Technidilaton in light of LHC-Run II

Shinya Matsuzaki

(Institute for Advanced Research & Department of Physics, Nagoya U.)

(a) Nagoya Univ. 03/05/2014

Current status on 125 GeV Higgs discovered at LHC

CMS-PAS-HIG-13-005

ATLAS: PLB726 (2013)

- * measured coupling properties consistent w/ the SM Higgs so far
- * BUT, is it really the SM Higgs?
 --- origin of mass put in by hand?
 --- unnatural elementary Higgs?

<u>It could be a composite scalar, Techni-dilaton (TD)</u>

- * TD : composite scalar: Yamawaki et al (1986); Bando et al (1986)
- -- predicted in walking technicolor giving dynamical origin of mass by technifermion condensate
- -- arises as a pNGB for SSB of (approximate) scale symmetry technifermion condensate
- -- lightness protected by the scale symmetry (naturalness), and hence can be, say, ~ 125 GeV.

S.M. and K. Yamawaki (2012)

 125 GeV TD signatures at LHC are consistent with current data

Today: comparison is updated

Contents of this talk:

1. Introduction

- 2. Walking TC and Technidilaton
- 3. 125 GeVTD signal vs. current LHC data
- 4. Toward LHC-Run II
- 5. Summary

2. Walking technicolor and TD

Yamawaki et al (1986); Bando et al (1986)

Walking TC and techni-dilaton

* Techni-dilaton (TD) emerges as (p)NGB for approx. scale symmetry

$$m_{F} \sim \Lambda_{\rm TC} e^{-\frac{\pi}{\sqrt{\alpha/\alpha_{\rm cr}-1}}} \text{ for } \alpha > \alpha_{\rm cr} \qquad \text{SSB of (approximate) scale sym.}$$

$$\alpha \text{ starts "running"} \qquad \beta(\alpha) = \Lambda_{\rm TC} \frac{\partial \alpha}{\partial \Lambda_{\rm TC}} = -\frac{2\alpha_{\rm cr}}{\pi} \left(\frac{\alpha}{\alpha_{\rm cr}} - 1\right)^{3/2}$$

$$Nonpert. \text{ scale anomaly} \qquad nonpert. \text{ scale anomaly} \qquad \beta_{\mu} D^{\mu} = \frac{\beta_{\rm NP}(\alpha)}{4\alpha^{2}} \left(\alpha G_{\mu\nu}^{2}\right) \neq 0: \text{ TD gets massive}$$

★Light techni-dilaton

S.M and K.Yamawaki, PRD86 (2012) * One suggestion from holographic formula for TD mass

TD Lagrangian below mF S.M. and K. Yamawaki, PRD86 (2012)

eff. TD Lagrangian
$$\mathcal{L} = \mathcal{L}_{inv} + \mathcal{L}_S - V_{\chi}$$

i) The scale anomaly-free part:

$$\mathcal{L}_{\rm inv} = \frac{F_{\pi}^2}{4} \chi^2 \text{Tr}[\mathcal{D}_{\mu} U^{\dagger} \mathcal{D}^{\mu} U] + \frac{F_{\phi}^2}{2} \partial_{\mu} \chi \partial^{\mu} \chi$$

ii) The anomalous part (made invariant by including spurion field "S"):

$$\mathcal{L}_{S} = -m_{f} \left(\left(\frac{\chi}{S} \right)^{2-\gamma_{m}} \cdot \chi \right) \overline{f} f \qquad \text{Fellecting ETC-induced} \\ + \log \left(\frac{\chi}{S} \right) \left\{ \frac{\beta_{F}(g_{s})}{2g_{s}} G_{\mu\nu}^{2} + \frac{\beta_{F}(e)}{2e} F_{\mu\nu}^{2} \right\} + \cdots$$

iii) The scale anomaly part:

β_F: TF-loop contribution
 to beta function

$$V_{\chi} = \frac{F_{\phi}^2 M_{\phi}^2}{4} \chi^4 \left(\log \chi - \frac{1}{4} \right)$$

which correctly reproduces the PCDC relation:

$$\left. \left\langle \theta^{\mu}_{\mu} \right\rangle = -\delta_D V_{\chi} \right|_{\text{vacuum}} = -\frac{F_{\phi}^2 M_{\phi}^2}{4} \left\langle \chi^4 \right\rangle \right|_{\text{vacuum}} = -\frac{F_{\phi}^2 M_{\phi}^2}{4}$$

