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Exploring Colorons at the LHC



After Years of Work Pay Off...



What Comes Next?
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What May Leap Out?



New Colored States

Gauge bosons from extended color groups:!
Classic Axigluon: P.H. Frampton and S.L. Glashow, Phys. Lett. B 190, 157 (1987).!
Topgluon:  C.T. Hill, Phys. Lett. B 266, 419 (1991).!

Flavor-universal Coloron: R.S. Chivukula, A.G. Cohen, & E.H. Simmons, Phys. Lett. B 380, 92 (1996).!

Chiral Color with gL ≠ gR:  M.V. Martynov and A.D. Smirnov, Mod. Phys. Lett. A 24, 1897 (2009).!

New Axigluon: P.H. Frampton, J. Shu, and K. Wang, Phys. Lett. B 683, 294 (2010).!

Similar color-octet states:!
KK gluon: H. Davoudiasl, J.L. Hewett, and T.G. Rizzo, Phys. Rev. D63, 075004 (2001)!
                            B. Lillie, L. Randall, and L.-T. Wang, JHEP 0709, 074 (2007).!

Techni-rho: E. Farhi and L. Susskind, Physics Reports 74, 277 (1981).!

More exotic colored states: !
Color sextets, colored scalars, low-scale scale string resonances...!!T. Han, I. Lewis, Z. Liu, JHEP 1012, 085 (2010).



Modern Coloron 
Models

R.S. Chivukula, EHS, N. Vignaroli    arXiv:1302.1069
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Coloron Models: Gauge Sector

SU(3)1 x SU(3)2  color sector with!

  unbroken subgroup: SU(3)1+2 = SU(3)QCD
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Quark Charges -> Coloron Phenomenology

q = u,d,c,s

Patterns of Quark Charges

SU(3)1 SU(3)2 model pheno.

  (t,b)L   qL   tR,bR   qR coloron dijet

                   qR   (t,b)L   qL   tR,bR   

        tR,bR     (t,b)L   qL              qR

  qL    (t,b)L         tR,bR    qR  

  qL   tR,bR     (t,b)L                    qR new axigluon dijet, AtFB, FCNC

  qL              qR   (t,b)L         tR,bR   topgluon dijet, tt, bb, 
FCNC, Rb...

        tR,bR    qR   (t,b)L   qL  classic axigluon dijet, AtFB

  qL   tR,bR   qR   (t,b)L  

q = u,d,c,s



A Flavorful Top-Coloron Model 

Next to minimal flavor symmetry:

Flavorful Top-Coloron Model 

particlesparticles SU(3)1 SU(3)2 SU(2)W

3rd generation 
quarks

(t,b)L 3 1 23rd generation 
quarks tR,bR 3 1 1

light quarks
(u,d)L     (c,s)L 1 3 2

light quarks
uR,dR     cR,sR 1 3 1

vector quarks QL,QR 3 1 2

light scalar ��     ! 1 1 2

heavy scalar Φ 3 3* 1

Next to minimal flavor symmetry:



Coloron Discovery 
in Dijets at NLO

R.S. Chivukula, A. Farzinnia, R. Foadi, EHS      arXiv:1111.7261!
R.S. Chivukula, A. Farzinnia, J. Ren, EHS         arXiv:1303.1120 

http://arxiv.org/abs/arXiv:1007.0260


LHC Limits on Colorons

LHC searches for colorons in dijets constrain MC

But these calculations have treated the colorons only at LO 
and QCD to NLO (or beyond) ... we can do better!
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(a) Excited-quark model.
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(b) Colour scalar octet model.

Figure 4. The 95% CL upper limits on σ ×A as a function of particle mass (black filled circles)
using mjj . The black dotted curve shows the 95% CL upper limit expected in the absence of
any resonance signal, and the green and yellow bands represent the 68% and 95% contours of the
expected limit, respectively. Theoretical predictions of σ×A are shown (dashed) in (a) for excited
quarks, and in (b) for colour octet scalars. For a given NP model, the observed (expected) limit
occurs at the crossing of the dashed σ×A curve with the observed (expected) 95% CL upper limit
curve.

The expected lower mass limit at 95% CL for q∗ is 2.94 TeV, and the observed limit is

2.83 TeV. For comparison, this limit has also been determined using Pythia 6 samples with

the default q∗ settings, leading to narrower mass peaks. The expected limit determined

from these MC samples is 0.1 TeV higher than the limit based on the corrected samples.

This shift is an approximate indicator of the fractional correction that is expected when

comparing the current ATLAS results to all previous analyses that found q∗ mass limits

using Pythia 6 and pT-ordered final state radiation without corrections, including all

previous ATLAS results.

The limits for colour octet scalars are shown in figure 4(b). The expected mass limit

at 95% CL is 1.97 TeV, and the observed limit is 1.86 TeV. For this model the acceptance

values vary between 34% and 48% for masses between 1.3 TeV and 4.0 TeV.

The limits for heavy charged gauge bosons, W ′, are shown in figure 5(a). For this

model, only final states with dijets have been simulated. The branching ratio, BR, to the

studied qq̄′ final state varies little with mass and is 0.75 for mW ′ values of 1.1 TeV to

3.6 TeV, and the acceptance ranges from 29% to 36%. The expected mass limit at 95% CL

is 1.74 TeV, and the observed limit is 1.68 TeV. This is the first time that an ATLAS limit

on W ′ production is set using the dijet mass distribution. Searches for leptonic decays of

the W ′ are however expected to be more sensitive.

The W ′ hypothesis used in the current study assumes SM couplings to quarks. If a

similar model were to predict stronger couplings, for example, figure 5(a) could be used

– 15 –

(~ coloron)

8 5 Limits

Figure 6: The observed 95% CL upper limits from the high-mass analysis on s ⇥ B ⇥ A for
quark-quark, quark-gluon, and gluon-gluon dijet resonances (points) are compared to the ex-
pected limits (dot-dash) and their variation at the 1s and 2s levels (shaded bands). Predicted
cross sections of various resonances are also shown.



