Exploring Colorons at the LHC

ELIZABETH H. SIMMONS MICHIGAN STATE UNIVERSITY

- Introduction
- Modern Coloron Models
- Dijet Coloron Discovery @ NLO
- Coloron Couplings
- But is it Really a Coloron?
- Conclusions

NAGOYA UNIVERSITY

MARCH 5-7, 2014

AFTER YEARS OF WORK PAY OFF...

WHAT COMES NEXT?

2015?

WHAT MAY LEAP OUT?

NEW COLORED STATES

Gauge bosons from extended color groups:

Classic Axigluon: P.H. Frampton and S.L. Glashow, Phys. Lett. B 190, 157 (1987).

Topgluon: C.T. Hill, Phys. Lett. B 266, 419 (1991).

Flavor-universal Coloron: R.S. Chivukula, A.G. Cohen, & E.H. Simmons, Phys. Lett. B 380, 92 (1996). Chiral Color with $g_L \neq g_R$: M.V. Martynov and A.D. Smirnov, Mod. Phys. Lett. A 24, 1897 (2009). New Axigluon: P.H. Frampton, J. Shu, and K. Wang, Phys. Lett. B 683, 294 (2010).

Similar color-octet states:

KK gluon: H. Davoudiasl, J.L. Hewett, and T.G. Rizzo, Phys. Rev. D63, 075004 (2001) B. Lillie, L. Randall, and L.-T. Wang, JHEP 0709, 074 (2007). Techni-rho: E. Farhi and L. Susskind, Physics Reports 74, 277 (1981).

More exotic colored states:

Color sextets, colored scalars, low-scale scale string resonances... T. Han, I. Lewis, Z. Liu, JHEP 1012, 085 (2010).

MODERN COLORON MODELS

R.S. Chivukula, EHS, N. Vignaroli arXiv:1302.1069

COLORON MODELS: GAUGE SECTOR

SU(3)₁ x SU(3)₂ color sector with $M^2 = \frac{u^2}{4} \begin{pmatrix} h_1^2 & -h_1h_2 \\ -h_1h_2 & h_2^2 \end{pmatrix}$ unbroken subgroup: SU(3)₁₊₂ = SU(3)_{QCD}

$$h_1 = \frac{g_s}{\cos\theta} \qquad h_2 = \frac{g_s}{\sin\theta}$$

gluon state: $G^A_\mu = \cos \theta A^A_{1\mu} + \sin \theta A^A_{2\mu}$ couples to: $g_S J^\mu_G \equiv g_S (J^\mu_1 + J^\mu_2)$ $M_G = 0$

coloron state:
$$C^A_\mu = -\sin\theta A^A_{1\mu} + \cos\theta A^A_{2\mu}$$
 $M_C = \frac{u}{\sqrt{2}}\sqrt{h_1^2 + h_2^2}$
couples to: $g_S J^\mu_C \equiv g_S (-J^\mu_1 \tan\theta + J^\mu_2 \cot\theta)$

Quarks' $SU(3)_1 \times SU(3)_2$ charges impact phenomenology

QUARK CHARGES -> COLORON PHENOMENOLOGY

SU(3)1	SU(3) ₂	model	pheno.	
	(t,b) _L q _L t _R ,b _R q _R	coloron	dijet	
ЯR	(t,b) _L q _L t _R ,b _R			
t _R ,b _R	(t,b) _L q _L q _R			
qL	(t,b) _L t _R ,b _R q _R			
q∟ t _R ,b _R	(t,b) _L q _R	new axigluon	dijet, At _{FB,} FCNC	
QL QR	(t,b) _L t _R ,b _R	topgluon	dijet, tt, bb, FCNC, R _b	
t _R ,b _R q _R	(t,b)∟ q∟	classic axigluon	dijet, At _{FB}	
q _L t _R ,b _R q _R	(t,b)∟			

q = u,d,c,s

A FLAVORFUL TOP-COLORON MODEL

partic	cles	SU(3) ₁	SU(3) ₂	SU(2) _W
3rd generation	(t,b)∟	3	1	2
quarks	t _R ,b _R	3	1	1
light quarks	(u,d) _L (c,s) _L	1	3	2
	u _R ,d _R C _R ,S _R	1	3	1
vector quarks	QL,QR	3	1	2
light scalar	φ	1	1	2
heavy scalar	Φ	3	3*	1

Next to minimal flavor symmetry:

 $U(2)_{\vec{\psi}_L} \times U(2)_{\vec{u}_R} \times U(2)_{\vec{d}_R} \times U(2)_{\vec{d}_R} \times U(2)_{\vec{Q}_L} \times U(1)_{t_R} \times U(1)_{b_R} \times U(1)_{Q_R}$

COLORON DISCOVERY IN DIJETS AT NLO

R.S. Chivukula, A. Farzinnia, R. Foadi, EHS <u>ar</u> R.S. Chivukula, A. Farzinnia, J. Ren, EHS <u>ar</u>

arXiv:1111.7261 arXiv:1303.1120

LHC LIMITS ON COLORONS

LHC searches for colorons in dijets constrain M_C

But these calculations have treated the colorons only at LO and QCD to NLO (or beyond) ... we can do better!