* TD couplings to W/Z boson (from L_inv)

$$g_{\phi WW/ZZ} = \frac{2m_{W/Z}^2}{F_{\phi}}$$

* TD couplings to $\gamma\gamma$ and gg (from L_S)

$$g_{\phi\gamma\gamma} = \frac{\beta_F(e)}{e} \frac{1}{F_{\phi}}$$

$$g_{\phi gg} = \frac{\beta_F(g_s)}{g_s} \frac{1}{F_{\phi}}$$

β_F: TF-loop contribution to beta function

Thus, the TD couplings to SM particles essentially take the same form as those of the SM Higgs! : Just a simple scaling from the SM Higgs:

But, note ϕ -gg, ϕ - $\gamma\gamma$ depending on particle contents of WTC models. $\beta_{F:}$ TF-loop contents of WTC models.

β_F: TF-loop contribution to beta function

$$\mathcal{L}_{\phi\gamma\gamma,gg} = \frac{\phi}{F_{\phi}} \left[\frac{\beta_F(e)}{e^3} F_{\mu\nu}^2 + \frac{\beta_F(g_s)}{2g_s^3} G_{\mu\nu}^2 \right]$$

To be concerete, we consider **one-family model (1FM**)

$TF_{ m EW}$	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$
$Q_L = \left(egin{array}{c} U \ D \end{array} ight)_L$	3	2	1/6
$igsquarbox{} L_L = \left(egin{array}{c} N \ E \end{array} ight)_L$	1	2	-1/2
U_R	3	1	2/3
D_R	3	1	-1/3
N_R	1	1	0
E_R	1	1	-1
L_R	Ĩ	1	~1

evaluate betas at one-loop level:

$$\beta_F(g_s) = \frac{g_s^3}{(4\pi)^2} \frac{4}{3} N_{\text{TC}},$$
$$\beta_F(e) = \frac{e^3}{(4\pi)^2} \frac{16}{9} N_{\text{TC}}.$$

3. 125 GeVTD Signal vs. LHC-Run I Data

* relevant production processes at LHC

similar to SM Higgs: **ggF**, VBF, VH, ttH

* relevant decay channels
 (for NTC=4)

	BR
$\Phi \rightarrow gg$: <u>~ 75%</u> K
$\Phi \rightarrow bb$: ~19%
$\Phi \rightarrow WW$: ~3.5%
Φ → ττ	: ~1.1%
$\Phi \rightarrow ZZ$: ~0.4%
$\Phi \rightarrow \gamma \gamma$: ~ 0.1%

enhanced by extra colored techni-quark contribution

The signal strength fit to Updated from S.M. and Yamawaki PLB719(2013) the LHC-Run I full data

Current LHC has favored TD at almost the same level as SM Higgs!

The TD signal strengths ($\mu = \sigma \times BR/SM$ Higgs) vs. the current data (i)

(i) ggF+ttH category

TD signal strength	ATLAS	CMS
$\mu_{\gamma\gamma}^{\rm ggF+ttH} \simeq 1.6$	1.6 ± 0.25	0.52 ± 0.60
$\mu_{ZZ}^{\rm ggF+ttH} \simeq 1.1$	1.8 ± 0.35	0.90 ± 0.45
$\mu_{WW}^{\rm ggF+ttH} \simeq 1.1$	0.82 ± 0.36	0.72 ± 0.37
$\mu_{\tau\tau}^{\rm ggF+ttH} \simeq 1.1$	1.1 ± 1.2	1.1 ± 0.46

* one-family model w/ NTC=4, vew/F $_{\phi}$ = 0.24

* Consistent at 1 sigma level (except CMS-diphoton)

The TD signal strengths (\mu = \sigma \times BR/SM Higgs) vs the current data (ii)

