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This talk is dedicated to Keisuke Jimmy Juge to win his 
courageous fight at the Tsukuba University hospital

Keisuke Jimmy Juge

Lattice gauge theorist whom many of 
you know

On sabbatical at KEK from the 
University of the Pacific in California

Expert on hadron spectroscopy
including the 0++ scalar spectrum from 
disconnected diagrams, so relevant to 
this workshop

We also wish full and quick recovery to Yoichi Iwasaki 
from his serious injury



Can the nearly conformal sextet gauge model hide the Higgs impostor? 
Zoltan Fodor (Wuppertal U. & IAS, Julich & Eotvos U.), Kieran Holland (U. Pacific, Stockton), Julius Kuti (UC, San Diego), Daniel Nogradi (Eotvos U.), Chris Schroeder (LLNL, 
Livermore), Chik Him Wong (UC, San Diego). Sep 2012. 10 pp. 
Published in Phys.Lett. B718 (2012) 657-666 
DOI: 10.1016/j.physletb.2012.10.079 
e-Print: arXiv:1209.0391 [hep-lat] | PDF

The Yang-Mills gradient flow in finite volume 
Zoltan Fodor (Wuppertal U. & IAS, Julich & Eotvos U.), Kieran Holland (U. Pacific, Stockton & Bern U.), Julius Kuti (UC, San Diego), Daniel Nogradi (Eotvos U.), Chik Him Wong 
(UC, San Diego). Aug 2012. 17 pp. 
Published in JHEP 1211 (2012) 007 
DOI: 10.1007/JHEP11(2012)007 
e-Print: arXiv:1208.1051 [hep-lat] | PDF

Can a light Higgs impostor hide in composite gauge models? 
Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, Chik Him Wong. Jan 9, 2014. 7 pp. 
Conference: C13-07-29.1 Proceedings 
e-Print: arXiv:1401.2176 [hep-lat] | PDF

The chiral condensate from the Dirac spectrum in BSM gauge theories 
Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, Chik Him Wong. Feb 24, 2014. 7 pp. 
Conference: C13-07-29.1 Proceedings 
e-Print: arXiv:1402.6029 [hep-lat] | PDF

Talk is based on 4 publications, with an overview and discussion 
of new developments since:

http://inspirehep.net/record/1184194
http://inspirehep.net/record/1184194
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1184194&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Wuppertal%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Wuppertal%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22IAS%2C%20Julich%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22IAS%2C%20Julich%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1184194&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22U.%20Pacific%2C%20Stockton%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22U.%20Pacific%2C%20Stockton%22&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1184194&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1184194&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/author/profile/Schroeder%2C%20Chris?recid=1184194&ln=en
http://inspirehep.net/author/profile/Schroeder%2C%20Chris?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22LLNL%2C%20Livermore%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22LLNL%2C%20Livermore%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22LLNL%2C%20Livermore%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22LLNL%2C%20Livermore%22&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1184194&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1184194&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://dx.doi.org/10.1016/j.physletb.2012.10.079
http://dx.doi.org/10.1016/j.physletb.2012.10.079
http://arxiv.org/abs/arXiv:1209.0391
http://arxiv.org/abs/arXiv:1209.0391
http://arxiv.org/pdf/1209.0391.pdf
http://arxiv.org/pdf/1209.0391.pdf
http://inspirehep.net/record/1125976
http://inspirehep.net/record/1125976
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1125976&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Wuppertal%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Wuppertal%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22IAS%2C%20Julich%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22IAS%2C%20Julich%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1125976&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22U.%20Pacific%2C%20Stockton%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22U.%20Pacific%2C%20Stockton%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Bern%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Bern%20U.%22&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1125976&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1125976&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Eotvos%20U.%22&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1125976&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1125976&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22UC%2C%20San%20Diego%22&ln=en
http://dx.doi.org/10.1007/JHEP11(2012)007
http://dx.doi.org/10.1007/JHEP11(2012)007
http://arxiv.org/abs/arXiv:1208.1051
http://arxiv.org/abs/arXiv:1208.1051
http://arxiv.org/pdf/1208.1051.pdf
http://arxiv.org/pdf/1208.1051.pdf
http://inspirehep.net/record/1276719
http://inspirehep.net/record/1276719
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1276719&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1276719&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1276719&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1276719&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1276719&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1276719&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1276719&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1276719&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1276719&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1276719&ln=en
http://inspirehep.net/record/1217045
http://inspirehep.net/record/1217045
http://inspirehep.net/record/1272741
http://inspirehep.net/record/1272741
http://arxiv.org/abs/arXiv:1401.2176
http://arxiv.org/abs/arXiv:1401.2176
http://arxiv.org/pdf/1401.2176.pdf
http://arxiv.org/pdf/1401.2176.pdf
http://inspirehep.net/record/1282449
http://inspirehep.net/record/1282449
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1282449&ln=en
http://inspirehep.net/author/profile/Fodor%2C%20Zoltan?recid=1282449&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1282449&ln=en
http://inspirehep.net/author/profile/Holland%2C%20Kieran?recid=1282449&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1282449&ln=en
http://inspirehep.net/author/profile/Kuti%2C%20Julius?recid=1282449&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1282449&ln=en
http://inspirehep.net/author/profile/Nogradi%2C%20Daniel?recid=1282449&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1282449&ln=en
http://inspirehep.net/author/profile/Wong%2C%20Chik%20Him?recid=1282449&ln=en
http://inspirehep.net/record/1217045
http://inspirehep.net/record/1217045
http://inspirehep.net/record/1272741
http://inspirehep.net/record/1272741
http://arxiv.org/abs/arXiv:1402.6029
http://arxiv.org/abs/arXiv:1402.6029
http://arxiv.org/pdf/1402.6029.pdf
http://arxiv.org/pdf/1402.6029.pdf


Outline
  
Lattice BSM after the Higgs discovery
 

Near-conformal light Higgs?     
      light scalar (dilaton-like?) close to conformal window
      EW precision and S-parameter
      scale setting and spectroscopy

Running coupling  
      running (walking?) coupling from gradient flow
   
Chiral condensate       
      new stochastic method for spectral density
      mode number 
      large anomalous dimension?
    
Early universe
       EW phase transition
       dark matter
      
Summary and Outlook   

Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2

minimal composite Higgs? 
near-conformal sextet rep

early to worry about naming rights



Large Hadron Collider   -   CERN

•   A Higgs-like particle is found
    Is it the Standard Model Higgs? or

•   Near-conformal strong dynamics?  

•   Composite PNGB-like Higgs?

•   SUSY?

•   5 Dim?
...

Primary focus of BSM 
lattice  effort and this talk

  primary mission:

- Search for Higgs particle

- Origin of Electroweak symmetry breaking
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voices:  a light Higgs-like scalar was found, consistent 
with SM within errors, and composite states have not 
been seen below 1 TeV. Strongly coupled BSM gauge 
theories are Higgs-less with resonances below 1 TeV

facts: Compositeness has not been shown to be 
incompatible with the light Higgs scalar; earlier 
search for compositeness was based on naively 
scaled up QCD and unacceptable old technicolor 
guessing games. Resonances, out of first LHC run 
reach, are in the 2-3 TeV range in the theory I will 
discuss

lattice BSM plans:  LHC14 run will search for new 
physics from compositeness and SUSY, and the lattice 
BSM community is preparing quantitative lattice 
based predictions to be ruled in or ruled out. 
We better get this right !

Rational for lattice BSM: 
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TeV
A1 ~ 2.4 TeV

Rho~1.7 TeV

scalar composite at 500 GeV?

observed Higgs-like
EW self-energy

from approximate scale invariance

4

t

W Z

FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
t + 2s⇤

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,

5

where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,
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where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:
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� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
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f 2
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⌅ . (6)
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Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2
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two expectations:
(1)   χSB and confinement
(2)  light scalar close to CW (with walking) ?
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mσ

fσ
→ ?

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

Will gradient flow based technology make the argument  less slippery?

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

 m

 e
ffe

ct
iv

e 
m

as
s 

  M
co

n
f0

m fit range:  0.003 − 0.010

input from volumes  243! 48, 323! 64 

Mcon
f0  = M0 + c1 m      �=3.2  

 f0 meson mass requires missing disconnected part

M0=  0.1555 " 0.0070

c1=  25.3 " 1.3

�2/dof= 1.21

 effective mass  Mcon
f0     from 0++ connected correlator  

Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
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its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �
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µ
µ

⇥
NP
=

⇥(�)
4�
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Ga
µ⌅G

aµ⌅
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NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
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non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �
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µ
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⇥
NP
=

⇥(�)
4�
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µ⌅G

aµ⌅
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, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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briefly described after the derivation of the PCDC relation.

8

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

 m

 e
ffe

ct
iv

e 
m

as
s 

  M
co

n
f0

m fit range:  0.003 − 0.010

input from volumes  243! 48, 323! 64 

Mcon
f0  = M0 + c1 m      �=3.2  

 f0 meson mass requires missing disconnected part

M0=  0.1555 " 0.0070

c1=  25.3 " 1.3

�2/dof= 1.21

 effective mass  Mcon
f0     from 0++ connected correlator  

Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
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aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get
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where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)

few hundred GeV Higgs impostor?

