March 5th, 2014 SCGT14Mini

LHC Results and Future Prospects for BSM Searches

Koji Terashi ICEPP, The University of Tokyo

Outline

Run I Results
Prospects for Run II and beyond
(Preliminary) look at one-family WTC model

SM Higgs

ATLAS-CONF-2013-108

Now we know

- Mass 125.5 ± 0.6 GeV (ATLAS)
- Confirmed $\gamma\gamma$, WW, ZZ, $\tau\tau$ production
- VBF production in $\gamma\gamma$, WW, $\tau\tau$
- Yukawa coupling (indirectly by ggF, γγ)
- Cross-section, spin, coupling all consistent with SM predictions
- SM(-like) Higgs strongly preferred

Next : Precision measurement

- ► Confirmation of $H \rightarrow bb$
- Rare decay processes
- Yukawa coupling
- Self-coupling (two Higgs process)

... and search for additional (heavy) Higgses

Heavy Higgs Searches

arXiv: 1312.5353 CMS PAS HIG-13-021

CP-even/odd Higgs in MSSM

SM-like Higgs

SUSY Searches

ATLAS-CONF-2013-047 Stop search summary

Squark/Gluino searches

Excluded up to ~1.8 TeV (mg ~ mq) for mlsp < 700 GeV

Stop searches

 $\frac{150}{9} \frac{1}{9} \frac$

Signature-based Searches

Non-SUSY (aka "Exotics") searches aim to cover as many final states/topologies as possible

Signature-based Searches

Non-SUSY (aka "Exotics") searches aim to cover as many final states/topologies as possible

Present a few results on searches expected to be sensitive to heavy gauge bosons and technicolor and relevant interpretations

Dilepton

ATLAS-CONF-2013-017 CMS PAS EXO-12-061

2 isolated leptons $p_T^{e(\mu)} > 35(45)$ GeV at CMS, >40/30(25) GeV at ATLAS

Dilepton Interpretation

JHEP 1211, 138 (2012)

Diboson

Sensitive to various	Process	WW	ZZ	WZ	VH	HH	Vγ
EDs and technicolor	Final	pp+pp	pp+pp	pp+pp	lv+bb	bb+bb	Ιν+γ
Wide variety of final states being covered	State	IV+dd	II+qq II+v∨ qq+vv	IV+qq II+qq I∨+II	VV+bb		Π+γ
Benchmark models used in ATLAS				qq+vv			
Bulk Randall-Sundrum (SM fields in the bulk) K.Agashe et al.	G → V KK W	$\mathcal{W}\mathcal{W}, \mathbb{Z}\mathbb{Z}$	Z, HH √H/ZH				
<mark>Sequential SM (+ EGM)</mark> G.Altarelli et al.	₩' →	₩Z,₩	′H, Z' →	ZH	SSM+EGN - gw [.] wz/gw	$1 \operatorname{spin-I} V_{WZ^{SM}} = (M)$	$\bigvee^{L}Z$ $(M_{W'})^2$
Minimal walking technicolo F. Sannino et al.	or R _{1,2} -	→ WZ,V	∕H, ZH		0000000	G^* c^{\prime}	$\mathcal{N}^{W/Z}$
Low-scale technicolor K. Lane et al.	ρт/ат	→WZ,	Wγ/Ζγ,	WW	999999999	2	$\mathcal{W}_{W/Z}$
Dropped after 125 GeV Higgs discovery spin-2 bulk RS Graviton					viton		

Diboson (VV → qqqq)