(ii) VBF +VH category **TD** signal strength **ATLAS CMS** $\mu_{\gamma\gamma}^{\rm VBF+VH} \simeq 0.9$ 1.7 ± 0.63 1.5 ± 1.3 $\mu_{ZZ}^{\rm VBF+VH} \simeq 0.7$ 1.2 ± 1.3 1.0 ± 2.4 $\mu_{WW}^{\rm VBF+VH} \simeq 0.7$ 1.7 ± 0.79 0.62 ± 0.53 $\mu_{\tau\tau}^{\rm VBF+VH} \simeq 0.7$ 1.6 ± 0.75 0.94 ± 0.41 $\mu_{bb}^{\rm VBF+VH} \simeq 0.03$ 0.20 ± 0.64 1.0 ± 0.50

* Consistent within 2 sigma error

* VBF: contamination from ggF by about 30% taken into account, except bb channel (b-tag)

* Smaller VBF+VH signal (particularly, bb-channel), compared to the SM Higgs

→ Conclusive answer needs high statistic LHC-Run II !

4. Toward LHC Run-II

★ Determining TD decay constant Fø

Precise estimate is needed for LHC-Run II

* Theoretical predictions so far

ladder approximation:

holographic estimate:

$$\frac{v_{\rm EW}}{F_{\pi}} \simeq (0.1 - 0.3)$$

$$\frac{v_{\rm EW}}{F_{\phi}} \bigg|_{\rm holo}^{+1/N_{\rm TC}} \sim 0.2 - 0.4$$

S.M. and Yamawaki (2012)

More rigorous estimate should be made directly by lattice simulations!

--- needs a way of measuring $F\Phi$ on lattice

It is actually provided by scale-invariant ChPT!

Scale-invariant ChPT (sChPT) -- Determining TD decay constant Fø and mass Mø on lattice

S.M. and K. Yamawaki, 1311.3784 (2013)

* sChPT is formulated so as to reproduce chiral/scale WT identity:

$$\begin{split} \theta^{\mu}_{\mu} &= \partial_{\mu} D^{\mu} = \frac{\beta_{\rm NP}(\alpha)}{4\alpha} G^2_{\mu\nu} + (1+\gamma_m) N_f \bar{\psi} m_f \psi \\ \partial_{\mu} J_5^{a\mu} &= \overline{\psi} \left\{ T^a, m_f \right\} i \gamma_5 \psi \,, \end{split}$$

hard-breaking term

soft- breaking term

and PCDC (and PCAC) at the leading O(p^2):

 $\langle \phi | \theta^{\mu}_{\mu} | 0 \rangle = F_{\phi} M_{\phi}^2$

$$\langle \phi | (\theta^{\mu}_{\mu})^{\text{hard}}_{m_f=0} | 0 \rangle = F_{\phi} m_{\phi}^2$$
$$\langle \phi | (\theta^{\mu}_{\mu})^{\text{soft}}_{m_f \neq 0} | 0 \rangle = F_{\phi} \tilde{m}$$

$$\theta^{\mu}_{\mu} = (\theta^{\mu}_{\mu})^{\text{hard}}_{m_f=0} + (\theta^{\mu}_{\mu})^{\text{soft}}_{m_f\neq 0}$$

$$\begin{cases} (\theta^{\mu}_{\mu})^{\text{hard}}_{m_f=0} = \frac{\beta(\alpha)}{4\alpha} G^2_{\mu\nu} \\ \\ (\theta^{\mu}_{\mu})^{\text{soft}}_{m_f\neq 0} = (1+\gamma_m) N_f m_f \bar{\psi} \psi \end{cases}$$

Soft-breaking mass

Note the dilaton mass formula as direct consequence of WT (and PCDC):

$$M_\phi^2 = m_\phi^2 + \tilde{m}_\phi^2$$

hard-breaking mass (chiral-limit mass)

Soft-breaking mass proportional to mf:

$$\tilde{m}_{\phi}^{2} = (3 - \gamma_{m})(1 + \gamma_{m})N_{f}m_{f}\frac{\langle \bar{\psi}\psi \rangle}{F_{\phi}^{2}} = (3 - \gamma_{m})(1 + \gamma_{m})N_{f}\frac{F_{\pi}^{2}}{2F_{\phi}^{2}}m_{\pi}^{2}$$

