Large N ϕ^4 model in 3-dimensions and the conformal fixed point

Sinya AOKI

Yukawa Institute for Theoretical Physics, Kyoto University

work in progress in collaboration with

Janos Balog (Wigner RC, Budapest) and Peter Weisz (MPI, Munich)

Sakata Memorial KMI Mini-Workshop on "Strong Coupling Gauge Theories Beyond the Standard Model" (SCGT14Mini) March 5-7, 2014, Science Symposia(ES 635), KMI, Nagoya University

1. Introduction

Construction of non-trivial quantum field theories

1. Around asymptotic free fixed point

QCD: non-abelian gauge theory with a few fermions

QCD-like theories with more fermions

"walking" coupling ?

2. Around conformal fixed point ?

QCD-like theories with many fermions

theory is still AF in UV

A toy model which has both AF(UV) and conformal(IR) fixed points

 φ^4 theory in 3-dimension

What are the continuum limits from these two fixed points ?

This talk

Consider φ^4 theory in 3-dim. in the large N limit. exactly solvable David, Kassier, Neuberger, 1985. Zinn-Justin, Moshe-Moshe, 2003(Review)

Construct quantum field theories by taking "continuum limits". classification of the continuum field theories running coupling constant scattering phase shift

- 1. Introduction
- 2. Model and Analysis
- 3. Continuum Limits
- 4. Scattering Phase Shift
- 5. Conclusion

2. Model and Analysis

Lagrangian
$$L(\varphi) = \frac{1}{2} \{\partial_{\mu}\varphi(x)\}^2 + \frac{r}{2}\varphi^2(x) + \frac{u}{4!N}[\varphi^2(x)]^2 \qquad \varphi^2(x) = \sum_{i=1}^N \varphi^i(x)\varphi_i(x)$$

$$Z(H) = \int [d\varphi] \exp\left[-\int d^3x L(\varphi) + \int d^3x H(x)\varphi(x)\right]$$

$$\bigvee \qquad \text{large N limit} \qquad \varphi_H(x) = \frac{\delta}{\delta H(x)} \log Z(H)$$
$$H \to 0$$

Effective action (symmetric phase)

$$\Gamma(\varphi_{H}) = \frac{1}{2} \int d^{3}x \,\varphi_{H}(x) (-\nabla^{2} + m_{R}^{2}) \varphi_{H}(x) + \frac{1}{4!N} \int d^{3}x \, d^{3}y \,\varphi_{H}^{2}(x) u_{R}(x - y) \varphi_{H}^{2}(y)$$
mass $m_{R} = \sqrt{\tau + \left(\frac{u}{48\pi}\right)^{2}} - \frac{u}{48\pi}$ $\tau = r + \frac{u}{24\pi} \Lambda$ cut-off

"coupling"
$$u_R(p) = \frac{u}{1 + uB_\Lambda(p, m_R)}$$

$$B_{\Lambda}(p,m) = \frac{1}{24\pi|p|} \left[\tan^{-1} \frac{|p|}{2m} - \tan^{-1} \frac{|p|}{\Lambda} \right]$$

$$\begin{array}{ll} u \to \Lambda_X & \text{mass scale in the continuum limit} \\ \text{special in 3-dimension} \\ \alpha \equiv \frac{m_R}{\Lambda_X} & \text{renormalized mass in units of the mass scale } \Lambda_X \\ g_R \equiv \frac{u_R(0)}{m_R} = \frac{48\pi}{1 - \frac{m_R}{\Lambda} + 48\pi \frac{m_R}{u}} = \frac{48\pi}{1 + 48\pi\alpha} & \text{fixed} & 0 \leq g_R \leq 48\pi \\ \text{Line of constant physics (LCP)} & \text{cut-off effect} \\ \text{dimensionless bare coupling} & u_0(\Lambda) \equiv \frac{u}{\Lambda} = \frac{\delta_X}{1 + \frac{\delta_X}{48\pi}} & \delta_X = \frac{\Lambda_X}{\Lambda} \\ \text{dimensionless bare "mass"} & \tau_0(\Lambda) \equiv \frac{\tau}{\Lambda^2} = \delta_X^2 \left(\alpha^2 + \frac{\alpha}{48\pi + \delta_X}\right) \\ \text{bare beta function} \\ \beta_0(u_0) \equiv \Lambda \frac{d \, u_0(\Lambda)}{d\Lambda} = -u_0(\Lambda) \frac{(48\pi - u_0(\Lambda))}{48\pi} \\ & u_0 = 0 \quad \text{AF(UV)} & u_0 = 48\pi \text{ Wilson-Fisher(IR)} \end{array}$$

"Running coupling constant" at finite cut-off

$$g_R(\boldsymbol{\mu}, \Lambda) \equiv \frac{u_R(\boldsymbol{\mu})}{\boldsymbol{\mu}} = \frac{48\pi}{\boldsymbol{t}_{\boldsymbol{x}}(48\pi + \delta_X) + 2\left[\tan^{-1}\left(\frac{\boldsymbol{t}_{\boldsymbol{x}}}{2\alpha}\right) - \left(\frac{\boldsymbol{t}_{\boldsymbol{x}}\delta_X}{2}\right)\right]}$$

$$t_x = rac{\mu}{\Lambda_X}$$
 "scale" in units of the mass scale Λ_X

3. Continuum limits

"Running coupling constant" in the continuum limit $\Lambda o \infty$

I. AF continuum limit
$$\lim_{\mu \to 0} g_R(\mu) = \infty$$
$$\lim_{\mu \to 0} g_R(\mu) = \infty$$
QCD-like
$$g_R(\mu) = \frac{1}{t_x + \frac{1}{24\pi} \tan^{-1}\left(\frac{t_x}{2\alpha}\right)}$$
$$\lim_{\mu \to \infty} g_R(\mu) = 0$$
QCD-like