Foadi, Fransden, Sannino
open for spirited theory discussions 4

t

W Z

FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
t + 2s⇤

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,

5

where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �
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µ
µ

⇥
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=

⇥(�)
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, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
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Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
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µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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aµ⌅ � ⌅0|⇥(�)
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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less fermions are in the two-index symmetric representation of
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perturbative parts of the composite gauge operator Ga
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infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element
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divergence of the dilatation current in Eq. (4) we get
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briefly described after the derivation of the PCDC relation.
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where F� is the TC pion decay constant and ⇥ scales like 1/
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with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs
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The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
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boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-
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⇧
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⇤
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H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

Will gradient flow based technology make the argument  less slippery?
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
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tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.
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ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.
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defined from the symmetric energy-momentum tensor �µ⌅. Al-
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less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
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µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element
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with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get
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mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
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states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
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breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
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sate will be needed near the conformal window.
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ties of the dilaton, we will closely follow the standard argument
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tice methods can explore the implications of the PCDC relation
when applied to the sextet model.
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though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga
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We are in a second generation run set

β=3.15, 3.20, 3.25, 3.30  gauge couplings

48x963, 40x803, 32x643    volumes

3 fermion masses in each run

this is expensive

our new code (sextet Janos) is highly optimized     impressive  Borsanyi/Wong effort
in production now to answer questions in second generation run set:



  

1. Test of chiral perturbation theory below the scale of low mass scalar? 
      how to test if light scalar is dilaton-like                   close to CW?
       both require new low energy effective action         like Matsuzaki/Yamawaki proposal? 
        

2. Needs precise scale setting and resonance spectrum
     S and T parameters of Electroweak precision tests        
      large volumes  F・L ~ 1, or larger!
      slow topology
        

3. Running (walking?) coupling
     volume-dependent running  coupling 
     scale-dependent L= ∞ coupling in chiral limit

4. Consistent chiral condensate
     GMOR relation is still not quite consistent
    new method for spectral density and mode number
     anomalous dimension of chiral condensate

is there an fσ /fπ  crisis?

We are in a second generation run set

β=3.15, 3.20, 3.25, 3.30  gauge couplings

48x963, 40x803, 32x643    volumes

3 fermion masses in each run

this is expensive

our new code (sextet Janos) is highly optimized     impressive  Borsanyi/Wong effort
in production now to answer questions in second generation run set:
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β=3.2 A1/F ~ 9.5

MA1~ 2.37 TeV

LHC14?

- Nf=2 SU(3) sextet Ma0, Mρ, and MA1

- three lowest states above light scalar “Higgs state”
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FIG. 2. The fermion loops were evaluated using stochastic methods with full time dilution and
48 noise vectors on each gauge configuration [60]. The correlator Cconn(t) on the left plot and the
correlator Csinglet = Cconn +Cdisc(t) on the right plot were assembled from the stochastic fermion
propagators. The left side plot shows the mass of the lowest non-singlet scalar (blue exponential
fit). The plot also displays the oscillating pseudo-scalar parity partner (magenta) and the full
correlator (red) fitting the data. On the right side plot, with larger errors in the limited pilot
study, the scalar singlet mass is considerably downshifted (blue exponential) and the presence of a
pseudo-scalar parity partner is not detectable. The conventional � = 6/g2 lattice gauge coupling,
setting the lattice spacing a, is shown in addition to the finite fermion mass am of the simulation.

The staggered lattice fermion formulation is deployed in the pilot study to demonstrate
feasibility with control of ⇥SB and serves as a lower bound for the required resources.
Domain wall fermions would be 10-20 times more demanding. The Symanzik improved
tree level gauge action is used with stout smeared gauge links to minimize lattice cut-o⇥
e⇥ects in the study. A staggered operator which creates a state that lies in the spin-taste
representation �S⇥�T also couples to one lying in the �4�5�S⇥�4�5�T representation. Thus
a staggered meson correlator has the general form

C(t) =
⇤

n

�
Ane

�mn(�S⇥�T)t + (�1)tBne
�mn(�4�5�S⇥�4�5�T)t

⇥

with oscillating contributions from parity partner states. For the scalar meson (�S ⇥ �T =
1⇥1), the parity partner is �4�5⇥�4�5 which corresponds to one of the pseudoscalars in the
analysis. For flavour singlet mesons, the correlator is of the form C(t) = Cconn(t) + Cdisc(t)
where Cconn(t) is the correlator coupled to the non-singlet meson state and Cdisc(t) is the
contribution of disconnected fermion loops in the annihilation diagram. Figure 2 on the
left shows the propagation of the lowest flavor-nonsinglet state together with its oscillating
parity partner, as determined by Cconn(t). The singlet scalar mass, the Higgs particle of
the strongly coupled gauge model, is determined from the flavor singlet correlator C(t)
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similar analysis in sextet model with Nf=2

test of technology:
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slowly changing topology complicates the analysis:

•  challenging to deal with it 

•  effect on scalar spectrum is hardly detectable

•  slow topology can be synthesized by stochastic algorithms
   but its practical utilization is unclear

•  slowly changing topology perhaps can be accelerated in 
    open segments of very long lattices in time direction?

•  or take the bullet and analyze at fixed topology

Can a light Higgs impostor hide in composite gauge models? Chik Him Wong
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Figure 3: Investigating any topological charge Q dependence of fitted m f0 for different segments along

the RHMC trajectory. (Left) Topological charge history along the trajectory. Q is measured at gradient

flow step t f = 10 at c = 0.3 [21]. (Right) Fitted values of m f0 using gauge configurations indicated by the

horizontal extents of the boxes. The configurations are separated by 20 MD time units. Boxes of the same

color contain the same number of configurations. It is observed that although Q changes slowly along the

trajectory, the fitted m f0 remains statistically the same. This may indicate that the dependence is insignificant.

However a reliable conclusion requires a more systematic study with higher statistics. Possible effects from

thermalization and autocorrelation should also be taken into account.

If the lowest 0++ state overlapping with the gluonic operator is light near the conformal window,

such mixing in the ground state is expected to be significant. This will be investigated by a de-

tailed variational analysis. Also, a careful analysis of finite volume and cutoff effects are required

to extrapolate to infinite volume and continuum limits. All these studies are ongoing and will be

reported in future publications.
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
t + 2s⇤

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,
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where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can
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A0    ~ 1.5 TeV

Spectroscopy for LHC14 run sextet Nf=2
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Figure 2. SM electroweak fit in the mt–MW plane, with (blue)
and without (gray) the Higgs mass, compared with the direct
measurements of the top and W masses (green) [13].

While the vacuum expectation value (the electroweak
scale) was already known, v = (

p
2GF)�1/2 = 246 GeV,

the measured Higgs mass determines the last free parame-
ter of the SM, the quartic scalar coupling:

� =
M2

H

2v2
= 0.13 . (4)

As shown in figure 2, the measured Higgs mass is in beau-
tiful agreement with the expectations from global fits to
precision electroweak data [13].

Quantum corrections to M2
H are dominated by positive

contributions from heavy top loops, which grow logarith-
mically with the renormalization scale µ. Since the physi-
cal value of MH is fixed, the tree-level contribution 2v2�(µ)
decreases with increasing µ. Figure 3 shows the evolution
of �(µ) up to the Planck scale (MPl = 1.2 ⇥ 1019 GeV),
varying mt, ↵s(MZ) and MH by ±3� [14]. The Higgs
quartic coupling remains weak in the entire energy do-
main below MPl and crosses � = 0 at very high ener-
gies around 1010 GeV. The values of MH and mt appear
to be very close to those needed for absolute stability of
the potential (� > 0) up to MPl, which would require
MH > (129.6 ± 1.5) GeV [14, 15] (±5.6 GeV if more con-
servative uncertainties on the top mass are adopted [16]).
Moreover, even if � becomes slightly negative at very high
energies, the resulting potential instability leads to an elec-
troweak vacuum lifetime much larger than any relevant as-
trophysical or cosmological scale. Thus, the Higgs and top
masses result in a metastable vacuum [14, 15] and the SM
could be valid up to MPl. The possibility of some new-
physics threshold at scales ⇤ ⇠ MPl, leading to the match-
ing condition �(⇤) = 0, is obviously intriguing.

3 Higgs Signal Strengths

The data on the Higgs-like boson are conveniently ex-
pressed in terms of the so-called Higgs signal strengths,
which measure the product of the Higgs production cross
section times its decay branching ratio into a given fi-
nal state, in units of the corresponding SM prediction:
µ ⌘ � · Br/(�SM · BrSM). Thus, the SM corresponds to

102 104 106 108 1010 1012 1014 1016 1018 1020

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

RGE scale m in GeV

H
ig

gs
qu

ar
tic

co
up

lin
g
l

3s bands in
Mt = 173.4 ± 0.7 GeV HgrayL
a3HMZL = 0.1184 ± 0.0007HredL
Mh = 125.7 ± 0.3 GeV HblueL

Mt = 171.4 GeV

asHMZL = 0.1163

asHMZL = 0.1205

Mt = 175.3 GeV

Figure 3. Evolution of �(µ) with the renormalization scale [14].

Table 1. Measured Higgs Signal Strengths [2, 4, 5].