CMS PAS EXO-12-024

Large BR beneficial **Exploit jet substructure technique :** ➡ QCD BG suppression is a key! Pruned jet mass : 70 < M_{iet}^{Pruned} < 100 GeV</p> **Baseline selection** ▶ N-subjettiness : T₂₁ < 0.5 (tight), 0.5-0.75 (medium) $\ge 2 \text{ C/A R} = 0.8 \text{ jets } \text{p}_T > 30 \text{ GeV}$ \Rightarrow Tight double-tag : $\varepsilon_{SIGNAL} \sim 10-20\%$, $\varepsilon_{BG} < 0.1\%$!! ▶ |∆η_{ii}| < 1.3, M_{ii} > 890 GeV CMS Preliminary, 19.8 fb⁻¹, $\sqrt{s} = 8$ TeV do/dm (pb/GeV High Purity Double W/Z-tag data 10 Observed — Fit Expected --- G_{RS}->WW (qd) (ZM \pm 1 σ Expected \pm 2 σ Expected CMS Preliminary (19.8 fb⁻¹) $W' \rightarrow WZ$ s = 8 TeV $|\eta| < 2.5, |\Delta \eta| < 1.3$ 10⁻⁴ **10**⁻¹ CA R=0.8 10⁻⁵ × BR(X 10^{-6} **10⁻²** <u>Data-Fit</u> σ_{Data} 0 1500 2000 2500 1000 Dijet Mass (GeV) **10⁻³** 1.2 1_4 1.6 1.8 2 For SSM+EGMW' \rightarrow WZ coupling **Resonance mass (TeV)** W'_{SSM} excluded up to 1.73 TeV 10

Search strategy

Select leptonic $W/Z + \ge 2$ jet events (no b-tag)

[dd]

ВВ

х

12

- MC background estimate with CR validation (fully data-driven for QCD background)
- ▶ Fit dijet mass to look for a resonance peak

Specific LSTC interpretation with $\rho_T^{\pm,0} \rightarrow W + \pi_T^{0,\pm}$

 $\rho_{T^{\pm}} \rightarrow Z + \pi_{T^{\pm}}$

including a $\rho_T - \pi_T$ mass point compatible with "CDF dijet anomaly", which is gone by now...:-(

 ρ_T - π_T mass relation :

▶ m(ρ_{T}) ~ 1.5m(π_{T})+55 GeV < 2m(π_{T})

No significant excess observed

Heavy "Higgs" → hh/Zh

CMS PAS HIG-13-025

Dedicated searches for heavy Higgs (H/A) → hh/Zh in 2HDM scenario

Search stratey

- Emphasis on multilepton signatures (less SM background)
- ► ≤ I lepton events considered only if two photons exist in events
- Lepton = e, μ , τ_{had} (I or 3-prong)
- on/off-Z OSSF pair or no OSSF pair for hh, only on-Z OSSF pair for Zh

e/μ/τ : p_T>10/10/20 GeV γ : p_T>20 GeV

H→hh : decay	modes	and	search	channels
--------------	-------	-----	--------	----------

	$\mathbb{W}\mathbb{W}$	/*	ZZ*	ττ	bb	γγ
WW*	~		~	~	×	~
ZZ*			~	~	>	~
ττ				~	×	~
bb					×	×
γγ						×
Final St	ates	Search Channels				
γγ₩ γγΖΖ γγτ	₩* <u>Z</u> * τ	2 photons (I20 <m<sub>$\gamma\gamma$<i30gev) +<br="">\geqI leptons (up to 2 T_{had}) in bins of E_T^{miss}</i30gev)></m<sub>				
All oth	ners	3/4 leptons (up to I τ_{had}), on/off-Z OSSF pair or no OSSF pair, in bins of E_T^{miss} and b-tag				

$H \rightarrow hh$

- Counting in ~40 signal regions binned by [#leptons, OSSF pair (on/off-Z), #τ_{had}, #b-tag, E_T^{miss}]
- Limits placed on $\sigma \cdot Br(H \rightarrow hh)$ and $\tan\beta vs \cos(\beta \alpha)$ in 2HDM Type-I/II scenarios

Ditop

tt resonance : prominent signature in bulk Randall-Sundrum scenario

Run I Summary

LHC Future Prospects

Public results for future prospects

ATLAS : https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies CMS : https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP

LHC Upgrade

New baseline schedule established in Dec 2013

Luminosity projection might be revisited with the new schedule

> 2015 start-up scenario under discussion (13 TeV? 12.5 TeV? or ...)

