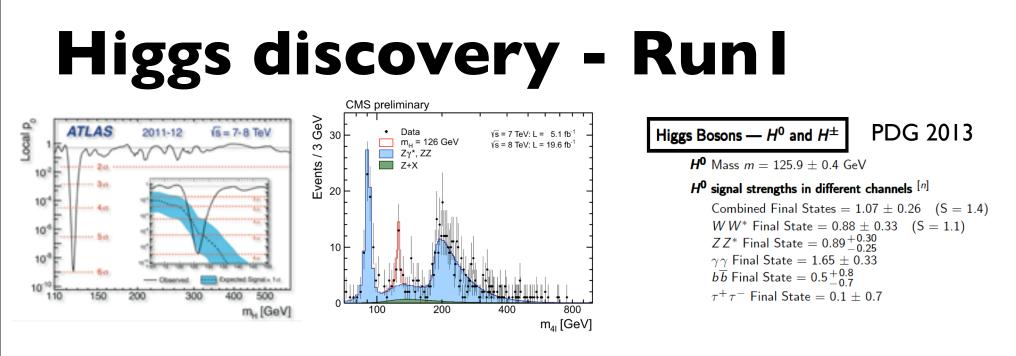
A UV description of a composite Higgs model without elementary scalars

Tony Gherghetta University of Minnesota

SCGT14 Mini-Workshop, KMI, Nagoya, Japan, March 5, 2014

[James Barnard, TG, Tirtha Sankar Ray 1311.6562] [James Barnard, TG, Anibal Medina, Tirtha Sankar Ray 1307.4778]



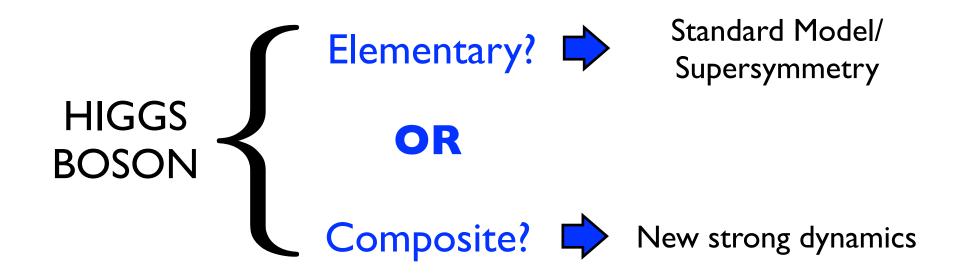
Higgs potential:
$$V(h) = -\mu_h^2 |H|^2 + \lambda_h |H|^4 \qquad \langle H \rangle = \frac{1}{\sqrt{2}} (v+h)$$

$$v^2 = \frac{\mu_h^2}{\lambda_h} \simeq (246 \text{ GeV})^2$$
 $m_h^2 = 2\lambda_h v^2 \simeq (126 \text{ GeV})^2$
 $\mu_h^2 \simeq (89 \text{ GeV})^2$ $\lambda_h \simeq 0.13$

Higgs couplings [Giardino et al 1303.3570] 1.5 1.0 SM Higgs coupling to fermions c0.3 Higgs coupling 0.5 0.1 0.0 Z t W b τ 0.03 -0.5 0.01 90,99% CL -1.03 10 30 100 300 0.6 0.8 1.0 1.2 1.4 Mass of SM particles in GeV Higgs coupling to vectors a

Looks very much like a SM Higgs boson!

What is the nature of the Higgs boson?

