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Problems in classical Technicolor

Models solving 
Yukawa hierarchy are 

complicated.

mH=125 GeV is too light?
Naive expectation: mH ~ O(1 TeV)

S-parameter
Anderson et al. (2011)
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Figure 6: T versus S for SU(3) TC with one technifermion doublet (the black point)
versus precision data for a one TeV composite Higgs mass (the shaded area).

technifermions in the fundamental representation of the gauge group and for a small
number of techniflavors. The oldest TC models featuring QCD dynamics with three
technicolors and a doublet of electroweak gauged techniflavors deviate a few sigma
from the current precision tests as summarized in Fig. 6. Clearly it is desirable to
reduce the tension between the precision data and a possible dynamical mechanism
underlying the electroweak symmetry breaking. It is possible to imagine di↵erent ways
to achieve this goal and some of the earlier attempts have been summarized in [39].

The computation of the S parameter in TC theories requires the knowledge of
nonperturbative dynamics making di�cult the precise knowledge of the contribution
to S. For example, it is not clear what is the exact value of the composite Higgs mass
relative to the Fermi scale and, to be on the safe side, one typically takes it to be quite
large, of the order at least of the TeV. However in certain models it may be substantially
lighter due to the intrinsic dynamics. We will discuss the electroweak parameters later
in this chapter.

It is, however, instructive to provide a simple estimate of the contribution to S
which allows to guide model builders. Consider a one-loop exchange of ND doublets
of techniquarks transforming according to the representation RTC of the underlying TC
gauge theory and with dynamically generated mass ⌃(0) assumed to be larger than the
weak intermediate gauge bosons masses. Indicating with d(RTC) the dimension of the
techniquark representation, and to leading order in MW/⌃(0) one finds:

Snaive = ND
d(RTC)

6⇡
. (2.33)

This naive value provides, in general, only a rough estimate of the exact value of S.
However, it is clear from the formula above that, the more TC matter is gauged under
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Overview of this talk

Focus on LSD Collaboration analysis in PRL 106:231601 (2011)

Main result
Dynamical reduction in S
for 6-fermion theory
compared to scaled-up QCD

Focus on lattice methods rather than latest results
Similar methods used in two lattice QCD studies:

JLQCD Collaboration, PRL 101:242001 (2008)
RBC-UKQCD Collaboration, PRD 81:014504 (2010)

First, a brief review of why S remains an important observable

David Schaich (Colorado) S on the Lattice Lattice Meets Experiment 3 / 24
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Lightest 0++ might be as light as 125 GeV
Del Debbio et al.(2010)

23

-1.20 -1.15 -1.10 -1.05 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70
a m0

0.00

0.25

0.50

0.75

1.00

1.25

a 
M

0++

16 x 83

12 x 243

FIG. 9: The mass of the 0++ glueball in lattice units,
aM0++ , measured at various values of bare quark mass
am0 on a 16× 83 and on a 24× 123 lattice.
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FIG. 10: The mass of the 2++ glueball in lattice units,
aM2++ , measured at various values of bare quark mass
am0 on a 16× 83 and on a 24× 123 lattice.
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FIG. 11: The spectrum of the theory as a function of the PCAC mass am. The mass of the vector is not shown, since on the
scale of the figure this state appears to be degenerate with the PS.

dynamical simulations. The upper bound of this window is simply given by β ≡ 2.25, the value of β for our dynamical
simulations. This is a consequence of the string tension being an increasing function of the bare fermion mass, so an
infinite mass simulation corresponds to a string tension of a pure gauge system at the same β ≡ 2.25.
For each choice of β(q) we measure the string tension and the 0++ and 2++ glueball masses (following e.g. Ref. [73]).

Quenched glueball masses have been interpolated using the ansatz

MG

σ1/2
= A0 +A1a

2σ , (73)

with A0 and A1 respectively the leading (constant) and subleading (O(a2)) coefficients in the extrapolation to the
continuum limit.
On the same gauge configurations, we measure the quenched PS mass and the MV/MPS ratio, for a set of values of

am(q)
0 covering the entire interval of PS masses appearing in the dynamical calculation. We then create an interpolating

function for the central value of the ratio MV/MPS.
To obtain an error on this estimate, we create two other interpolating functions for the maximal and the minimal

value of the quenched estimate MV/MPS set by the statistical error, so that for each choice of the pair (MPS,σ), we
can read the corresponding range of values for MV/MPS. To take into account the indetermination in our estimate
of aMPS and a2σ, we consider a region within one sigma around the central value for those quantities: in this region
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Models are complicated
On the other hand, TC model consists 
only of gauge and fermion fields!