$$\begin{array}{ll} \textbf{I-a. + massless limit} & \alpha \to 0 \\ g_R(\mu) = \frac{48}{1 + 48t_x} & \lim_{\mu \to \infty} g_R(\mu) = 48 & \text{IR conformal} \\ & \lim_{\mu \to \infty} g_R(\mu) = 0 & \text{UV AF} \end{array}$$

beta function

$$\beta_g(g_R) \equiv \mu \frac{d \, g_R(\mu)}{d\mu} = -\frac{g_R(\mu)}{48} \frac{(48 - g_R(\mu))}{48}$$

$$\gamma_g(g_R = 48) = 1$$
$$\gamma_g(g_R = 0) = -1$$

II. Wilson-Fisher continuum limit

$$\Lambda_X = O(\Lambda) \quad \Longrightarrow \quad \delta_X \neq 0, \alpha = 0$$

$$g_R(\mu, \Lambda) \equiv \frac{u_R(\mu)}{\mu} = \frac{48\pi}{t_x(48\pi + \delta_X) + 2\left[\tan^{-1}\left(\frac{t_x}{2\alpha}\right) - \left(\frac{t_x\delta_X}{2}\right)\right]}$$

$$g_R(\boldsymbol{\mu}) = \frac{48\pi}{2\tan^{-1}\left(\frac{\boldsymbol{\mu}}{2m_R}\right)}$$

$$\lim_{\mu \to 0} g_R(\mu) = \infty$$
$$\lim_{\mu \to \infty} g_R(\mu) = 48 \qquad \text{UV conformal}$$

ll-a. + massless limit m_F

$$m_R \rightarrow 0$$

$$g_R(\mu) = 48$$
 completely conformal

"Walking" ?

$$g_R(\mu) = \frac{1}{t_x + \frac{1}{24\pi} \tan^{-1}\left(\frac{t_x}{2\alpha}\right)} \qquad t_x = \frac{\mu}{\Lambda_X} \qquad b = 96\alpha \qquad \alpha = \frac{m_R}{\Lambda_X}$$

4. Scattering Phase Shift

Since the running coupling constant and beta function are not observables, we investigate properties of a physical observable, scattering phase shift.

$$p_{a} = (\sqrt{m_{R}^{2} + \vec{p}^{2}}, \vec{p})$$

$$q_{a} = (\sqrt{m_{R}^{2} + \vec{q}^{2}}, \vec{q})$$

$$|\vec{p}| = |\vec{q}|$$

$$q_{b} = (\sqrt{m_{R}^{2} + \vec{p}^{2}}, -\vec{p})$$

$$q_{b} = (\sqrt{m_{R}^{2} + \vec{q}^{2}}, -\vec{q})$$

Scattering amplitude

$$T(p_a, p_b | q_a, q_b) = \sum_{I=0}^{2} Q^I T^I(\vec{p}, \vec{q})$$

 Q^I : iso-spin projection

In the large N limit, we have

$$T^{0}(\vec{p},\vec{q}) = -\frac{u}{3} \frac{1}{1 + uB_{\Lambda}((i-\epsilon)(p_{a} + p_{b}), m_{R})} \qquad \epsilon \to 0 \qquad p_{a} + p_{b} = (W,\vec{0})$$

$$T^{1}(\vec{p},\vec{q}) = T^{2}(\vec{p},\vec{q}) = 0$$
Unitarity
$$T^{0}(\vec{p},\vec{q}) = 16We^{i\delta_{0}(W)}\sin\delta_{0}(W)$$

$$\delta_{0}(W): I = 0 \text{ scattering phase shift}$$

$$\cot\delta_{0}(W) = -\frac{48W}{u} - \frac{2}{\pi} \left[\coth^{-1}\left(\frac{W}{2m_{R}}\right) - \tanh^{-1}\left(\frac{W}{2\Lambda}\right) \right]$$

$$\int \Phi = \Lambda \rightarrow \infty$$

$$\delta_{0}(W) = -\cot^{-1} \left[\frac{48W}{\Lambda_{X}} + \frac{2}{\pi} \coth^{-1}\left(\frac{W}{2m_{R}}\right) \right]$$

 $\delta_0(W)$

5. Conclusion

- Large N ϕ^4 model in 3-dimensions has various continuum limits
 - I. continuum limit around AF fixed point: QCD-like theory
 - I-a. + massless limit: + IR conformal
 - II. continuum limit around Wilson-Fisher point: UV conformal
 - II-a. + massless limit: completely conformal
- "Walking" in case I. if the mass is very small.
- scattering phase shift reflects above difference of the continuum limits.

Works in progress

Broken phase

Effect of ϕ^6 terms -> just shift the ϕ^4 coupling

Effect of finite cut-off -> not so large

Effect of finite volume

 $u \to u + rac{6g_6\Lambda}{\pi}$

Cut-off effect

$$g_R(\boldsymbol{\mu}, \Lambda) \equiv \frac{u_R(\boldsymbol{\mu})}{\boldsymbol{\mu}} = \frac{48\pi}{\boldsymbol{t}_x (48\pi + \delta_X) + 2\left[\tan^{-1}\left(\frac{\boldsymbol{t}_x}{2\alpha}\right) - \left(\frac{\boldsymbol{t}_x\delta_X}{2}\right)\right]}$$

b = 0.00119

