SU(2) with six flavors A new kind of gauge theory

George T. Fleming (Yale) for the LSD Collaboration

Two-Color Gauge Theories

- Perturbatively, SU(2) gauge theories behave like any other SU(N_c) gauge theory.
- Non-perturbatively, SU(2) could be quite different:
 - No complex representations (pseudo-real, real)
 - Enlarged global symmetry: $SU_L(N_f) \times SU_R(N_f) \rightarrow SU(2N_f)$.
 - Spontaneous symmetry breaking produces more NG bosons: SU(2N_f)→Sp(2N_f) gives N_f(2N_f-1) - 1 vs. N_f² - 1.
 - Can we establish the range of N_f over which spontaneous symmetry breaking occurs, *i.e.* the conformal window?

Two Colors and BSM Physics

- The special features of two-color gauge theories can lead to new models of BSM physics.
- The five NG bosons of the N_f=2 theory can yield a composite Higgs boson as pseudo-NG boson.
- Enlarged global symmetry suppresses charge radius and magnetic moment interactions in composite dark matter models.
- Enlarged NG boson sector could lead new kind of finite temperature phase transition for a confining gauge theory.
- If a confining, two-color gauge theory is realized in nature, what are the implications of this phase transition on cosmology?

Perturbative Estimates

- Caswell-Banks-Zaks established that $SU(N_c)$ gauge theories with N_f flavors of Dirac fermions in the fundamental representation have IR conformal fixed points if N_f<11N_c/2.
- This IR conformal behavior ends for N_f < N_f*(N_c) when the theory confines.
- Higher-loop calculations (Refs) can be used to test the reliability of perturbative estimates of N_{f*}.
- A reasonable estimate is $N_{f^*} \leq 4 N_c$.

Ladder-Gap Equations

- The rainbow diagram approximation of the Schwinger-Dyson equation gives an estimate of the critical coupling gc² of chiral symmetry breaking.
- For SU(2), $g_c^2 \approx 17.5$.
- Comparing this estimate to the IRFP coupling of the two-loop beta function gives an estimate of $N_{\rm fc}.$
- For SU(2), $N_{fc} \approx 8$, consistent with pert. theory.

Cardy's a-theorem

- Much has been made of late of the proposed proof of Cardy's a-theorem. Can it constrain N_{fc}?
- $a_{UV} = 62(N_c^2-1) + 11 N_c N_f$
- For broken SU(2): $a_{IR} = N_f(2N_{f-1}) 1$
- Given massless gauge dofs count 62 times massless scalars means the a-theorem, even if true, provides no useful constraint.

ACS Thermal Inequality Conjecture

- Another way to count massless dofs is via the thermodynamic free energy: $f(T) = 90 F(T) / \pi^2 T^4$.
- In $T \rightarrow 0$ limit, massive contributions are suppressed.
- $SU(N_c)$: $f_{UV}(0) = 2(N_c^2 1) + 3.5 N_c N_f$
- SU(2): $f_{IR}(0) = N_f(2N_f-1) 1$.
- ACS conjecture: f_{UV}(0) ≥ f_{IR}(0). If true, this leads to a significant bound for SU(2): N_{fc} ≤ 4.7.
- Further, it is significantly different from perturbative estimates.

Previous Lattice Results

- Numerous lattice results that demonstrate that the SU(2) N_f=2 theory is confining and chirally broken.
- Iwasaki et al (2004) infinite coupling confinement studies: N_f=3 inside the conformal window.
- Karavirta et al (2011) SF running coupling studies: N_f=4 outside conformal window.
- Other running coupling studies suggest N_f=8 (Ohki et al) and N_f=10 (Karavirta et al) are inside conformal window.
- N_f=6 is a difficult but very interesting case. Several early attempts were inconclusive (Bursa 2010, Karavirta 2011, Voronov 2011-2).
- There will be a presentation by N. Yamada about the calculation of the KEK group.

$SU(2) N_f = 6$ Thermodynamics

- In QCD, the equation of state outside the transition region is dominated by the Stefan-Boltzmann term.
- The ACS thermal inequality would mean that all confining asymptotically-free gauge theories have QCD-like thermodynamics.
- If SU(2) N_f=6 violates the ACS thermal inequality, the equation of state should be very different from QCD-like theories.