What a simple!



On the lattice, having two 
different approaches favorable
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1.Step scaling approach:
✓ Can tell the existence of IRFP if it’s observed.
✓ Cannot prove absence of IRFP as it might be larger than the 

coupling up to which one can explore.

2.Spectroscopy:
✓ If data reproduce ChPT predictions and chiral condensate and 

fπ are finite, that’s it.
✓ Even if the above is not observed, It’s not easy to conclude a 

theory to be conformal as we do not know in advance whether 
mq is small enough and V is large enough.

✓ Need to know what should happen if a theory is conformal



We take Wilson fermion.

5

Disadvantages:
✓Scaling violation
✓Fine-tuning,
✓...

Advantages:
✓Simple, tractable and 

well understood
✓Many experiences
✓Able to study arbitrary 

NF without any subtlety
✓Independent check to KS 

(or other) results



With Wilson fermion, we are studying 
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1.Step-scaling approach:
• α(μ) and γm in 10-flavor QCD
• (α(μ) and γm in 6-flavor two-color QCD)

2. Spectroscopy:
• 6-flavor two-color QCD

3. Finite temperature study:
• Many flavor QCD

Flash the status of each study.
No definite conclusion in this talk.



α(μ) and γm of
10-flavor QCD



DBF ~ β function
DBF=0 ⇒ IRFP
g2FP ≥ 12
Continuum extrapolation 
with two data points.
In order to have more 
confidence, large V 
calculation is on-going.

α(μ) of 10-flavor QCD
Hayakawa, Ishikawa, Osaki, Takeda, Uno, NY, PRD(2011) and work in progress
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2.1 Discrete Beta function

I introduce the discrete β function (DBF) [9]

Blat(u(g2
0), l1, l2) =

1

g2(g2
0, l2)

−
1

g2(g2
0, l1)

, (9)

u = g2(g2
0, l1), (10)

s =
l2
l1

. (11)

Here I slightly modified the original DBF by an overall constant and the definition of argument. The contin-
uum counterpart is given by

BSF(u, s) =
1

g2
SF(u, s)

−
1

u
. (12)

At the leading order of continuum perturbation theory, the DBF is scheme-independent and given by

Bleading(u, s) = −b1 ln(s) =







−0.012145120 for s = 4/3
−0.017117585 for s = 3/2
−0.029262705 for s = 2

, (13)

independent of u, where Nc = 2 and Nf = 6 and g−2
SF (L) = b1 ln(L0/L) is used. If one goes to the next-

leading order, the u dependence comes in. One can include the higher order effects numerically. Using the
DBF defined in eq. (11), one can write

1

g2(u, s)
=

1 + u B(u, s)

u
, (14)

where the notation is simplified. Using the numerical values of p1 given in eq.(2), the lattice DBF values in
the small u limit can be calculated as

Blat(u, l1, l2) = p1(l1) − p1(l2)) =











































































−0.0084127199 for (l1, l2) = (6, 8)
−0.0070582401 for (l1, l2) = (12, 16)
−0.0076604041 for (l1, l2) = (18, 24)

−0.0100876671 for (l1, l2) = (8, 12)
−0.0100474271 for (l1, l2) = (12, 18)
−0.0106495911 for (l1, l2) = (16, 24)

−0.0185003871 for (l1, l2) = (6, 12)
−0.0171459072 for (l1, l2) = (8, 16)
−0.0177078312 for (l1, l2) = (12, 24)

. (15)

That was numerically checked.
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Adding large V data, the 
continuum limit shits 
upward.
g2FP ≥ 12 ⇒ g2FP ≲	
  10

⬇

Likely to be conformal.

Preliminary
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@g2SF = 10



Two different step scaling 
factors give consistent 
result.
Consistent with PT.
Assuming gFP2 ~10, γm~1 !

Preliminary

γm of 10-flavor QCD
Hayakawa, Ishikawa, Osaki, Takeda, Uno, N.Y., work in progress
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Finite temperature
in Many Flavor QCD



Finite temperature in MF QCD
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Motivation:
✓ Pinning down NFC is not 

easy.
✓ NF=8 is still interesting.
✓ Return to the naive and 

straightforward method. 