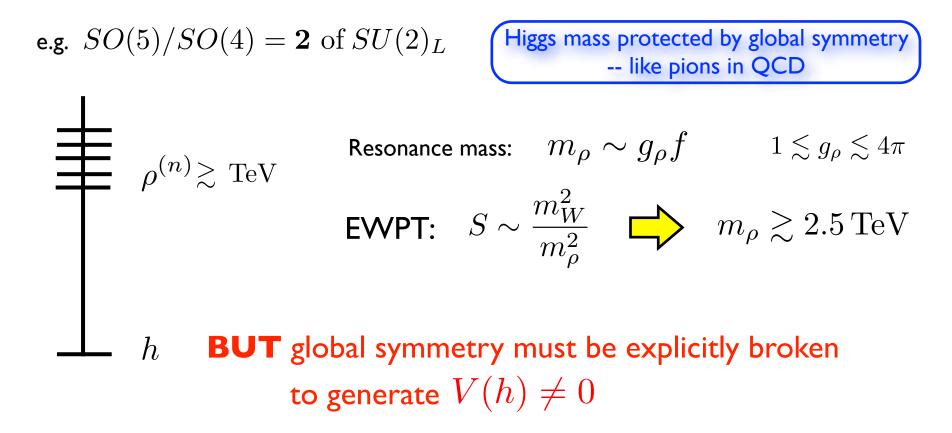


How to obtain a mass ~126 GeV much below the Planck scale?

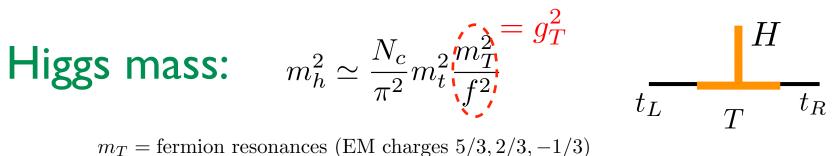
Composite Higgs

Higgs as a pseudo Nambu-Goldstone boson [Georgi, Kaplan `84]

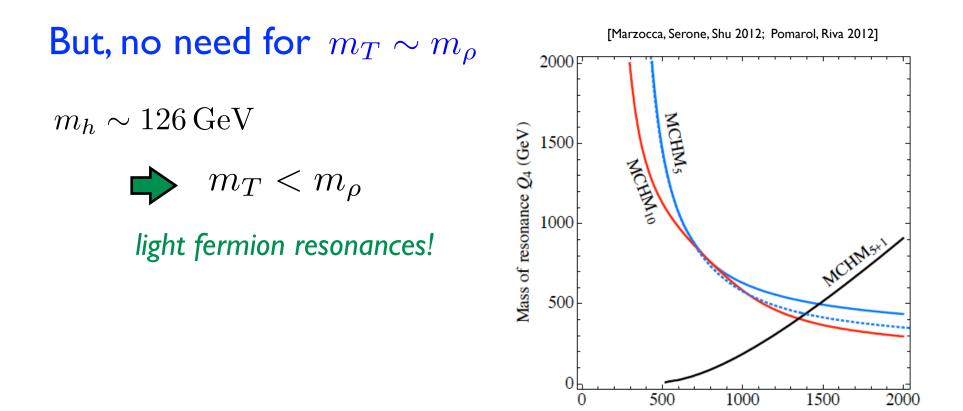
Global symmetry G spontaneously broken to subgroup H at scale f