* Building-blocks and order-counting rule

$$U, \quad \chi, \quad \mathcal{M}, \quad S$$

i) nonlinear bases

for chiral symmetry: $U = e^{2i\pi/F_\pi}$ for scale symmetry: $\chi = e^{\phi/F_\phi}$

ii) spurion fields \mathcal{M} and S (explicit breaking) $\langle \mathcal{M} \rangle = \bar{m_{\pi}^2} \times \mathbf{1}_{N_f \times N_f} \text{ and } \langle S \rangle = \bar{1}$

iii) chiral & scale transformation properties

$U ightarrow g_L \cdot U \cdot g_R^{\dagger}$	$\delta U(x) = x_{\nu} \partial^{\nu} U(x)$
$\mathcal{M} ightarrow g_L \cdot \mathcal{M} \cdot g_R^\dagger$	$\delta \mathcal{M}(x) = x_{\nu} \partial^{\nu} \mathcal{M}(x)$
$\chi \to \chi$	$\delta\chi(x) = (1 + x_{\nu}\partial^{\nu})\chi(x)$
$S \rightarrow S$	$\delta S = (1 + x_{\nu} \partial^{\nu}) S(x)$

iii) order counting rule

$$U \sim \chi \sim S \sim \mathcal{O}(p^0) ,$$

$$\mathcal{M} \sim m_f \sim \mathcal{O}(p^2) ,$$

$$\partial_{\mu} \sim m_{\pi} \sim M_{\phi} \sim \mathcal{O}(p)$$

*The leading-order O(p^2) chiral and scale-invariant Lagrangian

$$\mathcal{L}_{(2)} = \mathcal{L}_{(2)}^{inv} + \mathcal{L}_{(2)hard}^{S} + \mathcal{L}_{(2)soft}^{S}$$

Note: soft-breaking term is uniquely fixed by stabilization of dilaton potential in the presence of current mass mf

* Dilaton mass formula at O(p^2) is reproduced:

Dilaton mass formula: (chiral-limit mass) + slope × (soft-breaking mass) * Given Nf, F π , -- slope (s) \rightarrow F ϕ -- intercept \rightarrow m ϕ simultaneously measured via plot $M_{\phi}^2 = (m_{\phi}^2 + (s) m_{\pi}^2, m_{\pi}^2, m_{\pi}^2)$ $s \equiv (3 - \gamma_m)(1 + \gamma_m) + \frac{2N_f F_{\pi}^2}{F_{\phi}^2} \simeq \frac{2N_f F_{\pi}^2}{F_{\phi}^2} \equiv r$ $\gamma_m \simeq 1$ * Slope "s" : used for self-consistency check of lattice simulations

* Prefactor
$$\begin{array}{l} \frac{(3-\gamma_m)(1+\gamma_m)}{4} \simeq 1 + \mathcal{O}(\delta^2) \\ \delta = 1 - \gamma_m \ll 1 \text{ for } \gamma_m \simeq 1 \end{array} \begin{array}{l} \text{fairly insensitive to exact value of } \gamma_m \\ \text{in walking theory} \end{array}$$
*
$$\begin{array}{l} \frac{2N_f F_{\pi}^2}{F_{\phi}^2} \equiv r \\ \text{is Independent of Nf} \end{array}$$

* Chiral log (pion mass) corrections to dilaton mass at O(p^4)

$$M_{\phi}^{2} = m_{\phi}^{2} \left[1 + r \cdot \frac{N_{f}^{2} - 1}{2N_{f}^{2}} \mathcal{X} \log \frac{m_{\pi}^{2}}{\mu^{2}} \right]$$

$$+ r \cdot m_{\pi}^{2} \left[\frac{2(N_{f}^{2} - 1)}{N_{f}^{2}} \mathcal{X} \log \frac{m_{\pi}^{2}}{\mu^{2}} \right]$$

$$+ s \cdot m_{\pi}^{2} \left[1 + \frac{N_{f}^{2} - 4}{4N_{f}^{2}} \mathcal{X} \log \frac{m_{\pi}^{2}}{\mu^{2}} \right]$$

$$+ (\text{counter terms renormalized at } \mu)$$

$$\mathcal{X} \equiv m_{\pi}^{2} / \Lambda_{\chi}^{2}$$

$$\pi$$

Counterterms:

