

#### Sakata Memorial KMI Mini-Workshop on "Strong Coupling Gauge Theories Beyond the Standard Model" (SCGT14Mini)

#### How many scales in many-flavor QCD ?

March 6 2014

Maria Paola Lombardo INFN Maria Paola Lombardo Kohtaroh Miura Elisabetta Pallante Tiago Nunes da Silva

INFN, Italy KMI, Nagoya University, Japan University of Groningen, Netherlands University of Groningen, Netherlands

| We study Nc=3,<br>Fundamental fermions :<br>Nf = 0<br>Nf = 4<br>Nf = 6 | Hadronic<br>Phase | Quasi<br>Conformal/<br>Walking<br>dynamics         | Conformal<br>Window of QCD                                                                                                                | NAF |  |  |  |
|------------------------------------------------------------------------|-------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| Nf = 8<br>Nf = 12                                                      |                   | N                                                  | Nfc Nf                                                                                                                                    |     |  |  |  |
| Nf = 16<br>At zero and non-zero ter                                    | nperature.        | MpL,KM,TndS,<br>Talk by KM at I<br>Talk by TndS at | MpL,KM,TndS,EP : work in progress<br>Talk by KM at Lat2013<br>Talk by TndS at Lat2013 <sup>2</sup><br>KM MpL Nuclear Physics B 871 (2013) |     |  |  |  |

#### From UV to IR

Nfc

 $\Lambda$ IR

$$\Lambda_{\rm IR}/\Lambda_{\rm UV} = \mathcal{O}(1).$$



 $\frac{\Lambda_{\rm UV}}{\Lambda_{\rm IR}} \sim \exp\left(\frac{\hat{K}}{\sqrt{x_c - x}}\right)$ 

#### From UV to IR

Scale separation

Nfc

 $\Lambda$ IR

$$\Lambda_{\rm IR}/\Lambda_{\rm UV} = \mathcal{O}(1).$$



$$\frac{\Lambda_{\rm UV}}{\Lambda_{\rm IR}} \sim \exp\left(\frac{\hat{K}}{\sqrt{x_c - x}}\right)$$

## Physical scales & Lattice scales

- ✓ Lattice introduces two further technical scales a and L obscuring the UV and IR behaviour respectively
- ✓ Ratios of homogeneous quantities R = O1/O2

useful: Help controlling a and L systematic effects Display scale hierarchy with no need to fix the scale across different theories

✓ When O2 is an UV quantity – non critical at Nfc -taking the ratio is de facto a scale fixing procedure for O1

## Plan

- Critical temperature : Nf = (0,4,6,8)
- String tension: Nf = 6,8
- Wilson flow: Nf = 6,8

• Spectrum and anomalous dimension: Nf=12

## THE (PSEUDO) CRITICAL TEMPERATURE

#### Lattice setup

All simulations :

--Gauge Action: one loop Symanzyk improved --Fermion Action: Tadpole improved AsqTad

m = 0.02 : only one mass

#### Scaling for essential singularities

Nogada, Hasegawa, Nemoto, PRL 2012

$$g(t,h,N^{-1}) = b^{-1}\hat{g}(e^{-(t/t_0)^{-x_t}}b,hb^{y_h},N^{-1}b).$$

$$m \propto \begin{cases} e^{-(1-y_h)(t/t_0)^{-x_t}} & \text{for } he^{y_h(t/t_0)^{-x_t}} \ll 1 \\ hy_h^{-1}-1 & \text{for } he^{y_h(t/t_0)^{-x_t}} \gg 1 \end{cases}$$
Finite mass
Chiral limit

m <-> Chiral Condensate h <-> bare mass t <-> Nc - Nfc

> Within the scaling window data at finite mass contain information on the critical behaviour . They can can be approximativelydescribed as zero mass ones, but with a larger apparent critical point.