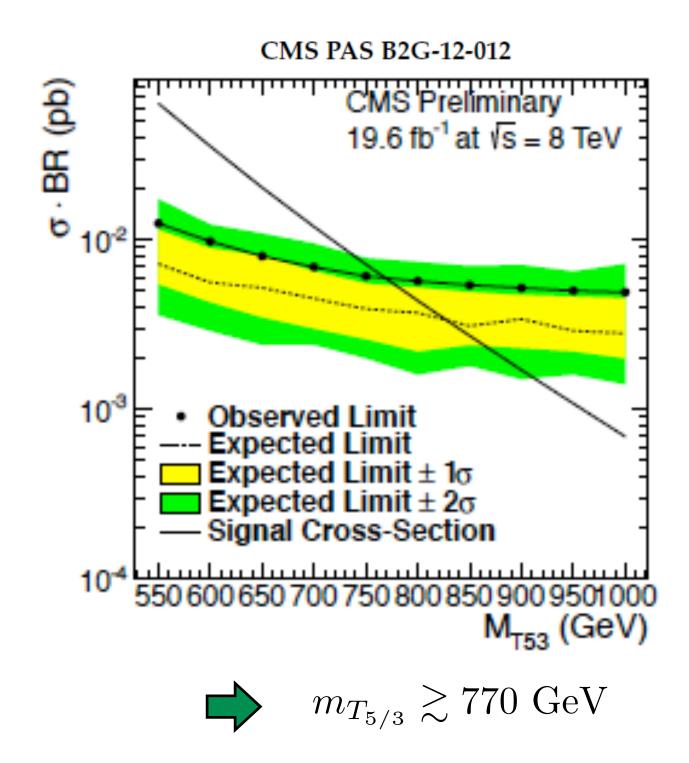
Global symmetry broken by mixing with elementary sector [Kaplan `91; Agashe, Contino, Pomarol `04]



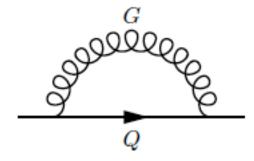
 $m_T \sim m_\rho \gtrsim 2.5 \,\text{TeV} \ (g_T \sim g_\rho \gtrsim 3) \quad \Longrightarrow \quad m_h \gtrsim m_t$

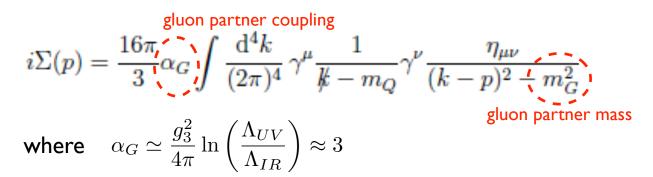


Mass of resonance Q_1 (GeV)



HOWEVER, top partners rightarrow gluon partners





Contribution to Higgs mass:

$$m_h^2 \approx \frac{8N_c v^2}{f^4} \int \frac{\mathrm{d}^4 p_E}{(2\pi)^4} \, \left[\frac{1}{p_E^2} \left| M(p_E^2) \right|^2 + \frac{1}{4} \Pi_L^h(p_E^2)^2 + \Pi_R^h(p_E^2)^2 \right]$$

