,l) = 1/g^2(s \ L, \ l) - 1/u$$

= $B(u,s) + u \ (a_1/l + b_1/l^2 + c_1/l^3 + ...)$
+ $u^2(a_2/l + b_2/l^2 + c_2/l^3 + ...)$
+ $u^3(a_3/l + b_3/l^2 + c_3/l^3 + ...)$
+ ...

Perturbative improvement

Define Discrete Beta Function B(u,s) by

 $B(u,s) = 1/g^2(s L) - 1/u$ where $u = g^2(L)$, s: step scaling factor

Lattice DBF can be expressed as double expansion in 1/l (=a/L) and u;

 $B^{\text{Lat}}(u,s,l) = 1/g^2(s L, l) - 1/u$

$$= B(u,s) + u (a_1/l + b_1/l^2 + c_1/l^3 + ...) + u^2 (a_2/l + b_2/l^2 + c_2/l^3 + ...) + u^3 (a_3/l + b_3/l^2 + c_3/l^3 + ...) + ...$$

We explicitly calculated the O(u) error by lattice PT and removed that. In the continuum limit, we assume that 1/l scaling violation dominates.

Perturbative improvement

Define Discrete Beta Function B(u,s) by

 $B(u,s) = 1/g^2(s L) - 1/u$ where $u = g^2(L)$, s: step scaling factor

Lattice DBF can be expressed as double expansion in 1/l (=a/L) and u;

 $B^{\text{Lat}}(u,s,l) = 1/g^2(s L, l) - 1/u$

$$= B(u,s) + u (a_1/l + b_1/l^2 + c_1/l^3 + ...) + u^2 (a_2/l + b_2/l^2 + c_2/l^3 + ...) + u^3 (a_3/l + b_3/l^2 + c_3/l^3 + ...) + ...$$

We explicitly calculated the O(u) error by lattice PT and removed that. In the continuum limit, we assume that 1/l scaling violation dominates.

In the weak coupling region, consistent with constant.

In the strong coupling region, large scaling violation observed. Scaling violation remains linear.

DBF in the continuum limit

 $B(u,s) = 1/g^2(s L) - 1/u$ with $u = g^2(L)$

s=3/2

Mass of Standard model fermions

 S_R^{Lat} : renormalized, iso-singlet scalar bilinear operator

$$m_{\rm SM,f} = \frac{C_S^{\rm SF}(1/M_{\rm ETC})}{M_{\rm ETC}^2} \frac{Z_S^{\rm SF}(1/M_{\rm ETC})}{Z_S^{\rm SF}(a)} C_S^{\rm SF-Lat}(a) \langle S_R^{\rm Lat}(a) \rangle$$
$$= \frac{C_S^{\rm SF}(1/M_{\rm ETC})}{M_{\rm ETC}^2} \frac{Z_S^{\rm SF}(1/M_{\rm ETC})}{Z_S^{\rm SF}(a)} C_S^{\rm SF-Lat}(a) \frac{\langle S_R^{\rm Lat}(a) \rangle}{f_{\pi_{\rm T}}^3} \times (246 \text{GeV})^3$$

• $C_s^{SF}(\mu)$: ETC dependent coefficient

- • $C_s^{\text{SF-Lat}}(\mu)$: finite renormalization connecting Lat to SF
- • $\langle S_R^{\text{Lat}}(\mu) \rangle$: chiral condensate
- • $Z_S^{SF}(\mu_1)/Z_S^{SF}(\mu_2)$: Calculated in this work

Anomalous dimension via Running of Z_P

$$\sigma_{P}^{\rm SF}(u,s) = \frac{Z_{P}^{\rm SF}(L)}{Z_{P}^{\rm SF}(sL)} = \exp\left(\int_{L}^{sL} dL' \frac{\gamma_{m}^{\rm SF}(u(L'))}{L'}\right) \qquad \text{At } u = u_{\rm FP},$$

$$\Sigma_{P,0}^{\rm lat}(u,s,l) = \frac{Z_{P}^{\rm lat}(g_{0}^{2},l)}{Z_{P}^{\rm lat}(g_{0}^{2},s\cdot l)}\Big|_{u=g_{\rm SF}^{2}(g_{0}^{2},l)} \qquad \gamma_{m}^{*} = \frac{\ln \sigma_{P}^{\rm SF}(u,s)}{\ln s}$$

$$= \sigma_{P}^{\rm SF}(u,s) + u (a_{1}/l + b_{1}/l^{2} + c_{1}/l^{3} + ...)$$

$$+ u^{2}(a_{2}/l + b_{2}/l^{2} + c_{2}/l^{3} + ...)$$

$$+ ...$$

Anomalous dimension via Running of Z_P

1

ln s

$$\sigma_{P}^{\rm SF}(u,s) = \frac{Z_{P}^{\rm SF}(L)}{Z_{P}^{\rm SF}(sL)} = \exp\left(\int_{L}^{sL} dL' \frac{\gamma_{m}^{\rm SF}(u(L'))}{L'}\right) \qquad \text{At } u = u_{\rm FP},$$