Coloron Production
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NLO Colorons: Virtual & Real Corrections



NLO Cross-Section
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FIG. 15. NLO cross section times branching-ratio to quarks for on-shell coloron production at the LHC (
p
s = 7 TeV),

corrected for acceptance as described in the text. We consider the three possible flavor-universal scenarios for the quark
charge assignments, take the renormalization scale µ to be equal to MC , and plot � for sin2 ✓c|µ=M

C

= 0.05 (dashed), 0.25
(dot-dashed), and 0.5 (dotted). We plot these cross sections for µF ranging from MC/2 to 2MC and, reflecting the weak
dependence of the NLO cross section on the factorization scale, the resulting bands for each sin2 ✓c are very narrow. To give
a sense of current experimental reach, we plot the CMS [22] upper limit (solid line) on the cross-section times dijet branching
ratio for a narrow resonance. Note that the axigluon [1] corresponds to the middle rL 6= rR plot with sin2 ✓ = 0.5 – and hence
a narrow axigluon resonance is constrained to have a mass of order 2.6 TeV or higher.

FIG. 16. “K-factor”, the ratio of the NLO to LO cross section for coloron production at the LHC (
p
s = 7 TeV), plotted as

a function of MC for sin2 ✓c = 0.05 (dashed), 0.25 (dot-dashed) and 0.50 (dotted), µF = MC , and the three di↵erent quark
charge assignments.

In Fig. 15 we plot the cross section times branching ratio to quark jets as a function of MC , allowing µF to vary
from MC/2 to 2MC . Here, in order to compare to the experimental results of [22] (shown as the solid line in the
figures), we correct for the acceptance of the detector by multiplying our partonic-level NLO production cross section
by the factor

R =
(�(pp ! C) · B · A)CMS

axigluon

�LO(pp ! C)axigluon
. (90)

In this expression, (�(pp ! C) ·B ·A)CMS
axigluon is the CMS (LO) prediction for axigluon production cross section, times

dijet branching ratio, times acceptance10 reported in [22], and �LO(pp ! C)axigluon is the leading order cross section
in Eq. (23) in the case of an axigluon (i.e. rL = �rR = 1), assuming the branching ratio to quarks B(C ! qq̄) = 1.11

The three sets of thin bands correspond to sin2 ✓c|µ=M
C

= 0.05 (dashed), 0.25 (dot-dashed), and 0.5 (dotted). Here,
the weak residual µF dependence is shown by the narrowness of the bands. To give a sense of current experimental
reach, we also show the 1 fb�1 CMS upper bounds on the cross-section times di-jet branching ratio for a narrow
resonance [22]. Note that the bound on the axigluon [1] corresponds to the rL 6= rR plot with sin2 ✓ = 0.5 – and
hence a narrow axigluon resonance is constrained to have a mass of order 2.6 TeV or higher. The enhancement of
the axigluon cross section at NLO is responsible for the increase in the bound from of order 2.5 TeV as reported in
[22].

Next, we compute the “K-factor” for coloron production.

K(MC , sin ✓c|µ=M
C

, µF = MC) ⌘ �NLO(MC , sin ✓c|µ=M
C

, µF = MC)

�LO(MC , sin ✓c|µ=M
C

, µF = MC)
, (91)

10 The CMS acceptance for isotropic decays is of order 0.6, independent of resonance mass [22].
11 It is worth noting that there are examples of models with colorons which do not decay primarily to dijets, e.g. [37].
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FIG. 13. Behavior of the Q function defined in Eq. (84), for µ = MC : this gives the contribution from the virtual corrections
to the NLO cross section for coloron production. The upper curve is for the rL 6= rR scenario, whereas the almost identical
lower curves are for rL = rR = � tan ✓c, and rL = rR = cot ✓c. Note that Q, and therefore the NLO corrections, become very
large when sin2 ✓c is either too small or too large.
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FIG. 14. Dependence of LO and NLO cross sections at the LHC (
p
s = 7 TeV), as a function of factorization scale µF for

MC = 2.0 TeV, sin2 ✓c|µ=2.0TeV = 0.25, and the three possible flavor-universal scenarios for the quark charge assignments. As
expected, the NLO cross section has a much weaker (formally, two-loop) residual scale-dependence.

and ! (Eq. (65)) is given by

! =

1 �
s

1 � 4p2

T

ŝ(1 � �)2

2
. (89)

Note that this is the leading order prediction for d�/dpT , and therefore this distribution is strongly µF -dependent.

VII. DISCUSSION

We now illustrate9 our results for the NLO coloron production cross-section in Figs. 13 - 16. In each figure we
consider the three possible flavor-universal scenarios for quark charge assignment: rL = rR = � tan ✓c, rL 6= rR, and
rL = rR = cot ✓c. All of the plots refer to coloron production at the LHC with

p
s = 7 TeV.

Notice that the perturbative expansion is only meaningful as long as sin ✓c is neither too close to zero (where
g
2s � g

1s) nor too close to one (where g
1s � g

2s). This is clear from Fig. 13, in which we plot the quantity Q defined
in Eq. (84), for µ = MC : the contribution from the virtual corrections to the NLO cross section. The upper curve is
for the rL 6= rR scenario, whereas the almost identical lower curves are for rL = rR = � tan ✓c, and rL = rR = cot ✓c.
For sin2 ✓c . 0.05 and sin2 ✓c & 0.95 the virtual corrections become large, and the perturbative expansion in ↵s

breaks down. Since ↵s ' 0.118 at the Z pole, these boundaries correspond to g
2s & 2.7 and g

1s & 2.7, respectively.
In Fig. 14, we plot the µF dependence of the LO and NLO production cross sections of a 2.0 TeV coloron (with

sin2 ✓c|µ=2.1 TeV

=0.25). The scale-dependence of the LO cross section is of order 30% while, as expected, the NLO
cross section has a much weaker scale dependence, only of the order of 2% percent.