Decay Mode ATLAS CMS Tevatron
H ! bb 0.2 + 0.7

� 0.6 1.15 ± 0.62 1.59 + 0.69
� 0.72

H ! ⌧⌧ 0.7 + 0.7
� 0.6 1.10 ± 0.41 1.68 + 2.28

� 1.68
H ! �� 1.55 + 0.33

� 0.28 0.77 ± 0.27 5.97 + 3.39
� 3.12

H ! WW⇤ 0.99 + 0.31
� 0.28 0.68 ± 0.20 0.94 + 0.85

� 0.83
H ! ZZ⇤ 1.43 + 0.40

� 0.35 0.92 ± 0.28
Combined 1.23 ± 0.18 0.80 ± 0.14 1.44 + 0.59

� 0.56

µ = 1. Table 1 summarizes the present ATLAS [2], CMS
[4] and Tevatron [5] results. The new boson appears to
couple to the known gauge bosons (W±, Z, �, Ga) with
the strength expected for the SM Higgs. A slight excess
of events (2�) in the 2� decay channel is observed by AT-
LAS, but the CMS data no-longer confirm this trend. The
global LHC (world) average,

µ = 0.96 ± 0.11 (0.98 ± 0.11) , (5)

is in perfect agreement with the SM.
The sensitivity to the di↵erent Higgs couplings is in-

creased disentangling the di↵erent production channels:
gluon fusion (GG ! tt̄ ! H), vector-boson fusion
(VV ! H, V = W,Z) and associated VH or tt̄H produc-
tion. At the LHC, the dominant contribution comes from
the gluon-fusion mechanism which gives access to the top
Yukawa. Evidence for vector-boson fusion production has
been already reported with a significance above 3�. Com-
plementary information is provided by the Tevatron data,
specially in the VH ! Vbb̄ mode.

The agreement of the measured Higgs production
cross section with the SM prediction confirms the exis-
tence of a top Yukawa coupling with the expected size.
Moreover, it excludes the presence of additional fermionic
contributions to gluon-fusion production. A fourth quark
generation would increase the cross section by a factor of
nine, and much larger enhancements (⇠ 4T 2

R/T
2
F) would

EPJ Web of Conferences

SM pattern of EWSB, i.e. the theory is symmetric under
S U(2)L ⌦ S U(2)R and becomes spontaneously broken to
the diagonal subgroup S U(2)L+R. S 1 is taken to be sin-
glet under S U(2)L+R, while Vµ⌫ and Aµ⌫ are triplets. To
build the Lagrangian we have only considered operators
with the lowest number of derivatives, as higher-derivative
terms are either proportional to the equations of motion or
tend to violate the expected short-distance behaviour [5].
We have needed the interactions [4]

L =
v2

4
h uµuµ i

 
1 +

2!
v

S 1

!
+

FA

2
p

2
h Aµ⌫ f µ⌫� i

+
FV

2
p

2
hVµ⌫ f µ⌫+ i +

iGV

2
p

2
hVµ⌫[uµ, u⌫] i

+
p

2�S A
1 @µS 1h Aµ⌫u⌫ i , (1)

plus the standard gauge boson and resonance kinetic
terms. We have followed the notation of Ref. [6]. The first
term in (1) gives the Goldstone Lagrangian, present in the
SM, plus the scalar-Goldstone interactions. For ! = 1 one
recovers the S 1 ! ⇡⇡ vertex of the SM. Note that ! is
called W , Z or a in other references.

The oblique parameter S receives tree-level contribu-
tions from vector and axial-vector exchanges [7], while T
is identically zero at lowest-order (LO):

S LO = 4⇡
0
BBBB@

F2
V

M2
V

� F2
A

M2
A

1
CCCCA , TLO = 0 . (2)

To compute the one-loop contributions we have used the
dispersive representation of S introduced by Peskin and
Takeuchi [7], whose convergence requires a vanishing
spectral function at short distances:

S =
16⇡

g2 tan ✓W

Z 1

0

dt
t

[ ⇢S (t) � ⇢S (t)SM ] , (3)

with ⇢S (t) the spectral function of the W3B correlator [4,
6, 7].

The calculation of T is simplified by noticing that, up
to corrections of O(m2

W/M
2
R), T = Z(+)/Z(0) � 1, being Z(+)

and Z(0) the wave-function renormalization constants of
the charged and neutral Goldstone bosons computed in the
Landau gauge [9]. A further simplification occurs by set-
ting g to zero , which does not break the custodial symme-
try, so only the B-boson exchange produces an e↵ect in T .
This approximation captures the lowest order contribution
to T in its expansion in powers of g and g0.

Requiring the W3B spectral function ⇢S (t) to vanish at
high energies channel by channel leads to a good conver-
gence of the Goldstone self-energies, at least for the cuts
we have considered. Then, their di↵erence obeys an un-
subtracted dispersion relation, which enables us to com-
pute T through the dispersive integral [4],

T =
4⇡

g02 cos2 ✓W

Z 1

0

dt
t2 [ ⇢T (t) � ⇢T (t)SM ] , (4)

with ⇢T (t) the spectral function of the di↵erence of the
neutral and charged Goldstone self-energies.

It is quite interesting to remark the main assumptions
we have done in our approach:
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S S S S

A A A

V V V V

A

Figure 1. NLO contributions to S (two first lines) and T (two
last lines). A dashed (double) line stands for a Goldstone
(resonance) boson and a curved line represents a gauge
boson.

1. Only operators with at most two derivatives have
been kept in the action. Considering the equations
of motion, field redefinitions and the high-energy
behavior of form factors is possible to find the ab-
sence of higher derivative operators [5]. Moreover,
it is known that this procedure works in the QCD
case [3].

2. Only the lightest vector and axial-vector reso-
nance multiplets have been considered. This is
known to be a good approximation since contri-
butions from higher states are suppressed by their
masses. QCD phenomenology supports this approx-
imation: the single resonance approximation [3].

3. Only contributions to the dispersive relations of
Eqs. (3) and (4) coming from the lightest two-
particle channels without heavy resonances are
going to be considered, i.e. two Goldstones or one
Goldstone plus one scalar resonance for S and the
B boson plus one Goldstone or one scalar resonance
for T . Note that from a dimensional analyses higher
cuts tend to be suppressed. Moreover, the 1/t or 1/t2

weight in the sum rules of (3) and (4) enhances the
contribution from the lightest thresholds and sup-
presses channels with heavy states [10]. V⇡ and A⇡
contributions were shown to be suppressed in a pre-
vious Higgsless analysis [6]. Again, it is known that
this procedure works in the QCD case [10].

4. Unlike what happens in QCD, the underlying theory
is not known. Therefore, although we have worked
at lowest order in g and g0, the counting is not well
defined. We only know that loops are suppressed (~
counting in the loop expansion) and that it works in
QCD in the framework of the 1/NC expansion, with
NC the number of colours.

3 Short-distance constraints

Figure 1 shows the computed one-loop contributions to S
and T . The spectral functions of Eqs. (3) and (4) are [4, 5]:

⇢S (s)|⇡⇡ = g
2 tan ✓w
192⇡2

✓
1 + �V

s

M2
V � s

◆2
✓(s) , (5)
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SM pattern of EWSB, i.e. the theory is symmetric under
S U(2)L ⌦ S U(2)R and becomes spontaneously broken to
the diagonal subgroup S U(2)L+R. S 1 is taken to be sin-
glet under S U(2)L+R, while Vµ⌫ and Aµ⌫ are triplets. To
build the Lagrangian we have only considered operators
with the lowest number of derivatives, as higher-derivative
terms are either proportional to the equations of motion or
tend to violate the expected short-distance behaviour [5].
We have needed the interactions [4]

L =
v2

4
h uµuµ i

 
1 +

2!
v

S 1

!
+

FA

2
p

2
h Aµ⌫ f µ⌫� i

+
FV

2
p

2
hVµ⌫ f µ⌫+ i +

iGV

2
p

2
hVµ⌫[uµ, u⌫] i

+
p

2�S A
1 @µS 1h Aµ⌫u⌫ i , (1)

plus the standard gauge boson and resonance kinetic
terms. We have followed the notation of Ref. [6]. The first
term in (1) gives the Goldstone Lagrangian, present in the
SM, plus the scalar-Goldstone interactions. For ! = 1 one
recovers the S 1 ! ⇡⇡ vertex of the SM. Note that ! is
called W , Z or a in other references.

The oblique parameter S receives tree-level contribu-
tions from vector and axial-vector exchanges [7], while T
is identically zero at lowest-order (LO):

S LO = 4⇡
0
BBBB@

F2
V

M2
V

� F2
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M2
A

1
CCCCA , TLO = 0 . (2)

To compute the one-loop contributions we have used the
dispersive representation of S introduced by Peskin and
Takeuchi [7], whose convergence requires a vanishing
spectral function at short distances:

S =
16⇡

g2 tan ✓W

Z 1

0

dt
t

[ ⇢S (t) � ⇢S (t)SM ] , (3)

with ⇢S (t) the spectral function of the W3B correlator [4,
6, 7].

The calculation of T is simplified by noticing that, up
to corrections of O(m2

W/M
2
R), T = Z(+)/Z(0) � 1, being Z(+)

and Z(0) the wave-function renormalization constants of
the charged and neutral Goldstone bosons computed in the
Landau gauge [9]. A further simplification occurs by set-
ting g to zero , which does not break the custodial symme-
try, so only the B-boson exchange produces an e↵ect in T .
This approximation captures the lowest order contribution
to T in its expansion in powers of g and g0.

Requiring the W3B spectral function ⇢S (t) to vanish at
high energies channel by channel leads to a good conver-
gence of the Goldstone self-energies, at least for the cuts
we have considered. Then, their di↵erence obeys an un-
subtracted dispersion relation, which enables us to com-
pute T through the dispersive integral [4],

T =
4⇡

g02 cos2 ✓W

Z 1

0

dt
t2 [ ⇢T (t) � ⇢T (t)SM ] , (4)

with ⇢T (t) the spectral function of the di↵erence of the
neutral and charged Goldstone self-energies.