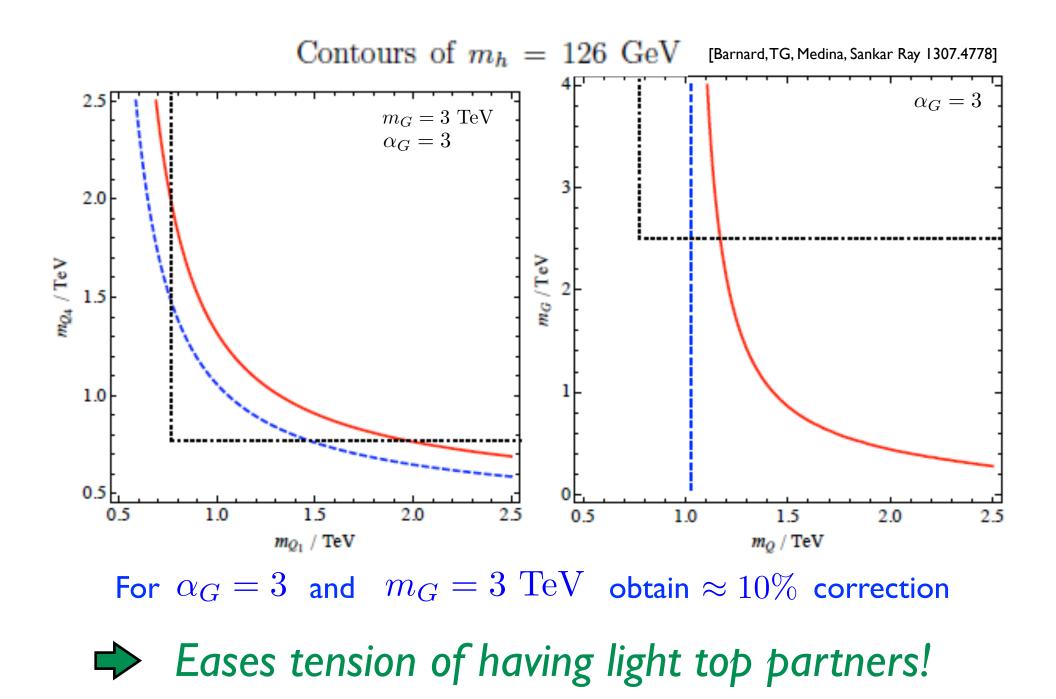
where

$$M(p^2) = \sum_{n=1}^{\infty} \frac{b_n F_n^L F_n^{R*}(m_{Q_n} + \Delta m_{Q_n}(p^2))}{p^2 - (m_{Q_n} + \Delta m_{Q_n}(p^2))^2} \qquad \Pi(p^2)_{L/R} = \sum_{n=1}^{\infty} \frac{a_n |F_n^{L/R}|^2}{p^2 - (m_{Q_n} + \Delta m_{Q_n}(p^2))^2}$$

and

$$\Delta m_Q(p^2) = \frac{2\alpha_G}{3\pi} m_Q \int_0^1 \mathrm{d}x \, (x-2) \ln\left[\frac{(1-x)m_Q^2 + xm_G^2 - x(1-x)p^2}{(1-x)^2 m_Q^2 + xm_G^2}\right]$$

Gluon partner correction to Higgs mass is negative



Features of Composite Higgs models:

• Higgs is pseudo Nambu-Goldstone boson

 $G \to H \quad \text{ at scale } \quad f \quad \text{ where } \quad H \supset SO(4) \sim SU(2)_L \times SU(2)_R$

• Partially composite top $\mathcal{L} = \lambda_L t_L \mathcal{O}_R + \lambda_R t_R \mathcal{O}_L$

 $m_t \sim \lambda_L \lambda_R v$ where $\lambda_{L,R} \sim \left(\frac{\Lambda}{\Lambda_{UV}}\right)^{\dim \mathcal{O}_{L,R} - \frac{5}{2}}$ dim $\mathcal{O}_{L,R} \sim \frac{5}{2}$

What is the UV description responsible for these features?

- AdS/CFT -- D-brane engineering
- Supersymmetric (e.g. Seiberg duality)

[Caracciolo, Parolini, Serone 1211.7290]

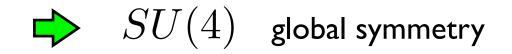
Involves scalars

Look for one without elementary scalars...

Candidate: $SO(6)/SO(5) \underset{[Gripaios, Riva, Pomarol, Serra '09]}{SO(6)/SO(5)} \sim SU(4)/Sp(4)$ $= 2 \text{ of } SU(2)_L + 1 \text{ singlet}$ Higgs doublet Symmetry breaking-pattern $SU(4) \xrightarrow{f} Sp(4)$

What is the dynamics that realizes this?

Introduce new strong gauge group $Sp(2N_c)$ with 4 Weyl fermion flavors ψ^a $_{(a = 1,...,4)}$



Gauge-invariant fermion bilinear: $\Omega_{ij}\psi^a_i\psi$

$$\Omega_{ij}\psi_i^a\psi_j^b = \mathbf{6} \text{ of } \mathrm{SU}(4)$$

 $Sp(2N_c)$ is asymptotically free $b = \frac{11}{3}(2N_c+2) - \frac{2}{3} \times 4 = \frac{2}{3}(11N_c+7) > 0$ and confines \Longrightarrow $SU(4) \rightarrow Sp(4)$

Under what conditions does this happen?