 $\begin{aligned} \mathcal{L}_{(4)}^{\text{counterterm}} &= L_4 \operatorname{tr}[\partial_{\mu} U^{\dagger} \partial^{\mu} U] \operatorname{tr}[\mathcal{M}^{\dagger} U + U^{\dagger} \mathcal{M}] \cdot S^2 \\ &+ L_5 \operatorname{tr}[\partial_{\mu} U \partial^{\mu} U^{\dagger} (\mathcal{M}^{\dagger} U + U^{\dagger} \mathcal{M})] \cdot S^2 \\ &+ L_6 \left(\operatorname{tr}[\mathcal{M}^{\dagger} U + U^{\dagger} \mathcal{M}] \right)^2 \cdot S^4 \\ &+ L_8 \operatorname{tr}[\mathcal{M}^{\dagger} U \mathcal{M}^{\dagger} U + \mathcal{M} U^{\dagger} \mathcal{M} U^{\dagger}] \cdot S^4 \\ &+ H_2 \operatorname{tr}[\mathcal{M}^{\dagger} \mathcal{M}] \cdot S^4 + L_4^{\chi} \partial_{\mu} \chi \partial^{\mu} \chi \operatorname{tr}[\mathcal{M}^{\dagger} U + U^{\dagger} \mathcal{M}] \\ &+ L_6^{\chi} \left(\operatorname{tr}[\mathcal{M}^{\dagger} U + U^{\dagger} \mathcal{M}] \right)^2 \cdot \left[\left(\frac{\chi}{S} \right)^4 - 1 \right] \cdot S^4 \\ &+ L_8^{\chi} \operatorname{tr}[\mathcal{M}^{\dagger} U \mathcal{M}^{\dagger} U + \mathcal{M} U^{\dagger} \mathcal{M} U^{\dagger}] \cdot \left[\left(\frac{\chi}{S} \right)^4 - 1 \right] \cdot S^4 \\ &+ H_2^{\chi} \operatorname{tr}[\mathcal{M}^{\dagger} \mathcal{M}] \cdot \left[\left(\frac{\chi}{S} \right)^4 - 1 \right] \cdot S^4 , \end{aligned}$ (11)

* *Plot of M*φ*vs. M*π *at O*(*p*^4)

w/ assuming counterterms =0 @ $\mu = \Lambda \chi$

Chiral log corrections get significant as $m_{\pi} \rightarrow o$ --- crucial for chiral-limit TD mass and decay constant!

- * TD is the characteristic light scalar in WTC: the mass can be 125 GeV: the lightness is protected by approximate scale invariance.
- * The 125 GeV TD in 1FM gives the LHC signal consistent w/ current LHC data.
- * More precise measurements in VBF+VH categories will tell us whether TD is the LHC Higgs, or not.
- * Toward LHC-Run II:

--- needs rigorous estimate of TD decay constant

--- it is doable on lattices via dilaton mass formula.

* Smoking gun of WTC: discovering walking TPs & Techni-rhos (Terashi & Kurachi's talks)

Backup Slides

* More on holographic estiamtes

S.M. and K.Yamawaki, 1209.2017

- * Ladder approximation : gluonic dynamics is neglected
- * Deformation of successful AdS/QCD model (Bottom-up approach)

Da Rold and Pomarol (2005); Erlich, Katz, Son and Stephanov (2005)

incorporates nonperturbative gluonic effects

$$0 \leftarrow z = \epsilon$$

$$\int d^{4}x \int_{\epsilon}^{z_{m}} dz \sqrt{-g} \frac{1}{g_{5}^{2}} \frac{e^{cg_{5}^{2}\Phi_{X}(z)}}{q_{\mu\nu}dx^{\mu}dx^{\nu}-dz^{2}} \prod_{\mathbf{R}} z$$

$$F_{5} = \int d^{4}x \int_{\epsilon}^{z_{m}} dz \sqrt{-g} \frac{1}{g_{5}^{2}} \frac{e^{cg_{5}^{2}\Phi_{X}(z)}}{q_{5}^{2}} \left(-\frac{1}{4} \operatorname{Tr} \left[L_{MN}L^{MN} + R_{MN}R^{MN}\right] + \operatorname{Tr} \left[D_{M}\Phi^{\dagger}D^{M}\Phi - m_{\Phi}^{2}\Phi^{\dagger}\Phi\right] + \frac{1}{2}\partial_{M}\Phi_{X}\partial^{M}\Phi_{X}\right)$$