It is quite interesting to remark the main assumptions
we have done in our approach:
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F i g u r e 1 . NLO contributions to S (two first lines) and T (two
last lines). A dashed (double) line stands for a Goldstone
(resonance) boson and a curved line represents a gauge
boson.

1. Only operators with a t m o s t t w o d e r i v a t i v e s have
been kept in the action. Considering the equations
of motion, field redefinitions and the high-energy
behavior of form factors is possible to find the ab-
sence of higher derivative operators [5]. Moreover,
it is known that this procedure works in the QCD
case [3].

2. Only the l i g h t e s t v e c t o r a n d a x i a l - v e c t o r r e s o -
n a n c e multiplets have been considered. This is
known to be a good approximation since contri-
butions from higher states are suppressed by their
masses. QCD phenomenology supports this approx-
imation: the single resonance approximation [3].

3. Only contributions to the dispersive relations of
Eqs. (3) and (4) coming from the l i g h t e s t t w o -
p a r t i c l e c h a n n e l s w i t h o u t h e a v y r e s o n a n c e s are
going to be considered, i.e. two Goldstones or one
Goldstone plus one scalar resonance for S and the
B boson plus one Goldstone or one scalar resonance
for T . Note that from a dimensional analyses higher
cuts tend to be suppressed. Moreover, the 1/t or 1/t2

weight in the sum rules of (3) and (4) enhances the
contribution from the lightest thresholds and sup-
presses channels with heavy states [10]. V⇡ and A⇡
contributions were shown to be suppressed in a pre-
vious Higgsless analysis [6]. Again, it is known that
this procedure works in the QCD case [10].

4. Unlike what happens in QCD, the underlying theory
is not known. Therefore, although we have worked
at lowest order in g and g0, the c o u n t i n g is not well
defined. We only know that loops are suppressed (~
counting in the loop expansion) and that it works in
QCD in the framework of the 1/NC expansion, with
NC the number of colours.

3 Short-distance constraints

Figure 1 shows the computed one-loop contributions to S
and T . The spectral functions of Eqs. (3) and (4) are [4, 5]:

⇢S (s)|⇡⇡ = g
2 tan ✓w
192⇡2

✓
1 + �V

s

M2
V � s

◆2
✓(s) , (5)
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Figure 2. S M e l e c t r o w e a k fi t i n t he mt – MW p l a n e , w i t h( b l u e )
a n d w i t ho u t ( g r a y ) t he H i g g s m a s s , c o m p a r e d w i t ht he d i r e c t
m e a s u r e m e n t s o f t he t o p a n d W m a s s e s ( g r e e n ) [1 3 ] .

W hi l e t he v a c u u m e x p e c t a t i o n v a l u e ( t he e l e c t r o w e a k
s c a l e ) w a s a l r e a d y k n o w n , v = (

p
2 GF ) �1 / 2 = 2 4 6G e V ,

t he m e a s u r e d H i g g s m a s s d e t e r m i n e s t he l a s t f r e e p a r a m e -
t e r o f t he S M , t he q u a r t i c s c a l a r c o u p l i n g :

� =
M 2

H

2 v 2
= 0 .1 3 . ( 4 )

A s s ho w n i n fi g u r e 2 , t he m e a s u r e d H i g g s m a s s i s i n b e a u -
t i f u l a g r e e m e n t w i t ht he e x p e c t a t i o n s f r o m g l o b a l fi t s t o
p r e c i s i o n e l e c t r o w e a k d a t a [1 3 ] .

Q u a n t u m c o r r e c t i o n s t o M 2
H a r e d o m i n a t e d b y p o s i t i v e

c o n t r i b u t i o n s f r o m he a v y t o p l o o p s , w hi c hg r o w l o g a r i t h-
m i c a l l y w i t ht he r e n o r m a l i z a t i o n s c a l e µ . S i n c e t he p hy s i -
c a l v a l u e o f MH i s fi x e d , t he t r e e - l e v e l c o n t r i b u t i o n 2 v2 �( µ)
d e c r e a s e s w i t hi n c r e a s i n g µ . F i g u r e 3 s ho w s t he e v o l u t i o n
o f �( µ) u p t o t he P l a n c k s c a l e ( M P l = 1 . 2 ⇥ 1 0 1 9 G e V ) ,
v a r y i n g mt , ↵s ( MZ ) a n d MH b y ±3 � [1 4 ] . T he H i g g s
q u a r t i c c o u p l i n g r e m a i n s w e a k i n t he e n t i r e e n e r g y d o -
m a i n b e l o w M P l a n d c r o s s e s � = 0 a t v e r y hi g he n e r -
g i e s a r o u n d 1 0 1 0 G e V . T he v a l u e s o f MH a n d mt a p p e a r
t o b e v e r y c l o s e t o t ho s e n e e d e d f o r a b s o l u t e s t a b i l i t y o f
t he p o t e n t i a l ( � > 0 ) u p t o M P l , w hi c hw o u l d r e q u i r e
MH > ( 1 2 9 .6± 1 . 5 ) G e V [1 4 , 1 5 ] ( ±5 .6G e V i f m o r e c o n -
s e r v a t i v e u n c e r t a i n t i e s o n t he t o p m a s s a r e a d o p t e d [1 6] ) .
M o r e o v e r , e v e n i f � b e c o m e s s l i g ht l y n e g a t i v e a t v e r y hi g h
e n e r g i e s , t he r e s u l t i n g p o t e n t i a l i n s t a b i l i t y l e a d s t o a n e l e c -
t r o w e a k v a c u u m l i f e t i m e m u c hl a r g e r t ha n a n y r e l e v a n t a s -
t r o p hy s i c a l o r c o s m o l o g i c a l s c a l e . T hu s , t he H i g g s a n d t o p
m a s s e s r e s u l t i n a m e t a s t a b l e v a c u u m [1 4 , 1 5 ] a n d t he S M
c o u l d b e v a l i d u p t o M P l . T he p o s s i b i l i t y o f s o m e n e w -
p hy s i c s t hr e s ho l d a t s c a l e s ⇤ ⇠ MP l , l e a d i n g t o t he m a t c h-
i n g c o n d i t i o n � ( ⇤) = 0 , i s o b v i o u s l y i n t r i g u i n g .

3 Higgs Signal Strengths

T he d a t a o n t he H i g g s - l i k e b o s o n a r e c o n v e n i e n t l y e x -
p r e s s e d i n t e r m s o f t he s o - c a l l e d H i g g s s i g n a l s t r e n g t hs ,
w hi c hm e a s u r e t he p r o d u c t o f t he H i g g s p r o d u c t i o n c r o s s
s e c t i o n t i m e s i t s d e c a y b r a n c hi n g r a t i o i n t o a g i v e n fi -
n a l s t a t e , i n u n i t s o f t he c o r r e s p o n d i n g S M p r e d i c t i o n :
µ ⌘ � · B r / ( �S M · B r S M ) . T hu s , t he S M c o r r e s p o n d s t o
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Figure 3. E v o l u t i o n o f �( µ) w i t ht he r e n o r m a l i z a t i o n s c a l e [1 4 ] .

Table 1. M e a s u r e d H i g g s S i g n a l S t r e n g t hs [2 , 4 , 5 ] .

D e c a y M o d e A T L A S C M S T e v a t r o n
H ! bb 0 . 2 + 0 . 7

� 0 .61 . 1 5 ± 0 .62 1 .5 9 + 0 .69
� 0 .7 2

H ! ⌧⌧ 0 . 7 + 0 . 7
� 0 .61 . 1 0 ± 0 . 4 1 1 .68 + 2 .2 8

� 1 .68
H ! �� 1 . 5 5 + 0 . 3 3

� 0 . 2 8 0 . 7 7 ± 0 . 2 7 5 .9 7 + 3 .3 9
� 3 .1 2

H ! WW⇤ 0 . 9 9 + 0 . 3 1
� 0 . 2 8 0 .68 ± 0 . 2 0 0 .9 4 + 0 .8 5

� 0 .8 3
H ! ZZ⇤ 1 . 4 3 + 0 . 4 0

� 0 . 3 5 0 . 9 2 ± 0 . 2 8
C o m b i n e d 1 . 2 3 ± 0 .1 8 0 . 8 0 ± 0 . 1 4 1 .4 4 + 0 .5 9

� 0 .5 6

µ = 1 . T a b l e 1 s u m m a r i z e s t he p r e s e n t A T L A S [2 ] , C M S
[4 ] a n d T e v a t r o n [5 ] r e s u l t s . T he n e w b o s o n a p p e a r s t o
c o u p l e t o t he k n o w n g a u g e b o s o n s ( W± , Z , � , Ga ) w i t h
t he s t r e n g t he x p e c t e d f o r t he S M H i g g s . A s l i g ht e x c e s s
o f e v e n t s ( 2 � ) i n t he 2 � d e c a y c ha n n e l i s o b s e r v e d b y A T -
L A S , b u t t he C M S d a t a n o - l o n g e r c o n fi r m t hi s t r e n d . T he
g l o b a l L H C ( w o r l d ) a v e r a g e ,

µ = 0 . 9 6± 0 .1 1 ( 0 . 9 8 ± 0 .1 1 ) , ( 5 )

i s i n p e r f e c t a g r e e m e n t w i t ht he S M .
T he s e n s i t i v i t y t o t he d i ↵e r e n t H i g g s c o u p l i n g s i s i n -

c r e a s e d d i s e n t a n g l i n g t he d i ↵ e r e n t p r o d u c t i o n c ha n n e l s :
g l u o n f u s i o n ( GG ! tt̄ ! H ) , v e c t o r - b o s o n f u s i o n
( VV ! H , V = W,Z ) a n d a s s o c i a t e d VH o r tt̄H p r o d u c -
t i o n . A t t he L H C , t he d o m i n a n t c o n t r i b u t i o n c o m e s f r o m
t he g l u o n - f u s i o n m e c ha n i s m w hi c hg i v e s a c c e s s t o t he t o p
Y u k a w a . E v i d e n c e f o r v e c t o r - b o s o n f u s i o n p r o d u c t i o n ha s
b e e n a l r e a d y r e p o r t e d w i t ha s i g n i fi c a n c e a b o v e 3 � . C o m -
p l e m e n t a r y i n f o r m a t i o n i s p r o v i d e d b y t he T e v a t r o n d a t a ,
s p e c i a l l y i n t he VH ! Vbb̄ m o d e .