9 For the purposes of illustration we use the Mathematica package for CTEQ5 [36] to evaluate the relevant parton distribution functions.
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K-factor for Coloron & Axi-gluon
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FIG. 15. NLO cross section times branching-ratio to quarks for on-shell coloron production at the LHC (
p
s = 7 TeV),

corrected for acceptance as described in the text. We consider the three possible flavor-universal scenarios for the quark
charge assignments, take the renormalization scale µ to be equal to MC , and plot � for sin2 ✓c|µ=M

C

= 0.05 (dashed), 0.25
(dot-dashed), and 0.5 (dotted). We plot these cross sections for µF ranging from MC/2 to 2MC and, reflecting the weak
dependence of the NLO cross section on the factorization scale, the resulting bands for each sin2 ✓c are very narrow. To give
a sense of current experimental reach, we plot the CMS [22] upper limit (solid line) on the cross-section times dijet branching
ratio for a narrow resonance. Note that the axigluon [1] corresponds to the middle rL 6= rR plot with sin2 ✓ = 0.5 – and hence
a narrow axigluon resonance is constrained to have a mass of order 2.6 TeV or higher.
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FIG. 16. “K-factor”, the ratio of the NLO to LO cross section for coloron production at the LHC (
p
s = 7 TeV), plotted as

a function of MC for sin2 ✓c = 0.05 (dashed), 0.25 (dot-dashed) and 0.50 (dotted), µF = MC , and the three di↵erent quark
charge assignments.

In Fig. 15 we plot the cross section times branching ratio to quark jets as a function of MC , allowing µF to vary
from MC/2 to 2MC . Here, in order to compare to the experimental results of [22] (shown as the solid line in the
figures), we correct for the acceptance of the detector by multiplying our partonic-level NLO production cross section
by the factor

R =
(�(pp ! C) · B · A)CMS

axigluon

�LO(pp ! C)axigluon
. (90)

In this expression, (�(pp ! C) ·B ·A)CMS
axigluon is the CMS (LO) prediction for axigluon production cross section, times

dijet branching ratio, times acceptance10 reported in [22], and �LO(pp ! C)axigluon is the leading order cross section
in Eq. (23) in the case of an axigluon (i.e. rL = �rR = 1), assuming the branching ratio to quarks B(C ! qq̄) = 1.11

The three sets of thin bands correspond to sin2 ✓c|µ=M
C

= 0.05 (dashed), 0.25 (dot-dashed), and 0.5 (dotted). Here,
the weak residual µF dependence is shown by the narrowness of the bands. To give a sense of current experimental
reach, we also show the 1 fb�1 CMS upper bounds on the cross-section times di-jet branching ratio for a narrow
resonance [22]. Note that the bound on the axigluon [1] corresponds to the rL 6= rR plot with sin2 ✓ = 0.5 – and
hence a narrow axigluon resonance is constrained to have a mass of order 2.6 TeV or higher. The enhancement of
the axigluon cross section at NLO is responsible for the increase in the bound from of order 2.5 TeV as reported in
[22].

Next, we compute the “K-factor” for coloron production.

K(MC , sin ✓c|µ=M
C

, µF = MC) ⌘ �NLO(MC , sin ✓c|µ=M
C

, µF = MC)

�LO(MC , sin ✓c|µ=M
C

, µF = MC)
, (91)

10 The CMS acceptance for isotropic decays is of order 0.6, independent of resonance mass [22].
11 It is worth noting that there are examples of models with colorons which do not decay primarily to dijets, e.g. [37].
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FIG. 15. NLO cross section times branching-ratio to quarks for on-shell coloron production at the LHC (
p
s = 7 TeV),

corrected for acceptance as described in the text. We consider the three possible flavor-universal scenarios for the quark
charge assignments, take the renormalization scale µ to be equal to MC , and plot � for sin2 ✓c|µ=M

C

= 0.05 (dashed), 0.25
(dot-dashed), and 0.5 (dotted). We plot these cross sections for µF ranging from MC/2 to 2MC and, reflecting the weak
dependence of the NLO cross section on the factorization scale, the resulting bands for each sin2 ✓c are very narrow. To give
a sense of current experimental reach, we plot the CMS [22] upper limit (solid line) on the cross-section times dijet branching
ratio for a narrow resonance. Note that the axigluon [1] corresponds to the middle rL 6= rR plot with sin2 ✓ = 0.5 – and hence
a narrow axigluon resonance is constrained to have a mass of order 2.6 TeV or higher.
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FIG. 16. “K-factor”, the ratio of the NLO to LO cross section for coloron production at the LHC (
p
s = 7 TeV), plotted as

a function of MC for sin2 ✓c = 0.05 (dashed), 0.25 (dot-dashed) and 0.50 (dotted), µF = MC , and the three di↵erent quark
charge assignments.

In Fig. 15 we plot the cross section times branching ratio to quark jets as a function of MC , allowing µF to vary
from MC/2 to 2MC . Here, in order to compare to the experimental results of [22] (shown as the solid line in the
figures), we correct for the acceptance of the detector by multiplying our partonic-level NLO production cross section
by the factor

R =
(�(pp ! C) · B · A)CMS

axigluon

�LO(pp ! C)axigluon
. (90)

In this expression, (�(pp ! C) ·B ·A)CMS
axigluon is the CMS (LO) prediction for axigluon production cross section, times

dijet branching ratio, times acceptance10 reported in [22], and �LO(pp ! C)axigluon is the leading order cross section
in Eq. (23) in the case of an axigluon (i.e. rL = �rR = 1), assuming the branching ratio to quarks B(C ! qq̄) = 1.11

The three sets of thin bands correspond to sin2 ✓c|µ=M
C

= 0.05 (dashed), 0.25 (dot-dashed), and 0.5 (dotted). Here,
the weak residual µF dependence is shown by the narrowness of the bands. To give a sense of current experimental
reach, we also show the 1 fb�1 CMS upper bounds on the cross-section times di-jet branching ratio for a narrow
resonance [22]. Note that the bound on the axigluon [1] corresponds to the rL 6= rR plot with sin2 ✓ = 0.5 – and
hence a narrow axigluon resonance is constrained to have a mass of order 2.6 TeV or higher. The enhancement of
the axigluon cross section at NLO is responsible for the increase in the bound from of order 2.5 TeV as reported in
[22].

Next, we compute the “K-factor” for coloron production.