Strategy:
✓ Look for finite temperature 

transition.
✓ Examine whether the 

transition is thermal or bulk 
and 1st, 2nd or crossover.

✓ We start with NF=6.
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If the theory is confining, 
the transition line move to 
the right as T decreases (or 
V increases).
Both are 1st order.

Iwasaki et al. (91,04)

infinitely heavy quarks. Quarks are confined for any value of
the current quark mass for all values of ! at zero temperature
(Nt!").
On a lattice with a fixed finite Nt , we have the finite

temperature deconfining transition at finite ! , because the
temperature T!1/Nta becomes larger as ! increases in as-
ymptotically free theories. At K!0 (mq!"), the first order
finite temperature phase transition of pure SU#3$ gauge
theory locates at !c!5.69254(24) and 5.89405#51$ for Nt
!4 and 6 %18& and at !c!6.0625 for Nt!8 %19&. This finite
temperature transition turns into a crossover transition at in-
termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
transition line crosses the Kc line at finite ! %14&. We note
that, for understanding the whole phase structure which in-
cludes the region above the Kc line #negative values of the
bare quark mass$, the existence of the Aoki phase is impor-
tant %20&. A schematic diagram of the phase structure for this
case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
singular on the Kc line in the high-temperature phase #to the
right of the finite temperature transition line$ %14&. The loca-
tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
structure for NF'17, we have increased the number of fla-
vors like 18, 60, 120, 180, 240, and 300, and systematically
viewed the results of the quark mass and the pion mass for
all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
lattices.

FIG. 4. The phase structure for NF)6; #a$ at zero temperature,
and #b$ at finite temperatures. The chiral limit #massless quark limit$
is shown by thick curves labeled by ‘‘mq!0,’’ and the finite tem-
perature QCD transition at a fixed finite Nt is shown by a shaded
curve.
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Eventually, the whole
parameter space including the
continuum limit is covered by
confining phase.
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If the theory is conformal, 
the one end of the line 
(1st) moves to the right as 
before, while the other 
(2nd or c.o.) won’t. 

Speculation
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If the theory is conformal, 
the one end of the line 
(1st) moves to the right as 
before, while the other 
(2nd or c.o.) won’t. 

Speculation
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“confined” phase except for the 
chiral limit.
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is simple as the chirally symmetric case discussed in Sec. III.
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We started with NF=6.

Phase 0: global scan of K-β plane March 16, 2012
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Figure 2: The simulation points in scan (×) and in spectroscopy (◦). Top panel is for simulations with either
L or T equal to 8, and bottom for those with L = 16 or T = 16. Data points with |〈 Polyakov loop 〉| <thre
are shown in black, while those with |〈 Polyakov loop 〉| ≥thre in red.
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K. Miura, M. P. Lombardo, E. Pallante (2011)
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Demonstration in quenched approximation

⬇
,
⬇

Phase 0: global scan of K-β plane March 18, 2012

where z is convention dependent factor, and

β0 =
2Nc

g2
0

. (10)

We use the boosted coupling

g̃2 =
g2
0

u
, (11)

instead of the bare lattice coupling, where u is the average plaquette value and

u =

〈

1

3
TrUplaq.

〉

= 1 + u1g
2
0 + u2g

4
0 + · · · ,

u1 = −
1

3
. (12)

Then, the corresponding Λ-parameter, ΛL,imp, is given by

a(β̃0)ΛL,imp = exp

[

−
β̃0

2Ncb1

]

(

Nc b1

β̃0

)

−

b2
b2
1 , (13)

where

β̃0 = β0u. (14)

Suppose that the relation between the two couplings in different schemes is given by

g2
A = g2

B + cAB g4
B + O(g6

B), (15)

Using eq. (15), we then obtain the ratio of the Λ-parameters in two schemes as

ΛB

ΛA
= exp

(

−
cAB

b1

)

. (16)

From eqs. (11) and (12),

g̃2 = g2
0 − u1g

4
0 + O(g6

0), (17)

Thus,

ΛL

ΛL,imp
= exp

(

u1

b1

)

= exp

(

−
8π2

33 − 2Nf

)

= 0.09139 for Nf = 0. (18)