$$m_{\Phi}^{2} = -(3-\gamma_{m})(1+\gamma_{m})/\tilde{L}^{2} \quad \left\{\begin{array}{c} \mathsf{QCD} & \gamma_{m} = 0 \\ \mathsf{WTC} & \gamma_{m} = 1 \end{array}\right.$$

$$S_{5} = \int d^{4}x \int_{\epsilon}^{z_{m}} dz \sqrt{-g} \frac{1}{g_{5}^{2}} e^{cg_{5}^{2}\Phi_{X}(z)} \left(-\frac{1}{4} \operatorname{Tr} \left[L_{MN}L^{MN} + R_{MN}R^{MN} \right] \right.$$
$$\left. + \operatorname{Tr} \left[D_{M}\Phi^{\dagger}D^{M}\Phi - m_{\Phi}^{2}\Phi^{\dagger}\Phi \right] + \frac{1}{2}\partial_{M}\Phi_{X}\partial^{M}\Phi_{X} \right)$$
$$\Phi(x,z) = \frac{1}{\sqrt{2}} (v(z) + \sigma(x,z)) \exp[i\pi(x,z)/v(z)]$$

AdS/CFT dictionary:

$$\Phi(x,z) = \frac{1}{\sqrt{2}}(v(z) + \sigma(x,z)) \exp[i\pi(x,z)/v]$$

$$\Phi_X(z) = v_X(z),$$

* UV boundary values = sources

$$\alpha M = \lim_{\epsilon \to 0} Z_m \left(\frac{L}{z} v(z) \right) \Big|_{z=\epsilon}, \qquad Z_m = Z_m \left(L/z \right) = \left(\frac{L}{z} \right)^{\gamma_m}$$
$$M' = \lim_{\epsilon \to 0} Lv_X(z) \Big|_{z=\epsilon}$$

* IR boundary values:

$$\begin{split} \xi &= Lv(z) \Big|_{z=z_m} & \longleftrightarrow & \text{chiral condensate } \left\langle \bar{T}T \right\rangle \\ \mathcal{G} &= Lv_X(z) \Big|_{z=z_m} & \longleftrightarrow & \text{gluon condensate } \left\langle \alpha G_{\mu\nu}^2 \right\rangle \end{split}$$

* AdS/CFT recipe:

 $S_{5} \xrightarrow{} S_{5}[s, g, v, a]|_{\rm UV-boundary} = W_{\rm 4D} \quad \text{generating functional}$ classical solutions $S_{5}[s, g, v, a]|_{\rm UV-boundary} = W_{\rm 4D} \quad \text{generating functional}$ $S_{5}[s, g, v, a]|_{\rm UV-boundary} = W_{\rm 4D} \quad \text{generating functional}$

$$W_{4D} \longrightarrow \langle TJ(x)J(0) \rangle \quad J = \bar{F}F, G^2_{\mu\nu}, \bar{F}\gamma_{\mu}T^aF, \bar{F}\gamma_{\mu}\gamma_5T^aF$$

Current collerators $\Pi_S, \Pi_G, \Pi_V, \Pi_A$ are calculated as a function of three IR –boundary values and γ_m :

$$\begin{cases} \xi &: \text{IR value of bulk scalar } \Phi_S \longleftrightarrow \bar{F}F \\ G &: \text{IR value of bulk scalar } \Phi_G \longleftrightarrow G_{\mu\nu}^2 \\ z_m &: \text{IR-brane position} \end{cases}$$

dual

The model parameters:

Other holographic predictions (1FM S.M. and K.Yamawaki, 1209.2017 w/S=0.1)

<u>NTC = 3</u>

Techni-p, a1 masses	:	Mp = Maı	= 3.5 Te
Techni-glueball (TG) mass	-	MG = 19	TeV
TG decay constant		FG = 135	TeV
dynamical TF mass mF	:	mF = 1.0	TeV