K(MC , sin ✓c|µ=M
C

, µF = MC) ⌘ �NLO(MC , sin ✓c|µ=M
C

, µF = MC)

�LO(MC , sin ✓c|µ=M
C

, µF = MC)
, (91)

10 The CMS acceptance for isotropic decays is of order 0.6, independent of resonance mass [22].
11 It is worth noting that there are examples of models with colorons which do not decay primarily to dijets, e.g. [37].
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FIG. 11. Inclusive cross section foxr the gluon-gluon fusion to coloron process as a function of coloron mass at the LHC for
CM energies of 8 TeV (top row) and 14 TeV (bottom row) with various (flavor universal) fermion charge assignments. Three
representative values of the mixing angle have been plotted. The thickness of each curve reflects its (moderate) dependence
on the R parameter (55) with 1/2  R  2, and the factorization scale, µF , has been set equal to the coloron mass, MC . Note
the absence of a curve for the axigluon [2, 3], corresponding to the maximal mixing sin2 ✓c = 0.5 and rL 6= rR, as the gluon
fusion production of the coloron is forbidden by symmetry in this case and the production amplitude is identically zero (c.f.
(64)).

the LHC with two CM energies.18 As before, three values of the mixing angle are displayed with various fermion
charge assignments, and we have set R = 1 for convenience. Once again, the curve for axigluon production is absent,
due to the parity symmetry explained above. It is evident that the gluon-fusion production process is subdominant
by four orders of magnitude by comparison with the quark-initiated production, even for the highest CM energy.

We conclude that the gluon fusion contribution to coloron production is phenomenologically irrelevant except in
the case of a fermiophobic coloron with a coupling of order O(10�2gs) or smaller.

V. UPDATED NLO COLORON PRODUCTION RATES AT HADRON COLLIDERS

Finally, having shown that the gluon fusion contribution to coloron production is numerically insignificant (except
in the case of fermiophobic colorons), we present an update of the NLO cross section for coloron production, as given
in Eq. (81) of [1]. As in that reference, we compute the ‘K-factor’ for coloron production, defined as

K ⌘ �NLO
qq̄!C

�LO
qq̄!C

, (79)

where, �NLO
qq̄!C is the NLO quark-initiated coloron production cross section and �LO

qq̄!C is that for tree-level production,
as given in [3]. The K-factors computed here di↵er slightly from those previously reported in [1], largely due to the
fact that here we use the modern CT10 [25] PDFs while the previously reported K-factors were calculated using the
Mathematica package for CTEQ5 [35].19

The K-factor values (79) have been plotted in Fig. 13 for the LHC with
p

s = 8 and 14 TeV,20 with the three
mixing angle values for di↵erent fermion charge assignments as before. We see that, as in [1], the K-factor can be

18 For brevity, in Fig. 12 we have used the subscript qq̄ ! C to indicate collectively all the mentioned NLO production processes containing
one or more quarks in the initial state.

19 In addition, here we consistently apply the definition of ✓c in the coloron coupling in terms of gs extracted from ↵s(MZ), as described
in Sec.IVB.

20 Plots of the K-factor for the LHC at 7 TeV may be found in [1].

Also: 30% of produced colorons have pT > 200 GeV!
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FIG. 12. Ratio of the coloron production cross section via gluon fusion with respect to the quark-initiated production channel,
where the latter is evaluated at next-to-leading order [1]. Again, three representative values of the mixing angle have been
plotted for the LHC CM energies of 8 TeV (top row) and 14 TeV (bottom row) with various fermion charge assignments. The
factorization scale, µF , has been set equal to the coloron mass as before, and we have chosen R = 1 for illustration. Note,
once more, the absence of the axigluon curve.

as large as 30%. The numerical values of the K-factor associated with di↵erent choices of various parameters are
tabulated in Appendix B for the LHC at beam energies of

p
s = 7, 8, and 14 TeV and also at the Tevatron for a

beam energy of
p

s = 1.96 TeV.

VI. CONCLUSIONS

In this paper we have presented results that complete the study of the next-to-leading order (NLO) QCD corrections
to coloron production at the LHC and Tevatron begun in [1]. Our calculations apply directly to any model with an
SU(3)1c ⇥ SU(3)2c gauge structure. They also apply approximately to the production of KK gluons and colored
technivector mesons to the extent that the SU(3)1c ⇥SU(3)2c model is a good low-energy e↵ective theory for models
which incorporate these particles. We used the pinch technique to investigate coloron production via gluon fusion. We
demonstrated that this one-loop production amplitude is finite, and found that its numerical contribution to coloron
production is typically four orders of magnitude smaller than the contribution from quark annihilation. Hence, the
production of colorons via gluon-fusion is only relevant for (nearly) fermiophobic colorons. In addition, we have
updated the results for the NLO QCD corrections to coloron production, and have presented plots and tables of our
results for a range of coloron masses, mixing angles, and fermion charges at the Tevatron, the low-energy LHC and
the high-energy LHC
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Cgg Vertex at NLO
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FIG. 2. Gluon-fusion to coloron via the one-particle irreducible mixed vacuum polarization amplitudes (VPA).
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In what follows, we study the calculation of one-loop diagrams containing gauge boson trilinear vertices such
as (15). We will illustrate how replacing �↵µ⌫(q, k1, k2) by �F

↵µ⌫(q, k1, k2) corresponds to identifying ‘unpinched’

FIG. 3. Kinematics of a generic triple-gauge boson vertex, with the Lorentz structure given by �↵µ⌫(q, k1, k2) (15). Each leg
could be either a gluon or a coloron, depending on the specific vertex (see the Feynman rules in Appendix A). All momenta
flow towards the vertex.
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Suppose A Coloron is found in Dijets

As noted earlier, a variety of chiral and flavor structures 
for the coloron coupling to quarks is open...

How to establish which kind of coloron has been found?

Patterns of Quark Charges

SU(3)1 SU(3)2 model pheno.