Now consider the equality

1

Nt,s
= Tca(βc(Nt,s))

=
[ Tc

ΛL

][

a(βc(Nt,s))ΛL

]

=
[ Tc

ΛL,imp

][

a(βc(Nt,s))ΛL,imp

]

(19)

Fig. 3 shows Tc/ΛL or Tc/ΛL,imp as a function of Ns,t. If the data lie on a line passing the origin, Tc We fit

the three data with Nt,s = 8, 16, 24 in both cases. The slople gives Tc(Nt,s)
ΛL

or Tc(Nt,s)
ΛL,imp

. The extracted values
are

Tc

ΛL
= 43(2), (20)

Tc

ΛL,imp
= 2.87(23), (21)
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respectively. Using the relations

ΛMS

ΛL
= exp

[

Nc

(

11
12J + 5

72K + 1
16 − 1

8Nc2
− 1

48π2

)

+ 1
2LNf

b1

]

, (22)

J = 0.0465622, K = 0.309866, L = 0.003107, (23)

ΛMS

ΛMS
= exp

[

ln(4π) − γE

2

]

, (24)

γE = 0.5772, (25)

we obtain, for Nf = 0,

ΛMS

ΛL
= 10.85, (26)

ΛMS

ΛMS
= 2.656, (27)

ΛMS

ΛL
= 28.81, (28)

ΛL

ΛL,imp
= 0.09139, (29)

ΛL,imp

ΛMS

= 0.3798. (30)

and then

Tc

ΛMS

= 1.49(7) with bare coupling, (31)

Tc

ΛMS

= 1.09(9) with boosted coupling, (32)

respectively, in the quenched approximation. According to ALPHA collaboration, for Nf = 0 ΛMS = 240(?)
MeV when r0 = 0.50 fm.

N. Yamada for Wilson Many Flavor (WMF) Collaboration page 24 / 43

Phase 0: global scan of K-β plane March 19, 2012

respectively. Using the relations

ΛMS

ΛL
= exp

[

Nc

(

11
12J + 5

72K + 1
16 − 1

8Nc2
− 1

48π2

)

+ 1
2LNf

b1

]

, (22)

J = 0.0465622, K = 0.309866, L = 0.003107, (23)

ΛMS

ΛMS
= exp

[

ln(4π) − γE

2

]

, (24)

γE = 0.5772, (25)

we obtain, for Nf = 0,

ΛMS

ΛL
= 10.85, (26)

ΛMS

ΛMS
= 2.656, (27)

ΛMS

ΛL
= 28.81, (28)

ΛL

ΛL,imp
= 0.09139, (29)

ΛL,imp

ΛMS

= 0.3798. (30)

and then

Tc

ΛMS

= 1.49(7) with bare coupling, (31)

Tc

ΛMS

= 1.09(9) with boosted coupling, (32)

respectively, in the quenched approximation. According to ALPHA collaboration, for Nf = 0 ΛMS = 240(?)
MeV when r0 = 0.50 fm.

N. Yamada for Wilson Many Flavor (WMF) Collaboration page 24 / 43

Phase 0: global scan of K-β plane March 19, 2012

respectively. Using the relations

ΛMS

ΛL
= exp

[

Nc

(

11
12J + 5

72K + 1
16 − 1

8Nc2
− 1

48π2

)

+ 1
2LNf

b1

]

, (22)

J = 0.0465622, K = 0.309866, L = 0.003107, (23)

ΛMS

ΛMS
= exp

[

ln(4π) − γE

2

]

, (24)

γE = 0.5772, (25)

we obtain, for Nf = 0,

ΛMS

ΛL
= 10.85, (26)

ΛMS

ΛMS
= 2.656, (27)

ΛMS

ΛL
= 28.81, (28)

ΛL

ΛL,imp
= 0.09139, (29)

ΛL,imp

ΛMS

= 0.3798. (30)

and then

Tc

ΛMS

= 1.49(7) with bare coupling, (31)

Tc

ΛMS

= 1.09(9) with boosted coupling, (32)

respectively, in the quenched approximation. According to ALPHA collaboration, for Nf = 0 ΛMS = 240(?)
MeV when r0 = 0.50 fm.

N. Yamada for Wilson Many Flavor (WMF) Collaboration page 24 / 43



17

Spectrum of 6-flavor 
two-color QCD



Finite Volume effect

18

•Finite volume effect 
is significant.
•Masses are bounded 

from below.
•Minimum decreases 

as volume → large.