Two-Color Theory with Novel Infrared Behavior

T. Appelquist,¹ R. C. Brower,² M. I. Buchoff,³ M. Cheng,⁴ G. T. Fleming,¹ J. Kiskis,⁵ M. F. Lin,⁶ E. T. Neil,^{7,8} J. C. Osborn,⁹ C. Rebbi,² D. Schaich,¹⁰ C. Schroeder,¹¹ S. Syritsyn,⁸ G. Voronov, P. Vranas,¹¹ and O. Witzel⁴ (Lattice Strong Dynamics (LSD) Collaboration)
¹Department of Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06520, USA
²Department of Physics, Boston University, Boston, Massachusetts 02215, USA
³Institute for Nuclear Theory, Box 351550, Seattle, WA 98195-1550, USA
⁴Center for Computational Science, Boston University, Boston, Massachusetts 02215, USA
⁵Department of Physics, University of California, Davis, California 95616, USA
⁶Computational Science Center, Brookhaven National Laboratory, Upton, NY 11973, USA
⁷Department of Physics, University of Colorado, Boulder, CO 80309, USA
⁸RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
⁹Argonne Leadership Computing Facility, Argonne, Illinois 60439, USA
¹⁰Department of Physics, Syracuse University, Syracuse, New York 13244, USA
¹¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA

LSD Publication

arXiv:1311.4889, accepted to Phys. Rev. Lett.

SU(2) N_f=6 Calculational Details

- We use the standard Schrödinger functional running coupling formulation.
- We use step-scaling to compute the lattice step scaling function:
 Σ(u,s,a/L) = g²(g₀²,sL/a) if u=g²(g₀²,L/a).
- We compute the continuum step scaling function by taking the limit:
 σ(u,s) = Σ(u,s,a/L) as a/L → 0.
- The quantity [σ(u,s)-u]/u is analogous to the continuum beta function.
- We use the Wilson fermion action with one level of stout smearing, tuned to massless point.

a

 $\frac{1}{2}$

Stout Wilson Parameter Space

- We determined the massless point vs. coupling in infinite volume limit.
- We also located bulk phase transition/crossover line.
- Transition crosses massless curve around $g_0^2 = 2.2$.

Interpolating the data

- Gennady generated a huge amount of data using many different computers over two years.
- For a slowly running theory, it is impossible to do step scaling tuning the lattice spacing by had at each and every step.
- We compute the SF coupling over a range of $g_0^2 < 2.2$ and $4 \le L/a \le 24$.
- We fit (g₀²)⁻¹ (g_{SF}²)⁻¹ to polynomial in g₀² for each L/a.
- The functional form is inspired by perturbation theory but the coefficients are not constrained to p.t. values.
- We don't worry about wiggles at very weak coupling. They don't affect the result, as I will explain.

Extrapolating the step scaling function

- Extrapolate $\Sigma(u,s,a/L)$ to polynomial in a/L to extract $\sigma(u,s)$.
- At weak coupling (u<6), a constant extrapolation is fine. At stronger coupling (u>6), a higher order continuum extrapolation is required.
- The quadratic term is as important at the linear term unless L/a is very large. Perhaps linear would be OK with $16 \rightarrow 32$ and larger volumes.

Discrete beta function

- In the discrete beta function, we don't see any evidence for a fixed point.
- We don't expect that a fixed point will appear as the beta function dipping down to zero. It should cross zero and run backward all the way to strong coupling.
- You might recall for SU(3), N_f=12 the Yale group (pre-LSD) saw clear evidence for backward running and for SU(3), N_f=8 there was no such evidence.

Comments

- I look forward to hearing about the latest KEK results for SU(2) N_f=6 from Yamada on Friday.
- I want to strongly emphasize that very slowly running theories are very hard to study on the lattice so it may take some time to get consistent results from all groups.
- Confining two-color theories always have composite Higgs candidates as pseudo-NG bosons.
- Studying the thermodynamics of the SU(2) N_f=6 theory could be very interesting.
- In the future, lattice radial quantization might be a better way to study (nearly-)conformal theories. <u>See my poster</u>.