  (t,b)L   qL   tR,bR   qR coloron dijet

                   qR   (t,b)L   qL   tR,bR   

        tR,bR     (t,b)L   qL              qR

  qL    (t,b)L         tR,bR    qR  

  qL   tR,bR     (t,b)L                    qR new axigluon dijet, AtFB, FCNC

  qL              qR   (t,b)L         tR,bR   topgluon dijet, tt, bb, 
FCNC, Rb...

        tR,bR    qR   (t,b)L   qL  classic axigluon dijet, AtFB

  qL   tR,bR   qR   (t,b)L  

q = u,d,c,s



Associated Production:



W+Ca probes Coloron’s Chiral Couplings
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FIG. 2: Representative Feynman diagrams for associated production of a W,Z gauge boson with a
color-octet resonance, C. Both s and t channel diagrams along with leptonic decays of the associated

gauge boson are shown.

We present the the monte-carlo simulation details in Sec.IIIA and in Sec.III B and Sec.IIIC
we study the modes of associated production with a W and a Z boson respectively.

The color-octet states (C) are produced and decay to two jets via the process

pp
C−→ j j. (8)

They can also be produced in association with a gauge boson via the process

pp
C−→ j j W±, (9)

pp
C−→ j j Z, (10)

where j = u, d, s, c, b. We will refer to the process in Eq.(9) and Eq.(10) as the CW and CZ
channels respectively. The diagrams of interest for the associated production which include
s and t channel diagrams with the emission of the gauge bosons in either the initial or final
state are shown in Fig. 2. The final state channels of our current interest are

pp → ℓ±E/T 2j, ℓ+ℓ− 2j, (11)

coming from W±(→ ℓ±ν) or Z(→ ℓ+ℓ−), respectively and ℓ = e, µ. Although the inclusion
of the τ lepton in the final state could increase signal statistics, for simplicity we ignore this
experimentally more challenging channel.

The relevant backgrounds to the signal processes in Eq.(11) are

• W+ jets, Z+ jets with W, Z leptonic decays;

• top pair production with fully leptonic, semi-leptonic and hadronic decays;

• single top production leading to W±b q;

• W+W−, W±Z and ZZ with W, Z leptonic decays;

Next, we present some details about the monte-carlo simulation.
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FIG. 1: A cartoon illustration of the constraints on chiral couplings from the di-jet channel (dashed
black line with red band), the channel with associated production of a W boson (solid black line

with green band) and the channel with associated production of a Z boson (dotted black line with
blue band).

with the di-jet measurement is shown in Fig. 1. Notice that there remains an ambiguity in
extracting the sign of the couplings. This method of using the associated production of the
gauge boson was studied earlier in the context of the measurement of Z ′ couplings [27, 28].

In this article we study the sensitivity of the LHC with c.m. energy of 14 TeV to probe the
chiral structure of the couplings for colored resonances with 10fb−1 and 100fb−1 integrated
luminosity by the method proposed above. We study colored resonances with masses in
the range 2.5 TeV to 4.5 TeV and various couplings and widths. The rest of the paper
is organized as follows. In Sec.II we present a simple parameterization for the colored
resonances and our notation. In Sec.III we discuss the signal and associated backgrounds,
the monte-carlo simulation details in Sec.IIIA and the channels with charged and neutral
gauge bosons in Sec. III B and Sec.IIIC respectively. We present a discussion of our results
in Sec.IV and conclusions in Sec.V.

II. GENERAL PARAMETERIZATION

The color-octet resonance of interest to our study may be motivated in many BSM sce-
narios as explained in the introduction. Hence we explore a phenomenological model of
color-octet resonances independent of the underlying theory. The interaction of the color-
octet resonance with the SM quarks has the form

L = igsq̄iC
µγµ

(

gi
V + gi

Aγ5

)

qi = igsq̄iC
µγµ

(

gi
LPL + gi

RPR

)

qi, (1)

where Cµ = Ca
µta with ta an SU(3) generator, gi

V and gi
A (or gi

L and gi
R) denote coupling

strengths relative to the QCD coupling gs, PL,R = (1∓γ5)/2 and i = u, c, d, s, b, t. We denote

3

pp ! Ca +W [Z] ! jj`⌫[``]

Different production modes 
probe several combinations of 

the coloron’s couplings to 	


RH and LH fermions:

A. Atre, R.S.Chivukula, P. Ittisamai, !
EHS  arXiv:1206.1661  



W+Ca: Heat Map of Significance
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FIG. 6: Same as Fig. 5 but for mC = 3.5 TeV.

spectra and the most stringent constraints come from the LHC as expected. This data places
stronger constraints on low mass resonances and there is essentially no constraint on color-
octets with masses above 3 TeV. Where such constraints exist we have shown them as the
green solid curve and the region outside this curve is excluded which we show as faded grey
regions. However there is a caveat here. The analyses of the LHC dijet searches make the
assumption of a resonance with a narrow width of order 10%. The authors of Ref. [29, 38]
argue that in the case where the resonance is not narrow (> 10%) the constraints from
dijet data can be relaxed. For eg. in Fig. 5(a) the dijet constraint would be valid for
narrow resonances (up to the curve labeled ΓC/mC = 0.10) and would not be applicable
to the regions outside this curve. As the LHC accumulates more data, the simple dijet
analyses would be sensitive to the region inside the ΓC/mC = 0.10 curve and not sensitive
to couplings leading to larger widths. Of course a different analysis of dijet data without
the narrow width assumption would be sensitive to the whole region. For the case that the
current dijet data is not applicable to larger widths, note that the faded grey region has
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Distinguishing Among Dijet Resonances

Suppose a new dijet resonance of mass M and cross-
section         is found. Is it a coloron or a leptophobic Z’?  
Assume its quark couplings are flavor universal to start.

�jj

A. Review of the flavor universal scenario

We briefly review how the color discriminant variable helps distinguish between the two
types of resonances in the scenario that we either have clues from experiments or assume
that the resonance have flavor universal couplings.