T he a g r e e m e n t o f t he m e a s u r e d H i g g s p r o d u c t i o n
c r o s s s e c t i o n w i t ht he S M p r e d i c t i o n c o n fi r m s t he e x i s -
t e n c e o f a t o p Y u k a w a c o u p l i n g w i t ht he e x p e c t e d s i z e .
M o r e o v e r , i t e x c l u d e s t he p r e s e n c e o f a d d i t i o n a l f e r m i o n i c
c o n t r i b u t i o n s t o g l u o n - f u s i o n p r o d u c t i o n . A f o u r t hq u a r k
g e n e r a t i o n w o u l d i n c r e a s e t he c r o s s s e c t i o n b y a f a c t o r o f
n i n e , a n d m u c hl a r g e r e n ha n c e m e n t s ( ⇠ 4 T 2

R/T
2
F ) w o u l d
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Figure 2. SM electroweak fit in the mt–MW plane, with (blue)
and without (gray) the Higgs mass, compared with the direct
measurements of the top and W masses (green) [13].

While the vacuum expectation value (the electroweak
scale) was already known, v = (

p
2GF)�1/2 = 246 GeV,

the measured Higgs mass determines the last free parame-
ter of the SM, the quartic scalar coupling:

� =
M2

H

2v2
= 0.13 . (4)

As shown in figure 2, the measured Higgs mass is in beau-
tiful agreement with the expectations from global fits to
precision electroweak data [13].

Quantum corrections to M2
H are dominated by positive

contributions from heavy top loops, which grow logarith-
mically with the renormalization scale µ. Since the physi-
cal value of MH is fixed, the tree-level contribution 2v2�(µ)
decreases with increasing µ. Figure 3 shows the evolution
of �(µ) up to the Planck scale (MPl = 1.2 ⇥ 1019 GeV),
varying mt, ↵s(MZ) and MH by ±3� [14]. The Higgs
quartic coupling remains weak in the entire energy do-
main below MPl and crosses � = 0 at very high ener-
gies around 1010 GeV. The values of MH and mt appear
to be very close to those needed for absolute stability of
the potential (� > 0) up to MPl, which would require
MH > (129.6 ± 1.5) GeV [14, 15] (±5.6 GeV if more con-
servative uncertainties on the top mass are adopted [16]).
Moreover, even if � becomes slightly negative at very high
energies, the resulting potential instability leads to an elec-
troweak vacuum lifetime much larger than any relevant as-
trophysical or cosmological scale. Thus, the Higgs and top
masses result in a metastable vacuum [14, 15] and the SM
could be valid up to MPl. The possibility of some new-
physics threshold at scales ⇤ ⇠ MPl, leading to the match-
ing condition �(⇤) = 0, is obviously intriguing.

3 Higgs Signal Strengths

The data on the Higgs-like boson are conveniently ex-
pressed in terms of the so-called Higgs signal strengths,
which measure the product of the Higgs production cross
section times its decay branching ratio into a given fi-
nal state, in units of the corresponding SM prediction:
µ ⌘ � · Br/(�SM · BrSM). Thus, the SM corresponds to
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Figure 3. Evolution of �(µ) with the renormalization scale [14].

Table 1. Measured Higgs Signal Strengths [2, 4, 5].

Decay Mode ATLAS CMS Tevatron
H ! bb 0.2 + 0.7

� 0.6 1.15 ± 0.62 1.59 + 0.69
� 0.72

H ! ⌧⌧ 0.7 + 0.7
� 0.6 1.10 ± 0.41 1.68 + 2.28

� 1.68
H ! �� 1.55 + 0.33

� 0.28 0.77 ± 0.27 5.97 + 3.39
� 3.12

H ! WW⇤ 0.99 + 0.31
� 0.28 0.68 ± 0.20 0.94 + 0.85

� 0.83
H ! ZZ⇤ 1.43 + 0.40

� 0.35 0.92 ± 0.28
Combined 1.23 ± 0.18 0.80 ± 0.14 1.44 + 0.59

� 0.56

µ = 1. Table 1 summarizes the present ATLAS [2], CMS
[4] and Tevatron [5] results. The new boson appears to
couple to the known gauge bosons (W±, Z, �, Ga) with
the strength expected for the SM Higgs. A slight excess
of events (2�) in the 2� decay channel is observed by AT-
LAS, but the CMS data no-longer confirm this trend. The
global LHC (world) average,

µ = 0.96 ± 0.11 (0.98 ± 0.11) , (5)

is in perfect agreement with the SM.
The sensitivity to the di↵erent Higgs couplings is in-

creased disentangling the di↵erent production channels:
gluon fusion (GG ! tt̄ ! H), vector-boson fusion
(VV ! H, V = W,Z) and associated VH or tt̄H produc-
tion. At the LHC, the dominant contribution comes from
the gluon-fusion mechanism which gives access to the top
Yukawa. Evidence for vector-boson fusion production has
been already reported with a significance above 3�. Com-
plementary information is provided by the Tevatron data,
specially in the VH ! Vbb̄ mode.
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The first term gives the (gauged) Goldstone Lagrangian,
plus their interactions with the SU(2)L+R singlet Higgs-
like particle H. For ! = 1 one recovers the H'' ver-
tex of the SM; i.e., the SM Higgs coupling to the gauge
bosons (! = a = V ). The e↵ective Lagrangian also in-
corporates the lightest vector and axial-vector resonance
multiplets Vµ⌫ and Aµ⌫ with masses MV and MA. The FV

and FA terms couple these resonances with the gauge and
Goldstone fields through f µ⌫± .

We have already seen in Eq. (9) that the LHC data
requires ! to be within 10% of its SM value. A much
stronger constraint is obtained from the measured Z and
W± self-energies [33–35], which are modified by the pres-
ence of massive resonance states coupled to the gauge
bosons. The e↵ect is characterized by the so-called
oblique parameters [36]; the global fit to electroweak pre-
cision data determines the values S = 0.03 ± 0.10 and
T = 0.05 ± 0.12 [13]. S receives tree-level contributions
from vector and axial-vector exchanges, while T is iden-
tically zero at lowest-order (it measures the breaking of
custodial symmetry).

Imposing a good short-distance behaviour of the e↵ec-
tive theory,1 the tree-level contribution to S is determined
by the resonance masses. The experimental constraint
on S implies that MV,A are larger than 1.8 (2.4) TeV at
95% (68%) CL. Thus, strongly-coupled models of EWSB
should have a quite high dynamical mass scale. While this
was often considered to be an undesirable property, it fits
very well with the LHC findings which are pushing the
scale of new physics beyond the TeV region. It also jus-
tifies our approximation of only considering the lightest
resonance multiplets. The NLO contributions to S from
'', V' and A' loops are small and make slightly stronger
the lower bound on the resonance mass scale [33].

Much more important is the presence of a light scalar
resonance with MH = 126 GeV. Although it does not con-
tribute at LO, there exist sizeable HB (H') loop contri-
butions to T (S ), which are proportional to !2 (B is the
U(1)Y gauge field). Figure 8 compares the NLO theo-
retical predictions with the experimental bounds [33]. At
68% (95%) CL, one gets ! 2 [0.97, 1] ([0.94, 1]), in nice
agreement with the present LHC evidence but much more
restrictive. Moreover, the vector and axial-vector states
should be very heavy (and quite degenerate); one finds
MA ⇡ MV > 5 TeV (4 TeV) at 68% (95%) CL [33].

These conclusions are quite generic, since only rely
on mild assumptions about the ultraviolet behaviour of
the underlying strongly-coupled theory, and can be easily
particularized to more specific models. The dilaton cou-
pling to the electroweak bosons corresponds to ! = v/ f',
which makes this scenario quite unlikely. More plausible
could be the pseudo-Goldstone Higgs identification. In the
SO(5)/SO(4) minimal models, ! = (1� v2/ f 2

' )1/2 [27, 28]
with f' the typical scale of the Goldstone bosons of the

1 One requires the validity of the two Weinberg sum rules [37], which
are known to be true in asymptotically-free gauge theories. The results
are slightly softened if one only imposes the first sum rule, which is also
valid in gauge theories with non-trivial ultraviolet fixed points.
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Figure 8. NLO determination of S and T . The grid lines corre-
spond to MV values from 1.5 to 6.0 TeV, at intervals of 0.5 TeV,
and ! = 0, 0.25, 0.5, 0.75, 1. The arrows indicate the directions
of growing MV and !. The ellipses give the experimentally al-
lowed regions at 68%, 95% and 99% CL [33].

strong sector, which is then tightly constrained by elec-
troweak (and LHC) data.