NTC = 4

Techni-p, a1 masses	: Mp = Ma1 = 3.6 TeV
Techni-glueball (TG) mass	: MG = 18 TeV
TG decay constant	: FG = 156 TeV
dynamical TF mass mF	: mF = 0.95 TeV

NTC = 5

Techni-p, a1 masses Techni-glueball (TG) mass : MG = 18 TeV TG decay constant dynamical TF mass mF : mF = 0.85 TeV

- : Mp = Ma1 = 3.9 TeV
- : FG = 174 TeV

Direct consequences of Ward-Takahashi identities S.M. and K. Yamawaki, PRD86 (2012)

* Coupling to techni-fermions

$$\lim_{q_{\mu}\to 0} \int d^4y \, e^{iqy} \langle 0|T\partial^{\mu} D_{\mu}(y)F(x)\bar{F}(0)|0\rangle = i\delta_D \langle 0|TF(x)\bar{F}(0)|0\rangle$$
$$= i\left(2d_F + x^{\nu}\partial_{\nu}\right) \langle 0|TF(x)\bar{F}(0)|0\rangle$$

 $\begin{array}{c} & & \\ & &$

 $-S_F^{-1}(p) - ip_\mu \frac{\partial}{\partial p_\mu} S_F^{-1}(p)$

Dilaton pole dominance

 $F_{\phi} \cdot \langle \phi(q=0) | TF(x)\bar{F}(0) | 0 \rangle = \delta_D \langle 0 | TF(x)\bar{F}(0) | 0 \rangle$

w/ TD decay constant Fphi $\langle 0|D_{\mu}(x)|\phi(q)\rangle = -iF_{\phi}q_{\mu}e^{-iqx}$ $\chi_{\phi FF}(p,q=0) = \frac{1}{F_{\phi}}\delta_D S_F^{-1}(p) = \frac{1}{F_{\phi}}\left(1 - p_{\mu}\frac{\partial}{\partial p_{\mu}}\right)S_F^{-1}(p)$

* Couplings to SM fermions

* Couplings to SM gauge bosons

WT identity \rightarrow scale anomaly term + anomaly-free term

$$\lim_{q_{\rho} \to 0} \int d^{4}z \, e^{iqz} \, \langle 0|T \partial_{\rho} D^{\rho}(z) J_{\mu}(x) J_{\nu}(0)|0\rangle \ = \ \lim_{q_{\rho} \to 0} \left(-iq_{\rho} \int d^{4}z \, e^{iqz} \, \langle 0|T D^{\rho}(z) J_{\mu}(x) J_{\nu}(0)|0\rangle \right) \\ +i\delta_{D} \langle 0|T J_{\mu}(x) J_{\nu}(0)|0\rangle \,,$$

$$ig_W^2 \operatorname{F.T.}\langle \phi(0)|TJ_L^{\mu a}(x)J_L^{\nu b}(0)|0\rangle = \frac{2\beta_F(g)}{F_{\phi} g^3} (p^2 g_{\mu\nu} - p_{\mu} p_{\nu}) \qquad \begin{array}{c} \beta_F: \operatorname{TF-loop \ contribution} \\ \text{to beta \ function} \\ + \frac{2i}{F_{\phi}} \left(g_{\mu\nu} - \frac{p_{\mu} p_{\nu}}{p^2}\right) \left[\Pi_{LL}(0) + \mathcal{O}(p^4 \Pi''(0))\right] \end{array}$$

* For SU(2)W gauge bosons: W – "broken" currents

$$\Pi_{LL}(0) = N_D \frac{F_{\pi}^2}{4} = \frac{v_{\rm EW}^2}{4}$$

Coupling to W
$$\mathcal{L}_{\phi WW} = \frac{2m_W^2}{F_{\phi}} \phi W_{\mu}^a W^{\mu a}$$

* For unbroken currents coupled to photon, gluon:

$$\Pi(0) = 0.$$

$$\mathcal{L}_{\phi\gamma\gamma,gg} = \frac{\phi}{F_{\phi}} \left[\frac{\beta_F(e)}{2e^3} F_{\mu\nu}^2 + \frac{\beta_F(g_s)}{2g_s^3} G_{\mu\nu}^2 \right]$$

*Ladder estimate of TD mass

* LSD + BS in large Nf QCD

Harada et al (1989); Kurachi et al (2006)