The color discriminant variable defined in (??) is independent of the overall strength of
couplings and can emphasize the di↵erence in color structures between a coloron and a Z

0.
To illustrate how it works first recall that in a narrow-width approximation the dijet cross
section for a process involving a vector resonance V can be written as

�

V
jj ⌘ �(pp

V�! jj) ' �(pp ! V )Br(V ! jj), (10)

where �(pp ! V ) is the cross section for producing the resonance and Br(V ! jj) is its
dijet branching fraction. Note that jet consists of quarks from the first two families.
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where Wq, the parton luminosity for the production of the resonance having mass M from
the qq̄ annihilation at the center-of-mass energy squared s, is defined by

Wq(MV ) = 2⇡2
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where fq (x,Q2) is the parton distribution function at the factorization scale Q2. Throughout
this article, we set Q

2 = M

2. The color discriminant variables for the two particles are
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A. Review of the flavor universal scenario

We briefly review how the color discriminant variable helps distinguish between the two
types of resonances in the scenario that we either have clues from experiments or assume
that the resonance have flavor universal couplings.

The color discriminant variable defined in (??) is independent of the overall strength of
couplings and can emphasize the di↵erence in color structures between a coloron and a Z
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To illustrate how it works first recall that in a narrow-width approximation the dijet cross
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that the resonance have flavor universal couplings.

The color discriminant variable defined in (??) is independent of the overall strength of
couplings and can emphasize the di↵erence in color structures between a coloron and a Z

0.
To illustrate how it works first recall that in a narrow-width approximation the dijet cross
section for a process involving a vector resonance V can be written as

�

V
jj ⌘ �(pp

V�! jj) ' �(pp ! V )Br(V ! jj), (10)

where �(pp ! V ) is the cross section for producing the resonance and Br(V ! jj) is its
dijet branching fraction. Note that jet consists of quarks from the first two families.

Recall that the total decay width for a coloron and a leptophobic Z

0 are

�C =
↵s

2
MC

�
g

2

CL
+ g

2

CR

�
, (11)

and
�Z0 = 3↵wMZ0

�
g

2

Z0
L
+ g

2

Z0
R

�
, (12)

respectively. The dijet cross sections for the coloron is

�

C
jj =

4

9
↵s

�
g

2

CL
+ g

2

CR

� 1

M

2

C

X

q

Wq(Mc)Br(C ! jj)

=
8

9

�C

M

3

C

X

q

Wq(MC)Br(C ! jj), (13)

while for the leptophobic Z

0,

�

Z0

jj =
1

3
↵w

�
g

2

Z0
L
+ g

2

Z0
R

� 1

M

2

Z0

X

q

Wq(MZ0)Br(Z 0 ! jj)

=
1

9

�Z0

M

3

Z0

X

q

Wq(MZ0)Br(Z 0 ! jj), (14)

where Wq, the parton luminosity for the production of the resonance having mass M from
the qq̄ annihilation at the center-of-mass energy squared s, is defined by

Wq(MV ) = 2⇡2

M

2

V

s

Z
1

M2
V /s

dx

x


fq

�
x,Q

2

�
fq̄

✓
M

2

V

sx

,Q

2

◆
+ fq̄

�
x,Q

2

�
fq

✓
M

2

V

sx

,Q

2

◆�
. (15)

where fq (x,Q2) is the parton distribution function at the factorization scale Q2. Throughout
this article, we set Q

2 = M

2. The color discriminant variables for the two particles are
therefore,

D

C
col

=
M

3

C

�C
�

C
jj =

8

9

"
X

q

Wq(MC)Br(C ! jj)

#
(16)

D

Z0

col

=
M

3

Z0

�Z0
�

Z0

jj =
1

9

"
X

q

Wq(MZ0)Br(Z 0 ! jj)

#
(17)

4

A. Review of the flavor universal scenario

We briefly review how the color discriminant variable helps distinguish between the two
types of resonances in the scenario that we either have clues from experiments or assume
that the resonance have flavor universal couplings.

The color discriminant variable defined in (??) is independent of the overall strength of
couplings and can emphasize the di↵erence in color structures between a coloron and a Z

0.
To illustrate how it works first recall that in a narrow-width approximation the dijet cross
section for a process involving a vector resonance V can be written as

�

V
jj ⌘ �(pp

V�! jj) ' �(pp ! V )Br(V ! jj), (10)

where �(pp ! V ) is the cross section for producing the resonance and Br(V ! jj) is its
dijet branching fraction. Note that jet consists of quarks from the first two families.

Recall that the total decay width for a coloron and a leptophobic Z

0 are

�C =
↵s

2
MC

�
g

2

CL
+ g

2

CR

�
, (11)

and
�Z0 = 3↵wMZ0

�
g

2

Z0
L
+ g

2

Z0
R

�
, (12)

respectively. The dijet cross sections for the coloron is

�

C
jj =

4

9
↵s

�
g

2

CL
+ g

2

CR

� 1

M

2

C

X

q

Wq(Mc)Br(C ! jj)

=
8

9

�C

M

3

C

X

q

Wq(MC)Br(C ! jj), (13)

while for the leptophobic Z

0,

�

Z0

jj =
1

3
↵w

�
g

2

Z0
L
+ g

2

Z0
R

� 1

M

2

Z0

X

q

Wq(MZ0)Br(Z 0 ! jj)

=
1

9

�Z0

M

3

Z0

X

q

Wq(MZ0)Br(Z 0 ! jj), (14)

where Wq, the parton luminosity for the production of the resonance having mass M from
the qq̄ annihilation at the center-of-mass energy squared s, is defined by

Wq(MV ) = 2⇡2

M

2

V

s

Z
1

M2
V /s

dx

x


fq

�
x,Q

2

�
fq̄

✓
M

2

V

sx

,Q

2

◆
+ fq̄

�
x,Q

2

�
fq

✓
M

2

V

sx

,Q

2

◆�
. (15)

where fq (x,Q2) is the parton distribution function at the factorization scale Q2. Throughout
this article, we set Q

2 = M

2. The color discriminant variables for the two particles are
therefore,

D

C
col

=
M

3

C

�C
�

C
jj =

8

9

"
X

q

Wq(MC)Br(C ! jj)

#
(16)

D

Z0

col

=
M

3

Z0

�Z0
�

Z0

jj =
1

9

"
X

q

Wq(MZ0)Br(Z 0 ! jj)

#
(17)

4

A. Review of the flavor universal scenario

We briefly review how the color discriminant variable helps distinguish between the two
types of resonances in the scenario that we either have clues from experiments or assume
that the resonance have flavor universal couplings.