Thus, strongly-coupled electroweak models are al-
lowed by current data provided the resonance mass scale
stays above the TeV and the light Higgs-like boson has
a gauge coupling close to the SM one. This has obvious
implications for future LHC studies, since it leads to a SM-
like scenario. A possible way out would be the existence
of additional light scalar degrees of freedom, sharing the
strength of the SM gauge coupling as happens in (weakly-
coupled) two-Higgs-doublet models.

Values of ! , 1 lead to tree-level unitarity violations
in the scattering of two longitudinal gauge bosons. The
present experimental constraints on ! imply already that
the perturbative unitarity bound is only reached at very
high energies above 3 TeV. Unitarity violations could also
originate from anomalous gauge self-interactions, which
are again bounded by collider data [38]. A recent study
of the implications of unitarity in the strongly-interacting
electroweak context has been given in Ref. [39].

7 Discussion

The successful discovery of a boson state at the LHC
brings a renewed perspective in particle physics. The new
boson behaves indeed as the SM Higgs and its mass fits
very well with the expectations from global fits to preci-
sion electroweak data. Thus, the SM appears to be the
right theory at the electroweak scale and all its parameters
and fields have been finally determined. In fact, with the
measured Higgs and top masses, the SM could be a valid
theory up to the Planck scale.

However, new physics is still needed to explain many
pending questions for which the SM does not provide sat-
isfactory answers. A proper understanding of the vastly
di↵erent mass scales spanned by the known particles is
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whilst the second WSR is questionable in some scenarios.
If only the first WSR is considered, but still assuming the
hierarchy MA > MV , one obtains the lower bound [4]
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The possibility of an inverted mass ordering of the vector
and axial-vector resonances [12] would turn this lower
bound into the upper bound SLO < 4πv2/M2

V . Note that
if the splitting of the vector and axial-vector resonances
was small, the prediction of SLO would be close to the
bound.
At the next-to-leading order (NLO) the computed

W 3B correlator should also satisfy the proper short-
distance behaviour. The ππ and Sπ spectral functions
would have an unphysical grow at large momentum trans-
fer unless FV GV = v2 and FAλSA

1 = ωv. The first con-
straint guarantees a well-behaved vector form factor [3],
while the second relates the axial and scalar couplings.
Once these relations are enforced, the Goldstone self-
energies are convergent enough to allow for an unam-
biguous determination of T in terms of masses and ω.
Neglecting terms of O(m2
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where mH is the SM reference Higgs mass adopted to
define S and T . Notice that taking mH = mS1

and ω = 1
(the SM value), T vanishes when MV = MA as it should.
To enforce the secondWSR at NLO one needs the addi-

tional constraint ω = M2
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2
A (constrained to the range

0 ≤ ω ≤ 1). One can then obtain a NLO determination
of S in terms of MV and MA:
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where terms of O(m2
S1
/M2

V,A) have been neglected. Tak-
ing mH = mS1

, the correction to the LO result vanishes
when MV = MA (ω = 1); in this limit, the NLO predic-
tion reaches the LO upper bound in Eq. (8).
If only the first WSR is considered, one can still obtain

a lower bound at NLO in terms of MV , MA and ω:
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where MV < MA has been assumed and we have ne-
glected again terms of O(m2

S1
/M2

V,A). With mH = mS1
,

the NLO correction vanishes in the combined limit ω = 1
and MV = MA, where the LO lower bound (9) is recov-
ered.

MV

Ω

"0.4 "0.2 0.0 0.2 0.4

"0.4

"0.2

0.0

0.2

0.4

S

T

FIG. 2. NLO determinations of S and T , imposing the two
WSRs. The approximately vertical curves correspond to con-
stant values ofMV , from 1.5 to 6.0 TeV at intervals of 0.5 TeV.
The approximately horizontal curves have constant values of
ω: 0.00, 0.25, 0.50, 0.75, 1.00. The arrows indicate the direc-
tions of growing MV and ω. The ellipses give the experimen-
tally allowed regions at 68% (orange), 95% (green) and 99%
(blue) CL.

PHENOMENOLOGY

Taking the SM reference point at mH = mS1
= 126

GeV, the global fit to precision electroweak data gives
the results S = 0.03 ± 0.10 and T = 0.05 ± 0.12, with
a correlation coefficient of 0.891 [13]. In Fig. 2 we show
the compatibility between these “experimental” values
and our NLO determinations imposing the two WSRs:
Eq. (10) with ω = M2

V /M
2
A and Eq. (11). Notice that

the line with ω = M2
V /M

2
A = 1 (T = 0) coincides with

the LO upper bound in (8), while the ω = M2
V /M

2
A → 0

curve reproduces the lower bound in Eq. (12) in the same
limit. Thus, a vanishing scalar-Goldstone coupling (ω =
0) would be incompatible with the data, independently
of whether the second WSR has been assumed.
Fig. 2 shows a very important result in the two-WSR

scenario: with mS1
= 126 GeV, the precision electroweak

data requires that the Higgs-like scalar should have a
WW coupling very close to the SM one. At 68% (95%)
CL, one gets ω ∈ [0.97, 1] ([0.94, 1]), in nice agreement
with the present LHC evidence [1], but much more re-
strictive. Moreover, the vector and axial-vector states
should be very heavy (and quite degenerate); one finds
MV > 5 TeV (4 TeV) at 68% (95%) CL.
This conclusion is softened when the second WSR is

dropped and the lower bound in Eq. (12) is used instead.
This is shown in Fig. 3, which gives the allowed 68% CL
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data requires that the Higgs-like scalar should have a
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with the present LHC evidence [1], but much more re-
strictive. Moreover, the vector and axial-vector states
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This conclusion is softened when the second WSR is
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SM pattern of EWSB, i.e. the theory is symmetric under
S U(2)L ⌦ S U(2)R and becomes spontaneously broken to
the diagonal subgroup S U(2)L+R. S 1 is taken to be sin-
glet under S U(2)L+R, while Vµ⌫ and Aµ⌫ are triplets. To
build the Lagrangian we have only considered operators
with the lowest number of derivatives, as higher-derivative
terms are either proportional to the equations of motion or
tend to violate the expected short-distance behaviour [5].
We have needed the interactions [4]

L =
v2

4
h uµuµ i

 
1 +

2!
v

S 1

!
+

FA

2
p

2
h Aµ⌫ f µ⌫� i
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2
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2
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2
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+
p

2�S A
1 @µS 1h Aµ⌫u⌫ i , (1)

plus the standard gauge boson and resonance kinetic
terms. We have followed the notation of Ref. [6]. The first
term in (1) gives the Goldstone Lagrangian, present in the
SM, plus the scalar-Goldstone interactions. For ! = 1 one
recovers the S 1 ! ⇡⇡ vertex of the SM. Note that ! is
called W , Z or a in other references.

The oblique parameter S receives tree-level contribu-
tions from vector and axial-vector exchanges [7], while T
is identically zero at lowest-order (LO):

S LO = 4⇡
0
BBBB@

F2
V

M2
V

� F2
A

M2
A

1
CCCCA , TLO = 0 . (2)

To compute the one-loop contributions we have used the
dispersive representation of S introduced by Peskin and
Takeuchi [7], whose convergence requires a vanishing
spectral function at short distances:

S =
16⇡

g2 tan ✓W

Z 1

0

dt
t

[ ⇢S (t) � ⇢S (t)SM ] , (3)

with ⇢S (t) the spectral function of the W3B correlator [4,
6, 7].

The calculation of T is simplified by noticing that, up
to corrections of O(m2

W/M
2
R), T = Z(+)/Z(0) � 1, being Z(+)

and Z(0) the wave-function renormalization constants of
the charged and neutral Goldstone bosons computed in the
Landau gauge [9]. A further simplification occurs by set-
ting g to zero , which does not break the custodial symme-
try, so only the B-boson exchange produces an e↵ect in T .
This approximation captures the lowest order contribution
to T in its expansion in powers of g and g0.

Requiring the W3B spectral function ⇢S (t) to vanish at
high energies channel by channel leads to a good conver-
gence of the Goldstone self-energies, at least for the cuts
we have considered. Then, their di↵erence obeys an un-
subtracted dispersion relation, which enables us to com-
pute T through the dispersive integral [4],

T =
4⇡

g02 cos2 ✓W

Z 1

0

dt
t2 [ ⇢T (t) � ⇢T (t)SM ] , (4)

with ⇢T (t) the spectral function of the di↵erence of the
neutral and charged Goldstone self-energies.

It is quite interesting to remark the main assumptions
we have done in our approach:
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Figure 1. NLO contributions to S (two first lines) and T (two
last lines). A dashed (double) line stands for a Goldstone
(resonance) boson and a curved line represents a gauge
boson.

1. Only operators with at most two derivatives have
been kept in the action. Considering the equations
of motion, field redefinitions and the high-energy
behavior of form factors is possible to find the ab-
sence of higher derivative operators [5]. Moreover,
it is known that this procedure works in the QCD
case [3].

2. Only the lightest vector and axial-vector reso-
nance multiplets have been considered. This is
known to be a good approximation since contri-
butions from higher states are suppressed by their
masses. QCD phenomenology supports this approx-
imation: the single resonance approximation [3].