Parameter search for SU(2) spectroscopy March 16, 2012
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Figure 14: Comparison of mπ vs 2 × mpcac with 83 × 24, 163 × 32 and 243 × 48 lattices at β = 1.5 and 2.0.
Calculatios are done with plaquette gauge and six-flavors of wilson fermions.
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Del Debbio et al.(2010)

Expected behavior in Conformal Window

19

•Static limit = Quench
•In the massless limit, 

everything becomes massless.
•Dynamical scale (e.g. ΛQCD in 

QCD) also vanishes there in 
contrast to QCD.
•Therefore, mass dependence 

of gluonic quantities is the 
key.

6

MMlock

MX
V
PS

2++

0++

σ

MMlock

MX
V
PS

2++

0++

σ 1/21/2

FIG. 1: Sketches of the spectrum of a mass-deformed IR-conformal theory (square root of the string tension, 0++ and 2++

glueballs, pseudoscalar and vector isovector mesons). In the left plot, the locking sets up at an intermediate value of the fermion
mass, where dynamical fermion effects account for the physics of the system, but the pseudoscalar is not much lighter than the
other particles in the spectrum. In the right plot, the locking sets up at a high value of the fermion mass, where the heavy quark
effective theory provides a good description of the relevant degrees of freedoms. This case is realized close to the Banks-Zacks
point, but is possible in principle also if a strongly coupled IR fixed point is present.

B. Scaling region and locking scale

Under the hyperscaling hypothesis, the function FX defined in Eq. (21) is expected to approach a nonzero value
AX in the chiral limit. We can define the scaling region for a given channel X as the range of x = M/Λ around x = 0,
where the function FX(x) deviates from its asymptotic behavior by a small relative amount ε:

∣

∣

∣

∣

FX(x) −AX

AX

∣

∣

∣

∣

< ε . (26)

In the scaling region, the mass MX obeys the power law (24) as a function of the running mass up to corrections
of order ε. The extension of the scaling region will depend on the size of the discarded subleading contributions to
formula (24) in the chosen channel.
Consider now the square root of the fundamental string tension Mσ =

√
σ (which is well defined for dynamical

fermions in the adjoint representation) and the lightest isovector meson (which is always the pseudoscalar one), with
mass MPS. A finite value x = x̄ exists, below which both these channels are in the scaling region. This means that
below the mass Mlock = x̄Λ, the corrections to the hyperscaling behavior of Mσ and MPS masses are relatively smaller
than ε. Also the ratio MPS/Mσ for every fermionic mass below Mlock will be very similar to its asymptotic value
APS/Aσ:

∣

∣

∣

∣

MPS

Mσ
−

APS

Aσ

∣

∣

∣

∣

< O(ε) . (27)

The dynamics is dramatically different below and above the mass Mlock. In the large-mass region, M # Λ, the
gluonic and mesonic masses are parametrically independent. All the gluonic masses are proportional to Λ, while all
the mesonic masses are equal to 2M :

MPS = 2M , (28)

Mσ = BσΛ . (29)

The ratio MPS/Mσ goes to infinity in the large-mass limit. For masses below Mlock the two masses MPS and Mσ

enter the scaling region, become both independent of Λ and proportional to M . The ratio MPS/Mσ is locked to its
asymptotic value APS/Aσ. We will refer to Mlock as the locking mass.



MH and σ

20

•MP ≈ MV and MS ≈ MAV 
are typical pattern in the 
presence of heavy quark 
symmetry.
•σ1/2 is smaller than MH 

in most region.
•At V=323 x 64, σ1/2 ≈ MH

•FVE is small for σ1/2.
•σ1/2 seems to remain 

finite in the chiral limit.
•Confinement?

Parameter search for SU(2) spectroscopy March 16, 2012
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Figure 15: Various meson masses and
√

σ as a function of 2mpcac with 243×48 lattices at β = 2.0. Calculatios
are done with plaquette gauge and six-flavors of wilson fermions. One data from the simulation with the
same parameters but on 323 × 64 are also shown.
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Summary

21

✓We employ Wilson fermion to explore 
conformal window with several 
complementary approaches.
✓In future, actions may be replaced with 

improved ones, depending on the first 
survey with no improvement.
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