The color discriminant variable defined in (??) is independent of the overall strength of
couplings and can emphasize the di↵erence in color structures between a coloron and a Z

0.
To illustrate how it works first recall that in a narrow-width approximation the dijet cross
section for a process involving a vector resonance V can be written as

�

V
jj ⌘ �(pp

V�! jj) ' �(pp ! V )Br(V ! jj), (10)

where �(pp ! V ) is the cross section for producing the resonance and Br(V ! jj) is its
dijet branching fraction. Note that jet consists of quarks from the first two families.

Recall that the total decay width for a coloron and a leptophobic Z

0 are

�C =
↵s

2
MC

�
g

2

CL
+ g

2

CR

�
, (11)

and
�Z0 = 3↵wMZ0

�
g

2

Z0
L
+ g

2

Z0
R

�
, (12)

respectively. The dijet cross sections for the coloron is

�

C
jj =

4

9
↵s

�
g

2

CL
+ g

2

CR

� 1

M

2

C

X

q

Wq(Mc)Br(C ! jj)

=
8

9

�C

M

3

C

X

q

Wq(MC)Br(C ! jj), (13)

while for the leptophobic Z

0,

�

Z0

jj =
1

3
↵w

�
g

2

Z0
L
+ g

2

Z0
R

� 1

M

2

Z0

X

q

Wq(MZ0)Br(Z 0 ! jj)

=
1

9

�Z0

M

3

Z0

X

q

Wq(MZ0)Br(Z 0 ! jj), (14)

where Wq, the parton luminosity for the production of the resonance having mass M from
the qq̄ annihilation at the center-of-mass energy squared s, is defined by

Wq(MV ) = 2⇡2

M

2

V

s

Z
1

M2
V /s

dx

x


fq

�
x,Q

2

�
fq̄

✓
M

2

V

sx

,Q

2

◆
+ fq̄

�
x,Q

2

�
fq

✓
M

2

V

sx

,Q

2

◆�
. (15)

where fq (x,Q2) is the parton distribution function at the factorization scale Q2. Throughout
this article, we set Q

2 = M

2. The color discriminant variables for the two particles are
therefore,

D

C
col

=
M

3

C

�C
�

C
jj =

8

9

"
X

q

Wq(MC)Br(C ! jj)

#
(16)

D

Z0

col

=
M

3

Z0

�Z0
�

Z0

jj =
1

9

"
X

q

Wq(MZ0)Br(Z 0 ! jj)

#
(17)

4

A. Review of the flavor universal scenario

We briefly review how the color discriminant variable helps distinguish between the two
types of resonances in the scenario that we either have clues from experiments or assume
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Define a color discriminant variable:!

• based on standard observables!

• requires width to be measurable!

• distinguishes color structure of resonance
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Establish Detection Range

FIG. 1: (a) Top left: 5� discovery reach for a flavor universal coloron in the plane of the mass of

the coloron (in TeV) and the square of the couplings at the LHC with
p
s = 14 TeV. The discovery

reach is shown in varying shades of blue for di↵erent luminosities ranging from 30 fb�1 to 1000

fb�1. The area marked “no 5� sensitivity” corresponds to no discovery reach at 1000 fb�1 but may

have some reach at higher luminosities. The area marked “LHC exclusion” in gray corresponds

to the exclusion from 8 TeV LHC [47]. The region above the dashed line marked � � 0.15M

corresponds to the region where the narrow-width approximation used in di-jet resonance searches

is not valid [57–59]. The region below the horizontal dashed line marked �  M
res

corresponds to

the region where the experimental mass resolution is larger than the intrinsic width [47]. See text

for further details. (b) top right: same as (a) but for a leptophobic Z 0 and the discovery reach is

shown in varying shades of green. (c) bottom left: same as (a) but for the flavor non-universal

coloron where gtCL,R
= 3gqCL,R

. (d) bottom right: same as (b) but for the flavor non-universal Z 0

with gtZ0
L,R

= 3gqZ0
L,R

.

Similar to the case of current CMS studies, the authors of Ref. [60] present the minimum
cross section that can be observed at the LHC with

p
s = 14 TeV and for luminosities up

to 10 fb�1. They present their discovery potential results as a product of cross section,
branching ratio and acceptance for di↵erent masses of the resonance after taking into ac-

10

Un-greyed color shows the observable region at LHC!
• width above detector resolution, yet narrow!
• cross-section sufficient to allow detection, yet not 

already excluded

Coloron Leptophobic Z’



Color Discriminant Variable in Action

FIG. 2: (a) Top left: Sensitivity at the LHC with
p
s = 14 TeV and integrated luminosity of

30 fb�1 for distinguishing a coloron from a leptophobic Z 0 in the plane of the log of the color

discriminant variable
⇣
D

col

= M3

�

�jj
⌘

and mass (in TeV) for the flavor universal scneario. The

central value of D
col

for each particle is shown as a black dashed line. The uncertainty in the

measurement of D
col

due to the uncertainties in the measurement of the cross section, mass and

width of the resonance is indicated by gray bands. The outer (darker gray) band corresponds to

the uncertainty in D
col

when the width is equal to the experimental mass resolution i.e. � = M
res

.

The inner (lighter gray) band corresponds to the case where the width � = 0.15M . Resonances

with width M
res

 �  0.15M will have bands that extend between the outer and inner gray bands.

The blue (green) colored region indicates the region in parameter space of the coloron (leptophobic

Z 0) that has not been excluded by current searches [47] and has the potential to be discovered at a

5� level at the LHC with
p
s = 14 TeV after statistical and systematic uncertainties are taken in

to account. (b) Top right: Same as (a) but for an integrated luminosity of 100 fb�1. (c) Bottom

left: Same as (a) but for an integrated luminosity of 300 fb�1 (d) Bottom right: Same as (a) but

for an integrated luminosity of 1000 fb�1. Note that the colored regions in all panels correspond to

the same colored regions in the mass and coupling plane used in Fig. 1 for di↵erent luminosities.
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A. Review of the flavor universal scenario

We briefly review how the color discriminant variable helps distinguish between the two
types of resonances in the scenario that we either have clues from experiments or assume
that the resonance have flavor universal couplings.