#### *We studied the thermal transition for several Nf and several Nt*



All simulations : Gauge Action one loop Sym. Tadpole improved AsqTad





#### From the Lattice..

..to the continuum Via old fashioned asymptotic scaling

$$\Lambda_{\rm L} a(\beta_{\rm L}) = \left(\frac{2N_c b_0}{\beta_{\rm L}}\right)^{-b_1/(2b_0^2)} \exp\left[\frac{-\beta_{\rm L}}{4N_c b_0}\right].$$
$$\frac{1}{N_t} = \left|\frac{T_c}{\Lambda_{\rm L}}\right| \times \left(\Lambda_{\rm L} a(\beta_{\rm L}^{\rm c})\right).$$
Must be approx. constant for several Nt

## The quest for continuum limit

$$\frac{T_c}{\Lambda_{\rm L/E}} = \frac{R(g_{\rm L/E})}{N_t} = (b_0 g_{\rm L/E}^2)^{-b_1/(2b_0^2)} \exp\left[\frac{-1}{2b_0}\right],$$

**Explore different** prescriptions for Tc/A

$$R(g_{L/E}) \equiv a(g_{L/E})\Lambda_{L/E} = (b_0 g_{L/E}^2)^{-b_1/(2b_0^2)} \exp\left[\frac{-1}{2b_0 g_{L/E}}\right] \qquad g_E = \sqrt{3(1 - \langle P \rangle(g_L))}$$

$$R^{\text{imp}}(\beta_{\text{L/E}}) = \Lambda_{\text{L/E}}^{\text{imp}} a(\beta_{\text{L/E}}) \equiv \frac{R(\beta_{\text{L/E}})}{1+h} \times \left[1+h\frac{R^2(\beta_{\text{L/E}})}{R^2(\beta_0)}\right], \quad \text{C. Allton, 2007}$$

### Nf = 6, asympt. scaling



### Nf = 8, asympt scaling



Å

12

## Tc/ $\Lambda$ as a function of Nf



### Puzzle??



### Solution: $\Lambda = \Lambda$ (N<sub>f</sub>) ; use UV scale





### Fixing an UV scale



• We have measured the tadpole factosr  $u_0 = \langle \Box \rangle^{1/4}$  at T = 0.

• We use the couplings obtained by the constant *u*<sub>0</sub> line to define a UV reference scale *M*.

## $Tc/M_{UV}$



 $\frac{T_c}{M} = \frac{1}{N_t} \exp\left[\int_{g_{ref}}^{g_c} \frac{dg}{B(g)}\right] .$ 

#### *Tc/M extrapolates to zero for Nf\* ~ 10.5*



*Tc/M extrapolates to zero for Nf\* ~ 10.5* 

#### M fixed with the help of perturbation theory



Talk by K. Miura@Lattice2013

### THE STRING TENSION

## Lattice setup: $\beta$ for Nf=8

Update for Miura-Lombardo Nucl. Phys. B ('13). c.f. Deuzeman et.al. Phys. Lett. B ('08).

Update for Miura-Lombardo Nucl. Phys. B ('13). c.f. Deuzeman et.al. Phys. Lett. B ('08).



## Lattice setup: $\beta$ for Nf=6



#### Nf=8: Creutz ratios

Preliminary,  $\beta = \beta_{\rm L}^{\rm c} = 4.275$ , ma = 0.02,  $32^3 \times 64$ , t = 3



### Nf = 8 : String tension



#### Nf=6: Creutz ratios

Preliminary,  $\beta = \beta_{\rm L}{}^{\rm c} = 5.025, \ ma = 0.02, \ 32^3 \times 64, t = 3$ 



#### Nf=6 String tension



28

# Tc/V $\sigma$



[1] E.Laermann, Nucl.Phys.B, '96, [2] F.Karsch and E.Laermann, Nucl.Phys.B, '01, [3] Engels, Nucl.Phys.B, '97.

9

## Lim Nf -> Nfc Tc/ $\sqrt{\sigma}$ = Const.



D

#### **RESULTS FOR WO**

### Wilson flow

$$\mathscr{E}(t) = t^2 \langle E(x,t) \rangle, \quad E(x,t) \equiv -\frac{1}{2} \operatorname{tr} G_{\mu\nu}(x,t) G_{\mu\nu}(x,t)$$
$$w_0 : w_0^2 \mathscr{E}'(w_0^2) = 0.3$$