Higgs Signal Strength

ATLAS-PHYS-PUB-2013-014

Signal strength
$$\mu = \frac{\sigma_{\rm obs}}{\sigma_{\rm SM}}$$

Precision of μ in rare processes

	300 fb ⁻¹	3000 fb ⁻¹
ttH (H→γγ)	55%	21%
μμ	39%	15%
Zγ	147%	57%

Theory uncertainties quite important

3000 fb ⁻¹	w/o \rightarrow w/ theo. uncert.
γγ	4% → 10%
WW	5% → 9%
ZZ	4% → 10%

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \int Ldt=300 \text{ fb}^{-1}; \int Ldt=3000 \text{ fb}^{-1}$

Δμ/μ

Higgs Coupling

Following channels considered in the combined fits

- ► $H \rightarrow \gamma \gamma$ ggF(0, I-jet), VBF, ttH, VH
- $H \rightarrow WW ggF(0, I-jet), VBF$
- $H \rightarrow ZZ$ ggF, VBF, ttH, VH
- $H \rightarrow \tau \tau \quad VBF$
- $H \rightarrow Z\gamma \qquad \text{Inclusive}$
- $H \rightarrow \mu\mu$ Inclusive

 κ_a Higgs coupling $\lambda_{ab} =$ scale factor ratio κ_b

Assumed

- Zero width :
$$\sigma \cdot B(i \rightarrow H \rightarrow f) = \frac{1}{2}$$

- No $H \rightarrow$ invisible/BSM decay

ATLAS Simulation Preliminary

√s = 14 TeV: ∫Ldt=300 fb⁻¹ ; ∫Ldt=3000 fb⁻¹

Higgs Coupling

ATLAS Simulation Preliminary √s = 14 TeV: ∫Ldt=300 fb⁻¹ ; ∫Ldt=3000 fb⁻¹ κ_{gZ} Yukawa λ_{WZ} λ_{tg} ~ 7% $\tau/Z \sim 10\%$ $\lambda_{\tau Z}$ μ/Z ~ 10% $\lambda_{\mu Z}$ λ_{gZ} 3000 fb⁻¹ $\lambda_{\gamma Z}$ →0.78 $\lambda_{(Z\gamma)Z}$ 0.1 0.2 0.3 0 $\Delta \lambda_{XY} = \Delta \left(\frac{\kappa_X}{\kappa_Y} \right)$

Following channels considered in the combined fits

- → $\gamma\gamma$ ggF(0, I-jet), VBF, ttH, VH
- ► H → WW ggF(0, I-jet), VBF
- $H \rightarrow ZZ \quad ggF, VBF, ttH, VH$
- $\blacktriangleright H \rightarrow \tau \tau \qquad \forall BF$
- $H \rightarrow Z\gamma \qquad \text{Inclusive}$
- $H \rightarrow \mu \mu \qquad \text{Inclusive}$

$$\begin{array}{l} \text{Higgs coupling} \\ \text{scale factor ratio} \end{array} \lambda_{ab} = \frac{\kappa_a}{\kappa_b} \end{array}$$

Assumed

- Zero width
- No H→invisible/BSM decay

Constraints from Higgs Coupling

arXiv:1310.8361

Possibility of extended Higgs sector including SM-like 125GeV Higgs

- I25 GeV "Higgs" particle with non-SM coupling
- Indirect constraints from high-precision coupling measurement
- Direct search for "2nd" Higgs boson at high mass region

Higgs Snowmass Report

Expected deviation	Higgs Snowmass Report			
in case of ~I TeV new particle		$\Delta \kappa_v$	$\Delta \mathbf{k}_{\mathbf{\gamma}}$	$\Delta \mathbf{\kappa}_{\mathbf{b}}$
	2HDM	~ %	~ %	~ 10%
MSSM (decoupling)		~10-5	<~0.4%	~1.6%
	Composite Higgs	~ -3%	~ -9%	~ -(3-9)%
	Top Partner	~ -2%	~+1%	~ -2%

Possible to reach at 3000 fb⁻¹ :