$$\Sigma_{P,0}^{\rm lat}(u,s,l) = \frac{Z_{P}^{\rm lat}(g_{0}^{2},l)}{Z_{P}^{\rm lat}(g_{0}^{2},s\cdot l)} \Big|_{u=g_{\rm SF}^{2}(g_{0}^{2},l)} \qquad \gamma_{m}^{*} = \frac{\ln \sigma_{P}^{\rm SF}(u,s)}{\ln s}$$

$$= \sigma_{P}^{\rm SF}(u,s) + u (a_{1}/l + b_{1}/l^{2} + c_{1}/l^{3} + ...) + u^{2}(a_{2}/l + b_{2}/l^{2} + c_{3}/l^{3} + ...) + u^{3}(a_{3}/l + b_{3}/l^{2} + c_{3}/l^{3} + ...)$$

We numerically determined the O(u) error.

In the continuum limit, we assume that 1/l scaling violation dominates.

Continuum limit of γ_m

s=2 and 3/2

Continuum limit of γ_m

s=2 and 3/2

 $0.06 \leq 1/u_{\rm FP} \leq 0.15 \Rightarrow 0.26 \leq \gamma_m \leq 0.74$

III. Spectroscopy

Phys.Rev. D88 (2013) 094506

Simulation Parameters:

Unimproved Wilson fermions + Wilson plaquette 3 Volumes: $16^3 \times 32$, $24^3 \times 48$, $32^3 \times 64$ Single lattice spacing: $\beta = 2.0$ N_f=6 and N_f=2 \leftarrow to compare with chirally broken theory

Special care on FSE Quark mass dependence of various quantities is carefully examined in the FSE-free region. (FSE=Finite Size Effect) Dependence in X-broken theory ≠ Dependence in conformal theory

 $aM_P/(am_q)^{1/2}$

 $aM_P/(am_q)^{1/2}$

The way to approach to the chiral limit is different.

In Nf=6, $aM_P \propto (am_q)^{\alpha}$ with $\alpha > 1/2$ near the chiral limit

 $\mathsf{IRFP} \Rightarrow M_P \propto (m_q)^{\alpha^*} \text{with } \alpha^* = 1/(1+\gamma^*)$

 $\alpha > 1/2$ indicates $\gamma^* < 1$.

 $aB = a \langle \overline{\psi}\psi \rangle_{\text{subt}} / f_P^2$

$$\delta^{ab} \cdot \left\langle \overline{\psi} \psi \right\rangle_{\text{subt}} \left(m_{\text{PCAC}}, L/a \right) = 2m_{\text{PCAC}} \cdot \left(2\kappa \right)^2 \sum_n \left\langle P^a(n) P^b(0) \right\rangle$$

 $aB = a \langle \overline{\psi}\psi \rangle_{\text{subt}} / f_P^2$

$$\delta^{ab} \cdot \langle \overline{\psi}\psi \rangle_{\text{subt}} (m_{\text{PCAC}}, L/a) = 2m_{\text{PCAC}} \cdot (2\kappa)^2 \sum_n \langle P^a(n)P^b(0) \rangle$$

Assuming IRFP and Hyper-scaling $\Rightarrow aB \propto (m_q)^{-|1-\gamma^*|/(1+\gamma^*)}$
Increasing toward the chiral limit

IRFP $\Rightarrow a^3 \langle \overline{\psi}\psi \rangle_{\text{subt}} \propto (am_q) + (am_q)^{(3-\gamma^*)/(1+\gamma^*)} + \dots$ Fit to this form by assuming IRFP and $\gamma^* < 1 \Rightarrow \gamma^* \sim 0.51$ Compatible with the SF result, 0.26 $\leq \gamma_m \leq 0.74$

IV. Summary and outlook

Summary and Outlook

- Running coupling: consistent with the IRFP.
- Mass anomalous dimension: $0.26 \le \gamma_m \le 0.74$.
- Quark mass dependence of several quantities are different from those in 2-flavor theory, and γ_m extracted is consistent with $0.26 \leq \gamma_m \leq 0.74$.
- In order to establish IRFP, simulations with improved actions are on-going.

Slope in the extrapolation

s = 3/2

Origin of Mass 2013@CP³-Origins, SDU, Odense, Denmark, August 22, 2013

Improvement really works?

Without improvement, the continuum limit clearly undershoot even in perturbative regime.

```
⇒ improvement is necessary
```