✓ Computationally easy

✓ Naturally smooth

✓ Well behaved at short distance

## W0 vs r0

#### R. Sommer@Lat2013

| Wilson, $N_{\rm f} = 2$                                                                                      |                 |              | tmQCD, $N_{\rm f} = 2$ |                            |                |             |         | $N_{\rm f} > 2$  |                     |                                                    |        |              |                                     |
|--------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------------|----------------------------|----------------|-------------|---------|------------------|---------------------|----------------------------------------------------|--------|--------------|-------------------------------------|
| <i>r</i> <sub>0</sub> [fm]                                                                                   |                 | fre          | om                     | <i>r</i> <sub>0</sub> [fm] |                | from        |         | $N_{\mathrm{f}}$ | r <sub>0</sub> [fm] | $r_1$ [fm]                                         |        | from         |                                     |
| 0.503(                                                                                                       | 10)             | fĸ           | [14]                   | 0.438(1                    | 4)             | fĸ          | [38]    | 2+1              | $0.466(4)^{a}$      | 0.3                                                | 13(2)  | div.         | [39]                                |
| 0.491(                                                                                                       | $(6)^{c}$       | лк<br>Лк     | [9]                    |                            | - /            | JK          | [1      | 2+1              |                     | 0.32                                               | 21(5)  | r            | [1]                                 |
| 0.485(                                                                                                       | 9) <sup>c</sup> | $f_{\pi}$    | [9]                    | 0.420(2                    | 0)             | $f_{\pi}$   | [40]    | 2+1              | 0.470(4)            | 0.31                                               | 11(2)  | $f_{\pi}$    | [41, 42]                            |
| 0.501(                                                                                                       | $(15)^{b}$      | $m_{\rm p}$  | [43]                   | 0.465(1                    | 6)             | $m_{\rm p}$ | [44]    | 2+1              | 0.492(10)           | b                                                  |        | $m_{\Omega}$ | [11]                                |
| 0.471(                                                                                                       | 17)             | $m_{\Omega}$ | [13]                   |                            |                |             |         | 2+1              | 0.480(11)           | 0.32                                               | 23(9)  | $m_{\Omega}$ | [10]                                |
|                                                                                                              |                 |              |                        |                            |                |             |         | 2+1+1            | $\setminus$ /       | 0.31                                               | 1(3)   | $f_{\pi}$    | [45]                                |
| <sup><i>a</i></sup> with $r_0/r_1$ and $r_1/a$ from [46] <sup><i>c</i></sup> preliminary, at this conference |                 |              |                        |                            |                |             |         |                  |                     |                                                    |        |              |                                     |
|                                                                                                              |                 |              |                        |                            |                |             |         |                  |                     |                                                    |        |              |                                     |
| $N_{\rm f}$                                                                                                  | $\sqrt{t_0}$ [f | m]           | $w_0$                  | [fm]                       | fro            | m           |         |                  |                     |                                                    |        |              |                                     |
|                                                                                                              |                 |              |                        |                            |                |             |         |                  |                     |                                                    |        |              |                                     |
| 0                                                                                                            | 0.163           | 8(10)        | 0.16                   | 570(10)                    | $r_0 = $       | = 0.4       | 49 fm [ | 35, 30]          |                     |                                                    |        | H  #         |                                     |
| 2                                                                                                            | 0.153           | 9(12)        | 0.17                   | 760(13)                    | fк             | [35,        | 9]      |                  |                     |                                                    | H      |              | HHH                                 |
| 3                                                                                                            | 0.153           | (7)          | 0.17                   | 79 (6)                     | $m_{\rm p}$    | [47]        |         |                  |                     | <b></b>                                            |        | I.           |                                     |
| 3                                                                                                            | 0.146           | 5(25)        | 0.17                   | 755(18)                    | $m_{\Omega}$   | [33]        |         |                  |                     | ⊢∙⊣                                                |        |              | H#H                                 |
| 4                                                                                                            | 0.142           | 0(8)         | 0.17                   | 715(9)                     | $f_{\pi}$      | [45]        |         |                  |                     | Iel                                                |        |              | se                                  |
| 4                                                                                                            |                 |              | 0.17                   | 12(6)                      | $f_{\pi}$ [34] |             |         |                  |                     |                                                    |        |              | M                                   |
|                                                                                                              |                 |              |                        |                            |                |             |         |                  | _                   |                                                    | 15 0   | 16 01        | 17 0.19                             |
|                                                                                                              |                 |              |                        |                            |                |             |         |                  |                     | <sup>0.14</sup> t <sub>0</sub> <sup>1/2</sup> [fm] | 15 0.1 | 10 0.1       | ′′w <sub>o</sub> [fm] <sup>18</sup> |