3. Only contributions to the dispersive relations of
Eqs. (3) and (4) coming from the lightest two-
particle channels without heavy resonances are
going to be considered, i.e. two Goldstones or one
Goldstone plus one scalar resonance for S and the
B boson plus one Goldstone or one scalar resonance
for T . Note that from a dimensional analyses higher
cuts tend to be suppressed. Moreover, the 1/t or 1/t2

weight in the sum rules of (3) and (4) enhances the
contribution from the lightest thresholds and sup-
presses channels with heavy states [10]. V⇡ and A⇡
contributions were shown to be suppressed in a pre-
vious Higgsless analysis [6]. Again, it is known that
this procedure works in the QCD case [10].

4. Unlike what happens in QCD, the underlying theory
is not known. Therefore, although we have worked
at lowest order in g and g0, the counting is not well
defined. We only know that loops are suppressed (~
counting in the loop expansion) and that it works in
QCD in the framework of the 1/NC expansion, with
NC the number of colours.

3 Short-distance constraints

Figure 1 shows the computed one-loop contributions to S
and T . The spectral functions of Eqs. (3) and (4) are [4, 5]:

⇢S (s)|⇡⇡ = g
2 tan ✓w
192⇡2
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EPJ Web of Conferences

SM pattern of EWSB, i.e. the theory is symmetric under
S U(2)L ⌦ S U(2)R and becomes spontaneously broken to
the diagonal subgroup S U(2)L+R. S 1 is taken to be sin-
glet under S U(2)L+R, while Vµ⌫ and Aµ⌫ are triplets. To
build the Lagrangian we have only considered operators
with the lowest number of derivatives, as higher-derivative
terms are either proportional to the equations of motion or
tend to violate the expected short-distance behaviour [5].
We have needed the interactions [4]
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plus the standard gauge boson and resonance kinetic
terms. We have followed the notation of Ref. [6]. The first
term in (1) gives the Goldstone Lagrangian, present in the
SM, plus the scalar-Goldstone interactions. For ! = 1 one
recovers the S 1 ! ⇡⇡ vertex of the SM. Note that ! is
called W , Z or a in other references.

The oblique parameter S receives tree-level contribu-
tions from vector and axial-vector exchanges [7], while T
is identically zero at lowest-order (LO):
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To compute the one-loop contributions we have used the
dispersive representation of S introduced by Peskin and
Takeuchi [7], whose convergence requires a vanishing
spectral function at short distances:

S =
16⇡

g2 tan ✓W

Z 1

0

dt
t

[ ⇢S (t) � ⇢S (t)SM ] , (3)

with ⇢S (t) the spectral function of the W3B correlator [4,
6, 7].

The calculation of T is simplified by noticing that, up
to corrections of O(m2

W/M
2
R), T = Z(+)/Z(0) � 1, being Z(+)

and Z(0) the wave-function renormalization constants of
the charged and neutral Goldstone bosons computed in the
Landau gauge [9]. A further simplification occurs by set-
ting g to zero , which does not break the custodial symme-
try, so only the B-boson exchange produces an e↵ect in T .
This approximation captures the lowest order contribution
to T in its expansion in powers of g and g0.

Requiring the W3B spectral function ⇢S (t) to vanish at
high energies channel by channel leads to a good conver-
gence of the Goldstone self-energies, at least for the cuts
we have considered. Then, their di↵erence obeys an un-
subtracted dispersion relation, which enables us to com-
pute T through the dispersive integral [4],

T =
4⇡

g02 cos2 ✓W

Z 1

0

dt
t2 [ ⇢T (t) � ⇢T (t)SM ] , (4)

with ⇢T (t) the spectral function of the di↵erence of the
neutral and charged Goldstone self-energies.

It is quite interesting to remark the main assumptions
we have done in our approach:
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Figure 1. NLO contributions to S (two first lines) and T (two
last lines). A dashed (double) line stands for a Goldstone
(resonance) boson and a curved line represents a gauge
boson.

1. Only operators with at most two derivatives have
been kept in the action. Considering the equations
of motion, field redefinitions and the high-energy
behavior of form factors is possible to find the ab-
sence of higher derivative operators [5]. Moreover,
it is known that this procedure works in the QCD
case [3].

2. Only the lightest vector and axial-vector reso-
nance multiplets have been considered. This is
known to be a good approximation since contri-
butions from higher states are suppressed by their
masses. QCD phenomenology supports this approx-
imation: the single resonance approximation [3].

3. Only contributions to the dispersive relations of
Eqs. (3) and (4) coming from the lightest two-
particle channels without heavy resonances are
going to be considered, i.e. two Goldstones or one
Goldstone plus one scalar resonance for S and the
B boson plus one Goldstone or one scalar resonance
for T . Note that from a dimensional analyses higher
cuts tend to be suppressed. Moreover, the 1/t or 1/t2

weight in the sum rules of (3) and (4) enhances the
contribution from the lightest thresholds and sup-
presses channels with heavy states [10]. V⇡ and A⇡
contributions were shown to be suppressed in a pre-
vious Higgsless analysis [6]. Again, it is known that
this procedure works in the QCD case [10].

4. Unlike what happens in QCD, the underlying theory
is not known. Therefore, although we have worked
at lowest order in g and g0, the counting is not well
defined. We only know that loops are suppressed (~
counting in the loop expansion) and that it works in
QCD in the framework of the 1/NC expansion, with
NC the number of colours.

3 Short-distance constraints

Figure 1 shows the computed one-loop contributions to S
and T . The spectral functions of Eqs. (3) and (4) are [4, 5]:
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From two Weinberg sum rules and from NLO loop 
expansion:

MV,  MA  ~ 2 TeV or higher is compatible with 
S,T constraints  (it is tight and arguably ambiguous)

more work needed

related body of work by Sannino and collaborators



MV

Ω

"0.4 "0.2 0.0 0.2 0.4

"0.4

"0.2

0.0

0.2

0.4

S

T
light composite Higgs and EW constraints 

FIG. 2. NLO determinations of S and T , imposing the two
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stant values ofMV , from 1.5 to 6.0 TeV at intervals of 0.5 TeV.
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minimal composite Higgs in sextet rep is not 
ruled out (resonance spectrum in 2 TeV range)
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Figure 7: (Left) Continuum extrapolations of Ω(u; c, a/L) for three different values of c =

0.3, 0.4, 0.5. Only the lattices with L/a = 8, 10, 12, 16 are used for the fit, but the L/a = 6

lattice as well as the larger lattices L/a = 24, 32, 40 are in the plot. (Top right) The value

of the gradient flow coupling in the continuum as a function of c. (Bottom right) Relative

size of the continuum extrapolation for the three representative cases c = 0.3, 0.4, 0.5.

at the same value of the bare coupling as the available one, but with a non-zero quark

mass. Actually the bare parameters of the simulation correspond to the lattice labeled as

8∗ in [35], and the interested reader is encouraged to consult the original work for more

details. Defining the dimensionless PCAC quark mass z = Lm, we obtain

∂g2GF

∂z

∣∣∣∣
u=4.484

=

{
0.19(7) for c = 0.3

0.17(9) for c = 0.4
, (4.11)

to be compared to the corresponding value of 1.4(4) for the Schrödinger functional coupling.

The mass dependence of the gradient flow coupling as defined in the present paper is smaller

by an order of magnitude.

5 Conclusions

The gradient flow can be used to defined a renormalized coupling at a scale µ = 1/
√
8t. In

this work we have studied the perturbative behavior of the gradient flow in the Schrödinger

functional. By setting the renormalization scale proportional to the linear size of the SF

box, µ = 1/
√
8t = 1/cL, we have defined a family of running coupling constants valid for an

arbitrary SU(N) gauge field coupled to arbitrary fermions. Since this coupling definition
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],

⇤E(t)⌅ = 3

4⇤t2
�(q)

�
1 + k1�(q) +O(�2)

⇥
, q =

1⇧
8t
, k1 = 1.0978 + 0.0075⇥Nf .
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

32

finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.
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representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
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where ⌅3 is the third Jacobi function. In tests
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representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

 L-dependent running coupling definition from gauge field gradient flow
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Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],

⇤E(t)⌅ = 3

4⇤t2
�(q)

�
1 + k1�(q) +O(�2)

⇥
, q =

1⇧
8t
, k1 = 1.0978 + 0.0075⇥Nf .
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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The chiral (Higgs) condensate

• New stochastic method  

 
• Direct determination of full spectral density and mode number 
   distribution on gauge configurations

• To remove UV divergences at finite fermion mass

• To investigate internal (in)consistencies with GMOR relation

• To determine anomalous dimension of the chiral condensate
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the lattice spacing. The Banks–Casher relation consequently cannot be expected to
hold exactly and the detailed properties of the low quark modes could be significantly
different from those in the continuum theory. On the other hand, as long as only
renormalizable quantities are considered, their values in the continuum limit must
in principle be computable using the Wilson theory.

The spectral density of the (hermitian) Dirac operator, and thus the average num-
ber of quark modes in a given range of eigenvalues, are known to be renormalizable
[5]. In the present paper, we first give a second proof of this important fact (sect. 3).
We then discuss the chiral perturbation expansion of the mode numbers and show, in
sect. 5, that their calculation in lattice QCD requires only a modest computational
effort. Taken together, these results allow the chiral condensate to be computed in
the Wilson theory in a straightforward manner (sect. 6). Spectral projectors however
have a wider range of applicability and provide interesting opportunities to explore
the chiral regime of QCD, some of which are briefly mentioned in sect. 7.