COLORON PRODUCTION

LO vs NLO production

- cross-section
- scale-dependence
- pT of coloron

NLO COLORONS: VIRTUAL & REAL CORRECTIONS

NLO CROSS-SECTION

 $r_L = r_R = \cot \theta_c$

K-FACTOR FOR COLORON & AXI-GLUON

Also: 30% of produced colorons have $p_T > 200 \text{ GeV}$!

CGG VERTEX AT NLO

Can we harness the incoming gluons at NLO?

 M_C (TeV)

COLORON COUPLINGS

A. Atre, R.S. Chivukula, P. Ittisamai, EHS, J.-H. Yu arXiv:1206.1661

As noted earlier, a variety of chiral and flavor structures for the coloron coupling to quarks is open...

$$\underbrace{\underbrace{g_s \bar{q} C^{\mu} \gamma_{\mu} \left(g_V^q + g_A^q \gamma_5\right) q}_{q=u,d,c,s}}_{T=t,b}$$

SU(3)1	SU(3) ₂	model	pheno.
	(t,b)∟ q∟ t _R ,b _R q _R	coloron	dijet
Q R	(t,b)∟ q∟ t _R ,b _R		
t _R ,b _R	(t,b)∟ q∟ q _R		
qL	(t,b) _L t _R ,b _R q _R		
q _L t _R ,b _R	(t,b)∟ q _R	new axigluon	dijet, At _{FB,} FCNC
Q _L Q _R	(t,b) _L t _R ,b _R	topgluon	dijet, tt, bb, FCNC, R _b
t _R ,b _R q _R	(t,b)∟ q∟	classic axigluon	dijet, A ^t FB
q _L t _R ,b _R q _R	(t,b)∟		

How to establish which kind of coloron has been found?

ASSOCIATED PRODUCTION:

Goal

" Using associated production* with W and dijet resonance to determine colorons/axigluons couplings."

*Idea introduced by Cvetic and Langacker (1992) for measuring Z' couplings

W+C^A PROBES COLORON'S CHIRAL COUPLINGS

A. Atre, R.S.Chivukula, P. Ittisamai, EHS arXiv:1206.1661

0

g

2

Vij

Zjj

W+C^A: HEAT MAP OF SIGNIFICANCE

>5σ W+C^a >5σ LHC 14 TeV W+C^a 14 TeV 10 fb⁻¹ $L = 100 \, \text{fb}^{-1}$ 5σ 5σ significance significance = 3.5 TeV $M_{C} = 3.5 \,\text{TeV}$ 2 2 M 4σ 4σ 3σ 3σ all of these 1 2σ 2σ heat maps <2σ <2σ <u>д</u> 0 <u>д</u> 0 are for ~M=0.05 $M_c = 3.5 \text{ TeV}$ - 1 - 1 at 14 TeV Г/M=0.20 Г/М=0.20 - 2 -2 Г/M=0.30 Г/M=0.30 LHC -3-3 -3-3 0 2 -2 - 1 0 2 3 -2 - 1 1 3 gı gı LHC 14 TeV LHC\14\Te >5σ >5σ Z+C^a $= 10 \, \text{fb}^{-1}$ = 100 fb⁻ grey ring is 5σ 5σ significance significance = 3.5 TeV Mc = 3.5 TeV 2 4σ 4σ excluded 3σ 3σ 2σ 2σ by 7 TeV <2σ <2σ LHC dijet д<mark>В</mark> 0 <u>д</u> 0 searches (/M=0.05 - 1 - 1 with 5 fb⁻¹ Г/M=0.20 - 2 - 2 of data Г/M=0.30 Г/M=0.30 -3--3 -3⊾ -3 -2 -2 2 - 1 0 1 2 3 - 1 0 1 3 g g_L

BUT IS IT REALLY A COLORON?

A. Atre, R.S. Chivukula, P. Ittisamai, EHS A. Atre, R.S. Chivukula, P. Ittisamai, EHS arXiv:1306.4715 2014 in preparation Suppose a new dijet resonance of mass M and crosssection σ_{jj} is found. Is it a coloron or a leptophobic Z'? Assume its quark couplings are flavor universal to start.

$$\begin{split} \sigma_{jj}^C &= \frac{8}{9} \frac{\Gamma_C}{M_C^3} \sum_q W_q(M_C) Br(C \to jj) \\ \end{split}$$
 must be equal
$$\sigma_{jj}^{Z'} &= \frac{1}{9} \frac{\Gamma_{Z'}}{M_{Z'}^3} \sum_q W_q(M_{Z'}) Br(Z' \to jj) \end{split}$$

$$W_q(M_V) = 2\pi^2 \frac{M_V^2}{s} \int_{M_V^2/s}^1 \frac{dx}{x} \left[f_q(x, Q^2) f_{\bar{q}}\left(\frac{M_V^2}{sx}, Q^2\right) + f_{\bar{q}}(x, Q^2) f_q\left(\frac{M_V^2}{sx}, Q^2\right) \right]$$