## With and without improvement



#### Results for w0 – improved and unimproved



Control on the continuum limit:

Improved and unimproved

Two different  $\beta$  in the more challenging Nf=8 model





T.Nunes da Silva, Talk@Lattice 2013 (update of previous results)

#### NF=12 SPECTRUM

### Nf = 12 - Pion



- Largest volumes
   Power law, excluded am = 0.06, 0.07, Chi<sup>2</sup>/d.o.f. = 7/3, exp = 0.74(2)
   Power law, all points, Chi<sup>2</sup>/d.o.f. = 44/5, exp = 0.76(2)
- ----- Linear, excluded am = 0.06, 0.07,  $Chi^2/d.o.f. = 74/3$

### Nf=12- Rho



### Nf=12 Mass anomalous dimension

## $\gamma$ = 0.33 (2)(rho) ; 0.35(3) (pion) at $\beta$ =3.9

#### E.Itou Lat2013

|                                             |              |             | 1 |   |    |        |        |        |           |
|---------------------------------------------|--------------|-------------|---|---|----|--------|--------|--------|-----------|
|                                             | $\gamma_g^*$ | Ym          |   |   |    |        |        |        | 1         |
| 2 loop                                      | 0.36         | 0.77        |   | 3 | 10 | 2.21   | 0.764  | 0.815  | B Schrock |
| 4 loop (MS bar)                             | 0.28         | 0.25        |   | 3 | 11 | 1.23   | 0.578  | 0.626  | 2013      |
| Step scaling (SF scheme) Ref. [15]          | 0.13(3)      |             |   | 3 | 12 | 0.754  | 0.435  | 0.470  |           |
| hyperscaling I (mCGT) Ref. [21]             |              | 0.403(13)   |   | 3 | 13 | 0.468  | 0.317  | 0.337  |           |
| hyperscaling II (mCGT) Ref. [22]            |              | 0.35(23)    |   | 3 | 14 | 0.278  | 0.215  | 0.224  |           |
| hyperscaling III (mCGT) Ref. [23]           |              | 0.4 - 0.5   |   | 3 | 15 | 0.143  | 0.123  | 0.126  |           |
| hyperscaling IV (Dirac eigenmode) Ref. [10] |              | 0.32(3)     |   | 3 | 16 | 0.0416 | 0.0397 | 0.0398 |           |
| Step scaling (our result) Ref. [1], [40]    | 0.57(35)     | 0.044+0.062 |   | I | 1  | 1      | I      | I      | 1         |

# **m**π/**m**ρ



# the Edinburgh plot

... A simple test of hyperscaling



## Summary

- Indication of preconformality for Nf=8:
  - --Scale separation
  - -- Tc measured on a UV scale approaches 0
- Tc and the string tension have a similar sensitivity to the IRFP . Their ratio is weakly dependent on Nf
- Anomalous dimension  $\gamma = 0.35(5)$  for Nf=12 (Indication of violation of hyperscaling)

• Backup slides



## Thermal coupling and IRFP

We consider the critical coupling at the temperature scale 1/Nt

$$R(g_L^c, g_T^c) = 1/N_t ,$$

$$\begin{split} \overline{R}(g_{\rm L}^{\rm c}, g_{\rm L}^{\rm ref}) &\equiv \frac{M(g_{\rm L}^{\rm ref})}{a^{-1}(g_{\rm L}^{\rm c})} = \exp\left[\int_{g_{\rm L}^{\rm c}}^{g_{\rm L}^{\rm ref}} \frac{dg_{\rm L}}{\beta(g_{\rm L})}\right] \\ &\simeq \left(\frac{(g_{\rm L}^{\rm c})^2}{(g_{\rm L}^{\rm c})^2 b_1 + b_0} \frac{(g_{\rm L}^{\rm ref})^2 b_1 + b_0}{(g_{\rm L}^{\rm ref})^2}\right)^{-b_1/(2b_0^2)} \\ &\qquad \times \exp\left[\frac{1}{2b_0} \left(\frac{1}{(g_{\rm L}^{\rm ref})^2} - \frac{1}{(g_{\rm L}^{\rm c})^2}\right)\right], \end{split}$$

 $M(g_{\rm L}^{\rm ref}) = 1/N_t a(g_{\rm L}^c).$ 

And we match it with the phenomenological zero temperature critical coupling

#### **IRFP from couplings**