The color discriminant variable defined in (??) is independent of the overall strength of
couplings and can emphasize the di↵erence in color structures between a coloron and a Z

0.
To illustrate how it works first recall that in a narrow-width approximation the dijet cross
section for a process involving a vector resonance V can be written as
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jj ⌘ �(pp

V�! jj) ' �(pp ! V )Br(V ! jj), (10)

where �(pp ! V ) is the cross section for producing the resonance and Br(V ! jj) is its
dijet branching fraction. Note that jet consists of quarks from the first two families.
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where Wq, the parton luminosity for the production of the resonance having mass M from
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where fq (x,Q2) is the parton distribution function at the factorization scale Q2. Throughout
this article, we set Q
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A. Review of the flavor universal scenario

We briefly review how the color discriminant variable helps distinguish between the two
types of resonances in the scenario that we either have clues from experiments or assume
that the resonance have flavor universal couplings.

The color discriminant variable defined in (??) is independent of the overall strength of
couplings and can emphasize the di↵erence in color structures between a coloron and a Z

0.
To illustrate how it works first recall that in a narrow-width approximation the dijet cross
section for a process involving a vector resonance V can be written as
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Incorporating Flavor Non-Universality

FIG. 5: (a) Top left: Sensitivity to distinguish color-octet and color-singlet scenarios at the LHC

with
p
s = 14 TeV and integrated luminosity of 300 fb�1 for a resonance of mass 3 TeV for di↵erent

values of ⇠. (b) Top right: same as (a) but for integrated luminosity of 1000 fb�1. (c) Bottom left:

same as (a) but for a resonance with mass 4 TeV. (d) Bottom right: same as (c) but for integrated

luminosity of 1000 fb�1. The di↵erent points marked a, b, c, d correspond to di↵erent parameter

points used as examples in the text.

in the flavor universal case and in the flavor non-universal case for a given ⇠. In Fig. 5
we present the sensitivity of the color discriminant variable for varying ⇠ at the LHC withp
s = 14 TeV. In Fig. 5(a) and (b) we present results for M = 3 TeV and integrated

luminosities of 300 fb�1 and 1000 fb�1 respectively while Fig. 5(c) and (d) are forM = 4 TeV
and integrated luminosities of 300 fb�1 and 1000 fb�1 respectively. As before the central
values are indicated by dashed (black) lines and the reach for colorons (leptophobic Z 0s) are
denoted by blue (green) regions. The di↵erent points marked a, b, c, d correspond to di↵erent
parameter points used as examples below.

With the discovery of a resonance in the di-jet channel a measurement of the mass, width
and cross section and hence of the color discriminant variable is possible. Several scenarios
may be allowed for a given measured value of mass and D

col

. For example, in Fig. 5(a), for

19

log(Dcol)

(top affinity)gt ⌘ ⇠ gq



function set [2]. The factorization scale is varied by a factor of 2 from mass of the resonance.
The e↵ect of this variation has been illustrated as a band in the plot. From this we see that
unless the third family have considerably stronger couplings than the light quark families,
relative strengths of the couplings to quarks in the third family are mostly relevant through
the decay part of the expressions (24) and (25).

FIG. 1: The ratio
⇣
Wd+Ws
Wu+Wc

⌘
(in brown) and

⇣
Wb

Wu+Wc

⌘
(in orange) for the mass range 2.5�6.0TeV.

The values have been calculated using CTEQ6L1 parton distribution function with factorization

scale varied by a factor of 2 from mass of the resonance. The results of this variation are illustrated

as a band for each function.

III. COLOR DISCRIMINANT VARIABLES FOR FLAVOR-NON-UNIVERSAL

SCENARIO AT THE LHC
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More General Flavor Structurewhere they have been written using parametrization to which we will often refer. The
expressions for leptophobic Z

0 are similar
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The color discriminant variables are, for the coloron,
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and for the Z

0,
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where parts related relevant to the production are grouped within the brackets in each
expression. While the relative strength of couplings between u� and d�type quarks of
the light family, g2u/ (g

2

u + g

2

d), is not well-accessible by experiments available shortly after a
discovery in the dijet channel, those for quarks in the third families are
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Supplementary measurements on these ratios of cross sections will help pinpoint the structure
of couplings of the resonance.

To illustrate the roles of the relative strength of couplings in the production part, we list
the range of values for the ratios of the parton density functions Wd+Ws

Wu+Wc
and Wb

Wu+Wc
. We plot

these functions in figure 1 for mass range of 2.5� 6TeV at a pp collider with center-of-mass
energy 14TeV, where the values have been calculated using CTEQ6L1 parton distribution
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Measurements sensitive to? !
• chirality of quark couplings - NO!
• distinct light quark flavors - NO!
• b contribution to production - NO!
• b, t contribution to width - YES



14 TeV LHC Reach for Ca and Z’

Flavor!
Universal

Prefers!
3rd gen.



Telling Ca and Z’ Apart

For fixed !
      , M, Dcol, !
at 14 TeV LHC !
with 1000 fb-1,!
Z’ distinct from Ca

�jj

larger t	


coupling larger b	



coupling

larger u	


coupling



Telling Ca and Z’ Apart

Looking down the!
“u” axis, we see!
no overlap !
between!
Z’ and Ca

larger t	


coupling

larger b	


coupling



Telling Ca and Z’ Apart

For fixed values of         ,  M,  Dcol !
flavor measurements distinguish Z’ from Ca !

even if Ca couples to u less, same, or more than Z’

�jj



Conclusions



                    Conclusions

BSM Physics !
may yet lurk !
in the strong !
interactions!!
!

 !

LHC can not just discover, but identify colorons, !
• NLO K-factor and  pT distribution improve dijet searches!
• associated W+ Ca production probes coloron’s couplings!
• width distinguishes color structure of a new dijet resonance !

   





Library



Simulation Details



W+Ca: Heat Map and ATfb range
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