 $\kappa_{\gamma} \sim 9(4)\%, \kappa_{V} \sim 3(2)\%, \kappa_{f} \sim 4(3)\%$

with (without) theory uncertainty

 $Z' \rightarrow II, W' \rightarrow qq$

LHC2TSP workshop

Assume universal left-handed coupling to up and down quarks

$$\mathcal{L}_{Z'} \sim g_{Z'} Z'_{\mu} \left(\bar{q}_i \gamma^{\mu} \frac{1 - \gamma_5}{2} q^i \right)$$

$$g_{Z'} \sqrt{BR(Z' \rightarrow l^+ l^-)} = \left(\frac{S \sqrt{N_{BG}}}{\sigma(q\bar{q} \rightarrow Z')|_{g_{Z'}=1} A \epsilon L} \right)^{1/2}$$

$$\int_{10^{-1}} \frac{Z' \rightarrow q q}{10^{-1}} \frac{|\mathbf{H}^{CeTeV}| \mathbf{H}^{Ce14TeV}| \mathbf{S} \mathbf{L} \mathbf{H}^{Ce33TeV}|}{|\mathbf{G}^{-1}|_{10^{-2}} \int_{10^{-2}} \frac{|\mathbf{G}^{-1}|_{10^{-2}}}{10^{-2}} \int_{10^{-2}} \frac{|\mathbf{G}^{-1}|_{10^{-2}}}{|\mathbf{G}^{-1}|_{10^{-2}}}} \int_{10^{-2}} \frac{|\mathbf{G}^{-1}|_{10^{-2}}}{|\mathbf{G}^{-$$

Possible to discover up to ~5.5(7.0)TeV for Z'ssm→ee/µµ

First Look at One-Family Walking Technicolor Predictions

This is NOT ATLAS result

Preliminary look at MC sensitivity to *unique* topologies predicted by one-family WTC model in collaboration with S. Matsuzaki, M. Kurachi and K. Yamawaki

Probing the Model

Probing techni-pion dynamics with rich LHC phenomenology
▶ e.g, color-octet/singlet, iso-singlet techni-pion → tt

Focus here on techni-rho → boson + "Higgs" processes :

- Color-singlet technirho : $\rho_0 \rightarrow \gamma + \Phi \ (\Phi \rightarrow gg)$
- ⇒ Color-octet technirho : $\rho_8 \rightarrow g + \Phi (\Phi \rightarrow gg)$
- $\Phi =$ "Higgs" (techni-dilaton)

See talks by M. Kurachi and S. Matsuzaki for more details about the model

MC Sensitivity Study

Focus on two characteristic signatures:

 \blacktriangleright Color-singlet technirho : $\rho_0 \rightarrow \gamma + \Phi (\Phi \rightarrow gg)$

- use PYTHIA low-scale TC implementation
- emulated by $\rho^{TC}/\omega^{TC} \rightarrow \gamma + \pi^{TC} (\pi^{TC} \rightarrow gg)$
- \blacktriangleright Color-octet technirho : $\rho_8 \rightarrow g + \Phi (\Phi \rightarrow gg)$
 - use PYTHIA genetic particle interface
 - introduce a new particle X with same quantum numbers as ρ_8
 - emulated by gg $\rightarrow X \rightarrow g + \rho_8^{TC} (\rho_8^{TC} \rightarrow gg)$
- Fix Φ mass at 125 GeV and consider only $\Phi \rightarrow gg$ decay
- Set ρ_0/ρ_8 mass above current experimental limits from other decay channels
- Cross section normalized to model prediction ($m_{\Phi}=125$ GeV, BR($\Phi \rightarrow gg$)=75%)
- Parameterized jet and photon momentum smearing (due to pileup), photon efficiency and jet fakes are applied to generated events

Color-Singlet $\rho_0 \rightarrow \gamma + \Phi$

Mass(yj) [GeV] 28

Color-Octet $\rho_8 \rightarrow g + \Phi$

Color-octet technirho : $\rho_8 \rightarrow g + \Phi (\Phi \rightarrow gg)$

 $m_{\rho 8} \leq 1.6$ TeV excluded by 8 TeV dijet resonance search $\Rightarrow m_{\rho 8} = 1.7, 2.0$ and 2.3 TeV chosen as benchmark points