COLOR DISCRIMINANT VARIABLE

Define a color discriminant variable: $D_{col} \equiv \frac{M^3}{\Gamma} \sigma_{jj}$

- based on standard observables
- requires width to be measurable
- distinguishes color structure of resonance

ESTABLISH DETECTION RANGE

Un-greyed color shows the observable region at LHC

- width above detector resolution, yet narrow
- cross-section sufficient to allow detection, yet not already excluded

COLOR DISCRIMINANT VARIABLE IN ACTION

GENERALIZE FLAVOR STRUCTURE?

For more generality, allow
$$~~g^t\equiv\xi\,g^q$$

As a result:
$$\Gamma \to \Gamma * \left(\frac{4+2\xi^2}{6}\right) \qquad Br(V \to jj): \frac{5}{6} \to \left(\frac{4+\xi^2}{4+2\xi^2}\right)$$

which changes the detail but not the substance of

$$\sigma_{jj}^{C} = \frac{8}{9} \frac{\Gamma_{C}}{M_{C}^{3}} \sum_{q} W_{q}(M_{C}) Br(C \to jj)$$

must
$$\sigma_{jj}^{Z'} = \frac{1}{9} \frac{\Gamma_{Z'}}{M_{Z'}^{3}} \sum_{q} W_{q}(M_{Z'}) Br(Z' \to jj)$$

 $D_{\rm col} \equiv \frac{M^3}{\Gamma} \sigma_{jj}$

Still define color discriminant variable:

INCORPORATING FLAVOR NON-UNIVERSALITY

MORE GENERAL FLAVOR STRUCTURE

$$\sigma(pp \to Z') = \frac{1}{3} \frac{\alpha_w}{M_{Z'}^2} \left(g_{Z'}^{u2} + g_{Z'}^{d2} \right) \left[\frac{g_{Z'}^{u2}}{g_{Z'}^{u2} + g_{Z'}^{d2}} (W_u + W_c) + \left(1 - \frac{g_{Z'}^{u2}}{g_{Z'}^{u2} + g_{Z'}^{d2}} \right) (W_d + W_s) + \frac{g_{Z'}^{b2}}{g_{Z'}^{u2} + g_{Z'}^{d2}} W_b \right]$$

$$\Gamma_{Z'} = \frac{\alpha_w}{2} M_{Z'} \left(g_{Z'}^{u2} + g_{Z'}^{d2} \right) \left[2 + \frac{g_{Z'}^{t2}}{g_{Z'}^{u2} + g_{Z'}^{d2}} + \frac{g_{Z'}^{b2}}{g_{Z'}^{u2} + g_{Z'}^{d2}} \right].$$
Measurements sensitive to?
$$\frac{10^0}{10^{-1}}$$
• chirality of quark couplings - NO

10⁻³

10⁻⁴ 2500 3000 3500

 W_b

 $\overline{W_u + W_c}$

M (GeV)

4000 4500 5000 5500 6000

- distinct light quark flavors NO
- b contribution to production NO
- b, t contribution to width YES

14 TEV LHC REACH FOR C^A AND Z'

TELLING CA AND Z' APART

TELLING CA AND Z' APART

Looking down tl "u" axis, we see no overlap between Z' and C^a

TELLING CA AND Z' APART

CONCLUSIONS

CONCLUSIONS

BSM Physics may yet lurk in the strong interactions!

LHC can not just discover, but identify colorons,

- NLO K-factor and pT distribution improve dijet searches
- associated W+ C^a production probes coloron's couplings
- width distinguishes color structure of a new dijet resonance

LIBRARY

SIMULATION DETAILS

Event Generation: MadGraph 5.1.3 \rightarrow Pythia 6.4 \rightarrow PGS4

Event Selection ("Basic cuts"):

- At least two isolated jets
 - $p_T > 40 \,\mathrm{GeV}$
 - |η| < 2.5
 - $\Delta R_{jj} > 0.4$
- One isolated electron or muon
 - $p_T > 25 \,\mathrm{GeV}$
 - $\Delta R_{jl} > 0.4, \ \Delta R_{ll} > 0.2$
- Missing energy $> 25 \,\mathrm{GeV}$

Optimization:

- *p_T* of leading jets
- total transverse jet energy $(H_T \simeq \sum p_T)$

• Invariant masss m_{jj} or m_{jjW} maximize significance $\simeq \frac{s}{\sqrt{b}}$ at 10 fb^{-1} and 100 fb^{-1} for LHC 14 TeV

W+C^A: HEAT MAP AND A^TFB RANGE