SU(4) gauged NJL model

$$\mathcal{L}_{\text{int}} = \frac{\kappa_A}{2N_c} (\psi^a \psi^b) (\bar{\psi}_a \bar{\psi}_b) + \frac{\kappa_B}{8N_c} \left[\epsilon_{abcd} (\psi^a \psi^b) (\psi^c \psi^d) + \text{h.c.} \right]$$

	$\operatorname{Sp}(2N_c)$	SU(4)
ψ		4
M	1	6

Can be rewritten as

$$\begin{aligned} \mathcal{L}_{\text{int}} &= -\frac{1}{\kappa_A + \kappa_B} \left[\left(\kappa_A M_{ab}^* + \frac{1}{2} \kappa_B \epsilon_{abcd} M^{cd} \right) (\psi^a \psi^b) + \text{h.c.} \right] & \text{Like "massive} \\ &- \frac{2N_c \kappa_A}{(\kappa_A + \kappa_B)^2} M^{ab} M_{ab}^* - \frac{N_c \kappa_B}{2(\kappa_A + \kappa_B)^2} \left(\epsilon_{abcd} M^{ab} M^{cd} + \text{h.c.} \right) \end{aligned}$$

where
$$M^{ab} = -\frac{\kappa_A + \kappa_B}{2N_c}(\psi^a \psi^b)$$
 "auxiliary scalar field"

One-loop effective potential

$$\begin{split} V(m) &= \frac{N_c \kappa_A}{\kappa_A^2 - \kappa_B^2} (\bar{m}_1^2 + \bar{m}_2^2) - \left| \frac{2N_c \kappa_B}{\kappa_A^2 - \kappa_B^2} \right| \bar{m}_1 \bar{m}_2 \\ &- \frac{N_c}{8\pi^2} \sum_{i=1}^2 \left[\Lambda^2 \bar{m}_i^2 + \bar{m}_i^4 \ln \left(\frac{\bar{m}_i^2}{\Lambda^2 + \bar{m}_i^2} \right) + \Lambda^4 \ln \left(\frac{\Lambda^2 + \bar{m}_i^2}{\Lambda^2} \right) \right] \qquad \Lambda = \text{UV cutoff scale} \end{split}$$

where

$$M = \begin{pmatrix} 0 & m_1 & 0 & 0 \\ -m_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_2 \\ 0 & 0 & -m_2 & 0 \end{pmatrix} \qquad |\bar{m}_1|^2 = \frac{4|\kappa_A m_1^* + \kappa_B m_2|^2}{(\kappa_A + \kappa_B)^2} \qquad |\bar{m}_2|^2 = \frac{4|\kappa_A m_2^* + \kappa_B m_1|^2}{(\kappa_A + \kappa_B)^2}$$

Minimum condition

$$1 - \frac{\bar{m}^2}{\Lambda^2} \ln\left(\frac{\Lambda^2 + \bar{m}^2}{\bar{m}^2}\right) = \frac{4\pi^2}{\Lambda^2} \left(\frac{\kappa_A}{\kappa_A^2 - \kappa_B^2} - \left|\frac{\kappa_B}{\kappa_A^2 - \kappa_B^2}\right|\right) \equiv \frac{1}{\xi}$$

Solutions
$$\begin{cases} m_1 = m_2 = 0 & 0 < \xi < 1 & SU(4) \text{ unbroken} \\ m_1 = m_2 = \frac{\bar{m}}{2} & \xi > 1 & SU(4) \rightarrow Sp(4) \end{cases}$$

 $\Rightarrow \xi = 1$ is a critical point

Treat Λ as a renormalization scale:

$$\beta(\xi) = \Lambda \frac{\partial \xi}{\partial \Lambda} \approx 2\xi(1-\xi)$$

 \checkmark UV fixed point at $\xi = 1$ ($\Lambda \to \infty$ with \bar{m} finite)