* LSD via gauged NJL

Shuto et al (1990); Bardeen et al (1992); Carena et al (1992); Hashimoto (1998)

A composite Higgs mass

$$M_{\phi} \sim 4F_{\pi}$$

~500 GeV for one-family model (1FM) still larger than ~ 125 GeV

* This is reflected in PCDC (partially conserved dilatation current)

★Estimate of $\frac{v_{\text{EW}}}{F_{\phi}}$: #1-Ladder approximation

* PCDC (partially conserved dilatation current)

$$F_{\phi}^2 M_{\phi}^2 = -4\langle \theta_{\mu}^{\mu} \rangle \qquad \langle \theta_{\mu}^{\mu} \rangle = 4\mathcal{E}_{\text{vac}} = -\kappa_V \left(\frac{N_{\text{TC}} N_{\text{TF}}}{2\pi^2}\right) m_F^4$$

* criticality condition

Appelequist et al (1996)

 $N_{\rm TF} \simeq 4 N_{\rm TC}$

* Pagels-Stokar formula

$$F_{\pi} = v_{\rm EW} / \sqrt{N_D}.$$

of EW doublets

$$F_\pi^2 = \kappa_F^2 \frac{N_{\rm TC}}{4\pi^2} m_F^2$$

$$\frac{v_{\rm EW}}{F_{\phi}} \simeq \frac{1}{8\sqrt{2}\pi} \sqrt{\frac{\kappa_F^4}{\kappa_V}} N_D \frac{M_{\phi}}{v_{\rm EW}}$$

* Recent ladder SD analysis (large Nf QCD) $\kappa_V \simeq 0.7$, $\kappa_F \simeq 1.4$ Hashimoto et al (2011) * Inclusion of theoretical uncertainties

Estimate

Ladder approximation is subject to about 30% uncertainty for estimate of critical coupling and QCD hadron spectrum

critical coupling : T. Appelquist et al (1988); Hadron spectrum : K. -I. Aoki et al (1991); M. Harada et al (2004).

$$\frac{N_{\rm TF}}{4N_{\rm TC}} \simeq 1 \pm 0.3 \qquad \langle \theta^{\mu}_{\mu} \rangle = 4\mathcal{E}_{\rm vac} = -\frac{\kappa_V}{30\%} \left(\frac{N_{\rm TC}N_{\rm TF}}{2\pi^2} \right) m_F^4$$

$$F_{\pi}^2 = \frac{\kappa_F^2}{4\pi^2} \frac{N_{\rm TC}}{4\pi^2} m_F^2$$
Estimate
30%
$$\frac{v_{\rm EW}}{F_{\phi}} \simeq (0.1 - 0.3) \times \left(\frac{N_D}{4} \right) \left(\frac{M_{\phi}}{125 \,{\rm GeV}} \right)$$

***** Calculation of beta functions

$$\mathcal{L}_{\phi\gamma\gamma,gg} = \frac{\phi}{F_{\phi}} \left[\frac{\beta_F(e)}{2e^3} F_{\mu\nu}^2 + \frac{\beta_F(g_s)}{2g_s^3} G_{\mu\nu}^2 \right]$$

The resultant betas coincide just one-loop perturbative expressions:

$$\beta_F(g_s) = \frac{g_s^3}{(4\pi)^2} \frac{4}{3} N_{\rm TC}$$

$$\beta_F(e) = \frac{e^3}{(4\pi)^2} \frac{16}{9} N_{\rm TC}$$

constant

TD mass stability below mF S.M. and K. Yamawaki, PRD86 (2012)

Dominant corrections come from top-loop (quadratic div.)

cutoff by mF ~4 π F π ~ 1TeV (~ F Φ): $\delta M_{\phi}^2 \approx -\frac{3}{4\pi^2} \frac{m_t^2}{F_{\phi}^2} \cdot m_F^2$

w/
$$m_t^2 \simeq 2M_\phi^2$$
 $\frac{\delta M_\phi}{M_\phi (125 \text{GeV})} \approx -\frac{3}{4\pi^2} \frac{m_F^2}{F_\phi^2} \approx \mathcal{O}(10^{-2} - 10^{-1})$

naturally light thanks to large Fo (i.e. weak coupling)