Event Selection :

- ≥2 jets p_T >500,400 GeV

- Either one of them = 115 < m_{jet} < 145 GeV, other jet = m_{jet} < 115 GeV Considered Backgrounds : multi-jets (PYTHIA) Cut and count in a sliding M_{jj} window

 $\sqrt{s} = 8 \text{ TeV}$

2.0

2.3

~20

 $m_{
ho 8}$

[TeV]

 $\sigma \cdot BR$

[fb]

1.7

~300 ~70

Summary

Towards understanding the dynamics of electroweak symmetry breaking

- Properties of "SM-like" Higgs (rare processes, yukawa/gauge/λ, ...)
- Direct search for additional (heavy) Higgses
- Longitudinal gauge boson scattering
- Probing technicolor scenarios with various topologies

Significant increase in sensitivity for new particles at 14 TeV LHC (300 fb⁻¹)

- $\blacktriangleright W'/Z' \rightarrow ff$
- $\blacktriangleright W' \rightarrow WZ$
- KK Gluon
- Top Partner
- Squark/Gluino
- Stop
- Chargino1/Neutralino2

- 👄 ~ 4-5 TeV
- ➡ >~ 3 TeV
- ➡ ~ 3-4 TeV
- ➡ ~ 1.3 TeV
- → ~ 2-2.5 TeV (m_{q̃} = m_{g̃})
- → ~ 0.8-1 TeV (m_{X̃1}⁰ = 0)
- $\Rightarrow \sim 0.5-0.7 \text{ TeV} (m_{\tilde{\chi}_1^0} = 0)$

Backup

ATLAS Upgrade

Rare Higgs Decay

Events/GeV / 3 ab-1

ATLAS-PHYS-PUB-2013-014

Sensitivity significantly improved for rare processes

Higgs Self-Coupling

Measure Higgs self-coupling Determine the form of Higgs potential

Any deviation from SM prediction? $\lambda_{HHH} = \frac{3m_H^2}{m_H^2}$

Large interference effect

Higgs Self-Coupling

HH→bbγγ

- ▶ BR(HH→bbγγ) = 0.27%
- ► ~270 events at 3000 fb⁻¹
- Main backgrounds
 - γγbb
 - ttH(H→γγ)
 - $-Z(\rightarrow bb)H(\rightarrow \gamma\gamma)$

HH→bbττ

- ► BR(HH→bb τ τ) = 7%
- ~7000 events at 3000 fb⁻¹
- Optimization study in progress
- Promising channel?
 - → S/B ~ 0.5 (<u>arXiv:1206.5001</u>)

3000 fb ⁻¹ : #Events after cuts				
HH	→bbγγ Sig	gnal	Background	
$\lambda_{HHH}=0$	λημη=Ι	λ <mark>нн</mark> н=2	Dackground	
~18	~10	~5	~35	

HH→bbWW

- Huge tt background
 - → S/B ~ 10^{-5} (after lepton+jets cuts)
- Combination could enable us to reach >3σ?

Possible to measure λ_{HHH} with ~30% accuracy?

 $g^{KK}/Z' \rightarrow tt$

ATLAS-PHYS-PUB-2013-003

Lepton+jets channel

- ▶ I lepton p_T >25 GeV, E_T^{miss} >50 GeV
- $\ge 1 \text{ R}=0.4 \text{ jet } \text{p}_T > 25 \text{ GeV}$
- \ge | R=1.0 jet pT >250 GeV, m_{jet} >120 GeV

Full hadronic channel

- ▶ 2 C/A R=0.8 jets p_T >750 GeV
- ► Top-tag : Q_W>70 GeV, m_{jet}^{Trimmed}>70 GeV
- eV b-tag : ε = 50(30)% at 0.75(1.5) TeV

Top-Partners

Top-quark partner with vector-like coupling

Commonly appear in strongly-coupled EWSB scenarios (e.g, composite Higgs)
 Canceling radiative correction to Higgs mass by SM top quarks

Discovery reach of vector-like top-partner ⇒ ~1.3(1.5) TeV at 300(3000) fb⁻¹