2. Preliminaries

For simplicity we focus on QCD with a doublet of mass-degenerate quarks, but the
theoretical discussion is more generally valid and extends to the case of real-world
QCD. The quarks will be referred to as the up and down quarks, the associated
Goldstone bosons as the pions and the SU(2) flavour symmetry as the isospin sym-
metry. We consider both the continuum and the Wilson lattice theory in order to
make it clear in which way the mode number computed on the lattice is related to
the one defined in the continuum theory.

2.1 Spectral density and mode number in the continuum theory

In a space-time box of volume V with periodic or antiperiodic boundary conditions,
the euclidean massless Dirac operator D in presence of a given gauge field has purely
imaginary eigenvalues iλ1, iλ2, . . ., which may be ordered so that those with the
lower magnitude come first. The associated average spectral density is given by

ρ(λ,m) =
1

V

∞
∑

k=1

〈δ(λ − λk)〉 (2.1)

where the bracket 〈. . .〉 denotes the QCD expectation value and m the current-quark

2

mass. Note that the isospin degeneracy is not included in the mode counting, i.e. the
Dirac operator is diagonalized in the subspace of, say, the up-quark fields.

The Banks–Casher relation [1]

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π
(2.2)

provides a link between the chiral condensate

Σ = − lim
m→0

lim
V →∞

〈ūu〉 (2.3)

(where u is the up-quark field) and the spectral density. In particular, if chiral sym-
metry is spontaneously broken by a non-zero value of the condensate, the density of
the quark modes in infinite volume does not vanish at the origin. A non-zero density
conversely implies that the symmetry is broken, i.e. the Banks–Casher relation can
be read in either direction.

Instead of the spectral density, the average number ν(M,m) of eigenmodes of the
massive hermitian operator D†D + m2 with eigenvalues α ≤ M2 turns out to be a
more convenient quantity to consider. Evidently, since

ν(M,m) = V

∫ Λ

−Λ
dλρ(λ,m), Λ =

√

M2 − m2, (2.4)

the mode number ultimately carries the same information as the spectral density.

2.2 O(a)-improved lattice QCD

The lattice theory is set up as usual on a hyper-cubic lattice with spacing a, time-like
extent T and spatial size L. Periodic boundary conditions are imposed on all fields
and in all directions, the only exception being the quark fields which are taken to
be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression

SF = a4
∑

x

{

ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)

for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac
operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free
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where it is understood that the bare masses are expressed through the renormalized
ones. The factors 1 + bPP amq in eq. (3.6) are required for the cancellation of the
O(amq) terms alluded to above which derive from the short-distance singularities of
the density-chain correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0,
one quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.
Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the
renormalized twisted mass µR, the expressions one obtains must be O(a)-improved.
As it turns out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
1 + bP amq

1 + bPP amq
=

1

Zµ(1 + bµamq)
(3.10)

up to terms of order a2m2
q.

Returning to the integral representation (3.2), we now note that the renormaliza-
tion factor {Zµ(1 + bµamq)}−2k needed to renormalize the spectral sum on the left
of the equation is cancelled on the right if we substitute

MR = Zµ(1 + bµamq)M (3.11)

and renormalize µ. We are thus led to conclude that

νR(MR,mR) = ν(M,mq) (3.12)

is a renormalized and O(a)-improved quantity. In other words, the mode number is
a renormalization-group invariant.
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control on UV divergences: mode number density of chiral condensate 

spectral density 

mode number density 

renormalized and RG invariant (Giusti and Luscher)

The chiral condensate in the sextet theory
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Figure 3: (left) The mode number n as a function of the eigenvalue cut M as measured on 483 ⇥ 96 lattice volumes.
The region where the derivative of the mode number is used to extract the effective condensate Seff is shown by the
red line. The derivative dn/dL is approximated by a finite difference between M2 and M1 centered around M. (right)
The volume-dependence of the effective condensate Seff, extracted on all ensembles at L = 0.003. The data are slightly
offset horizontally for visibility.

relatively few gauge configurations, the mode number is quite accurately measured. We measure
on configurations separated by 20 Molecular Dynamics time units to reduce autocorrelation. Moti-
vated by the leading-order linear relationship between Seff and n , we define the effective condensate
via the derivative dn/dL, which we approximate with finite differences around the central value.
Deviation from linearity would reflect the increase in r moving away from l = 0. The choice
L = 0.003 is convenient for all ensembles as being in the central eigenvalue region, neither too
close to the maximal M value due to the finite number of eigenvalues being calculated, nor too
close to the lower end of the eigenvalue spectrum. The location L = 0.003 is shown on the left in
Figure 3 as the red line where the derivative is calculated.

We repeat the analysis for each ensemble at the value L = 0.003, the results are summarized
on the right in Figure 3. At three values of the fermion mass m, there is good consistency in
the determination of Seff from different lattice volumes, an empirical indication that the physical
volume is large enough to allow a non-zero density of small eigenvalues to emerge. For further
analysis, we treat the value of Seff on the largest lattice volume at each fermion mass as being the
infinite-volume result. As shown on the left in Figure 4, we find the data can be described quite
well by linear mass dependence. The extrapolation gives a value for the fermion condensate in the
chiral limit which lies between those obtained from the direct measurement of hȳyi and from the
GMOR relation. We can also compare the data with an expansion in the fermion mass from chiral
perturbation theory. The analytic result from Osborn et al [13] is

Seff

S
= 1+

S
32p3NFF4


2N2

F |L|arctan
|L|
m

�4p|L|�N2
Fm log

L2 +m2

µ2 �4m log
|L|
µ

�
(3.1)

where the scale is set by µ = F2L2
mom/2S and Lmom is the momentum cutoff (the term p3 as above

is a correction). In the special case NF = 2, there is no L correction in the limit m ! 0. As we
show on the right in Figure 4 the chiral form appears to describe the data quite well, with a roughly

5
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Kogut-Sinclair work consistent with χSB phase transition

Relevance in early cosmology (order of the phase transition?)

finite temperature 
EW phase transition?Kogut-Sinclair
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The chiral phase transition for QCD with sextet quarks D. K. Sinclair

trajectory runs at m= 0.02. We are currently increasing or plan to increase our run lengths at each
of these masses.

The chiral condensates for each mass decrease as β increases. More importantly, as β in-
creases, the mass dependence of these condensates becomes more pronounced. The decrease in the
chiral condensate with decreasing mass is such that it does appear that it will vanish in the chiral
limit for β sufficiently large. However, the β dependence of 〈ψ̄ψ〉 is sufficiently smooth at all the
masses of our simulations, that we would need a precise analytical form to perform a believable
chiral m→ 0 extrapolation to determine where it vanishes. This we do not have. Hence we examine
the (disconnected) chiral susceptibilities

χψ̄ψ =
V
T
[

〈(ψ̄ψ)2〉− (〈ψ̄ψ〉)2
]

(2.1)

where V is the spatial volume of the lattice and T is the temperature. ψ̄ψ is a lattice averaged
quantity. Because we only have stochastic estimators for ψ̄ψ (5 per trajectory), we obtain un-
biased estimators of (ψ̄ψ)2 as the products of 2 different estimators of ψ̄ψ for the same gauge
configuration.

Figure 1: Chiral susceptibilities on a 163× 8 lattice.

The chiral susceptibility diverges at the chiral phase transition for zero quark mass. At small
but finite mass, it shows a clear peak which becomes sharper as m decreases. Extrapolating the
position of said peak to m= 0 yields βχ , the β value of the chiral phase transition. Figure 1 shows
the chiral susceptibilities from our runs on 163×8 lattices. What is clear from this plot is that the

3

Early universe
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Dark matter •lattice BSM phenomenology of dark matter
  pioneering LSD work

• dark matter candidate  sextet Nf=2
   electroweak active in the application

• there is room for third heavy fermion 
   flavor as electroweak singlet

•  rather subtle sextet baryon 
   construction (symmetric in color)
   

Dark matter
self-interacting?  
O(barn) cross section would be challenging

The Total Energy of the Universe:

Vacuum Energy (Dark Energy)  ~  67 %
Dark Matter                                ~  29 %
Visible Baryonic Matter              ~    4 %

T. Appelquist, R. C. Brower, M. I. Buchoff, M. Cheng, S. D. Cohen
,
 G. T. Fleming, J. Kiskis, M. F. Lin, E. T. Neil, J. C. Osborn, C. Rebbi, D. Schaich, C. Schroeder

,
 S. Syritsyn, G. Voronov, P. 

Vranas, and J. Wasem
 
 (Lattice Strong Dynamics (LSD) Collaboration) 

Buchoff talk

• Nf=2   Qu=2/3 Qd = -1/3
   udd neutral dark matter candidate

Early universe
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Summary and Outlook
  

Simplest composite scalar is light near conformality  
   
      light scalar (dilaton-like?) emerging            close to conformal window?

      running (walking) coupling in progress       difficult, Gradient Flow is huge improvement

      chiral condensate                                        new method is very promising

      spectroscopy                                               emerging resonance spectrum  ~ 2 TeV

      dark matter                                                  implications are intriguing
                                                                          strong self-interactions?
Tuning with third flavor ?

We have a candidate for minimal Higgs impostor to make it fail !

Our job is not to oversell, but do everything we can to kill the model !
 
If we fail to kill, the model will speak for itself
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