Dynamically generated fermion mass

$$\bar{m} = -\frac{4\pi^2 \xi}{N_c \Lambda^2} \langle \psi \psi \rangle$$

Near
$$\xi \approx 1$$
 $\bar{m}(\Lambda) = \left(\frac{\mu_0}{\Lambda}\right)^2 \bar{m}(\mu_0) \equiv Z_m \bar{m}(\mu_0)$ μ_0

$$\iota_0 =$$
 reference scale

Large anomalous dimension

$$\gamma_m \equiv -\frac{\Lambda}{Z_m} \frac{\partial Z_m}{\partial \Lambda} = 2$$

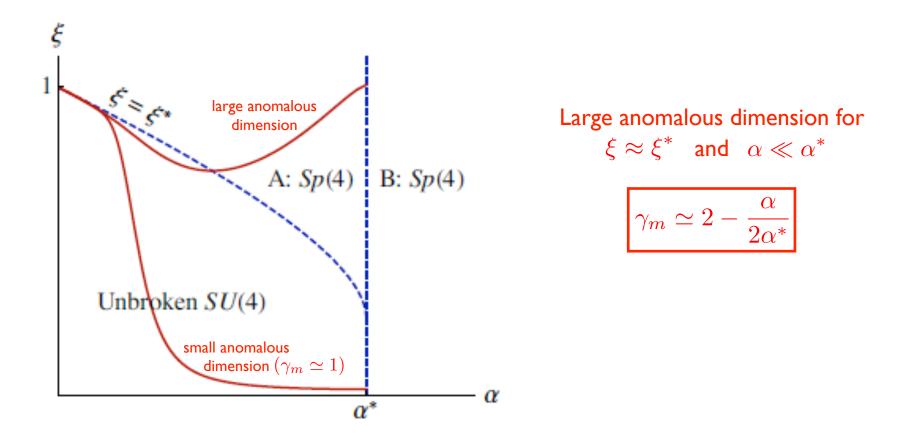
[Kondo, Tanabashi, Yamawaki `92 Yamawaki `96]

$$\dim \psi \psi = 3 - \gamma_m = 1$$

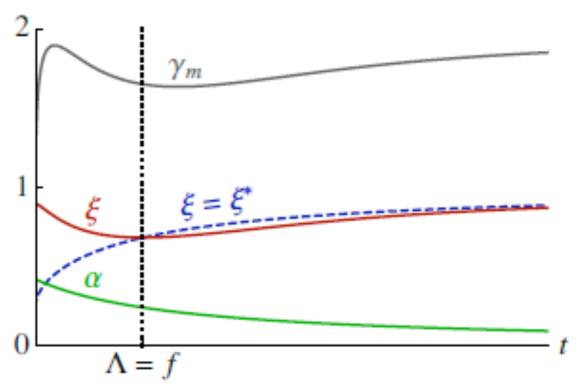
Four-fermion operator has dimension 2 -- model appears to be renormalisable in the UV! Need to include gauge interaction and solve Schwinger-Dyson equation

[Bardeen, Leung, Love `86; Kondo, Mino, Yamawaki `89]

For Sp(2Nc) gauge group obtain [Barnard, TG, Sankar Ray 1311.6562]



Evolution of couplings: (for upper trajectory)



[Barnard, TG, Sankar Ray 1311.6562]

Spontaneous breaking of global symmetry driven **mainly** by 4-fermion interaction!

Top partners

Introduce a pair of colored vector-like fermions $~\chi, \tilde{\chi}~$

		$\operatorname{Sp}(2N_c)$	SU(4)	$\mathrm{SU}(3)_c \times \mathrm{U}(1)$
	ψ		4	1_0
{	χ	Β	1	$3_{+2/3}$
	$ ilde{\chi}$	Β	1	$ar{3}_{-2/3}$

transform as two-index antisymmetric representation of Sp(2Nc)

Gauge-invariant combinations: $(\psi^a \chi^f \psi^b) = \psi_i^a \Omega_{ij} \chi_{jk}^f \Omega_{kl} \psi_l^b$ etc.

$$\begin{split} \Psi_1{}^{abf} &= (\psi^a \chi^f \psi^b) & \Psi_2{}^f_{ab} &= (\bar{\psi}_a \chi^f \bar{\psi}_b) & \Phi^b_{af} &= (\bar{\psi}_a \bar{\chi}_f \psi^b) \\ \tilde{\Psi}_1{}^{abf} &= (\psi^a \tilde{\chi}_f \psi^b) & \tilde{\Psi}_2{}^f_{ab} &= (\bar{\psi}_a \tilde{\chi}_f \bar{\psi}_b) & \tilde{\Phi}^b_{af} &= (\bar{\psi}_a \bar{\chi}^f \psi^b) \end{split}$$

transform as

	$\operatorname{Sp}(2N_c)$	SU(4)	$\mathrm{SU}(3)_c \times \mathrm{U}(1)$		
$\Psi_{1,2}$	1	6	$3_{+2/3}$	}	
Φ	1	$15 \oplus 1$	$\overline{3}_{-2/3}$		top partner candidates
$\tilde{\Psi}_{1,2}$	1	6	$ar{3}_{-2/3}$		
$\tilde{\Phi}$	1	$15 \oplus 1$	$3_{+2/3}$	J	

Recall:
$$\mathcal{L} = \lambda_L t_L \mathcal{O}_R + \lambda_R t_R \mathcal{O}_L$$

UV description:

 $\mathcal{O}_{L,R} \leftrightarrow \psi \chi \psi$

(Diquark approximation to baryons [Ball `90])

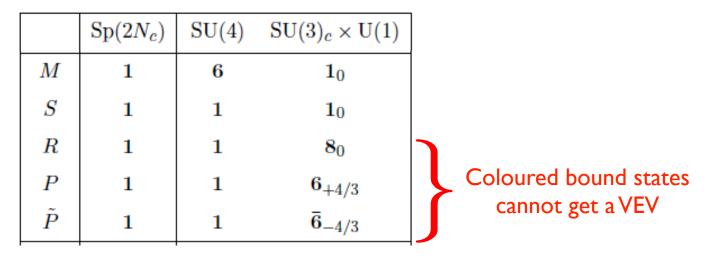
= tightly bound $\psi\psi$ by 4-fermion interaction, bound to χ by Sp(2Nc) gauge interaction ($\xi \gg \sqrt{\alpha}$)

$$\dim \mathcal{O}_{L,R} = \dim \psi \chi \psi \approx \dim \psi \psi + \frac{3}{2} = \frac{5}{2} + \frac{\alpha}{2\alpha^*} \quad \text{Marginally irrelevant}$$

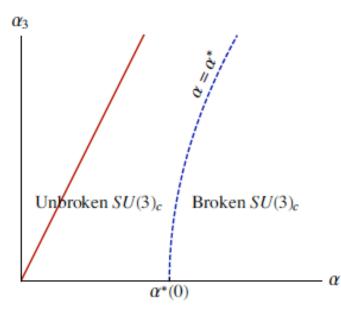
Allows for order-one top Yukawa coupling!

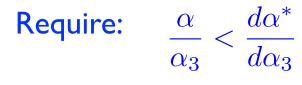
 $\xi \gg \sqrt{\alpha}$ \Rightarrow Top partners are naturally lighter than uncolored partners!

In addition there are **scalar** bound states:



Coloured scalars must be stabilised by the SU(3) gauge interactions.





Conclusion

• The Higgs boson could be composite

- --- Higgs is a pseudo Nambu-Goldstone boson
- --- Partially composite top sector
- SO(6)/SO(5) model has a simple UV description
 - --- Only fermions and gauge bosons, no elementary scalars!

--- Large anomalous dimension implies four-fermion interaction is renormalisable

• This simple framework can be applied to other coset groups