Thermodynamic Study for (Pre-) Conformal and Dynamics in Many Flavor QCD

Kohtaroh Miura^A, M. Lombardo^A, E. Pallante^B A. Deuzeman^C, and T. Silva^B

Laboratori Nazionali di Frascati - INFN^A Rijksuniversiteit Groningen^B University of Bern^C

Talk at KMI-SCGT, Nagoya Univ., March. 20, 2012

References

References

- K. Miura, M. P. Lombardo and E. Pallante, "Chiral phase transition at finite temperature and conformal dynamics in large N_f QCD," To appear in Phys. Lett. B, arXiv:1110.3152 [hep-lat].
- K. Miura, M. P. Lombardo and E. Pallante, "Thermodynamic Study for Conformal Phase in Large Nf Gauge Theory," PoS Lattice 2011, arXiv:1111.1098 [hep-lat].

Tools

- MILC Code: http://www.physics.utah.edu/~detar/milc/milc_qcd.html
- Argolithm: Rational Hybrid Molecular-Dynamics with Omelyan-Integrator
- **Computers:** IBM-sp6 in CINECA, SP16000 in YITP, and Italian-Grid-Infrastructures

Table of Contents

1 Introduction

- Emergence of Conformal Symmetry in Gauge Theory
- FRG Study for Finite T Chiral Trans.

2 Results: Six Flavor QCD at Finite Temperature

- Critical Coupling Determination in $N_f = 6$ QCD-Like Theory
- Asymptotic Scaling

3 Discussion: N_f Dependence of T_c

- N_f Dependence of T_c/Λ_L
- N_f Dependence of T_c/M : Use of UV Reference Scale M
- Miransky-Yamawaki Diagram

Summary and Future Works

Results: Six Flavor QCD at Finite Temperature Discussion: N_f Dependence of T_c Summary and Future Works

Table of Contents

Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite T Chiral Trans.

1 Introduction

- Emergence of Conformal Symmetry in Gauge Theory
- FRG Study for Finite T Chiral Trans.

2 Results: Six Flavor QCD at Finite Temperature

- Critical Coupling Determination in $N_f = 6$ QCD-Like Theory
- Asymptotic Scaling

3 Discussion: N_f Dependence of T_c

- N_f Dependence of T_c/Λ_L
- N_f Dependence of T_c/M : Use of UV Reference Scale M
- Miransky-Yamawaki Diagram

Summary and Future Works

 $\begin{array}{c} \mbox{Results: Six Flavor QCD at Finite Temperature} \\ \mbox{Discussion: N_f Dependence of \mathcal{T}_c} \\ \mbox{Summary and Future Works} \end{array}$

Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite ${\cal T}$ Chiral Trans.

$$\frac{dg^{2}}{d \log(\mu/\Lambda_{\rm UV})} = \theta(N_{f}) \left(g^{2} - g_{*}^{2}(N_{f})\right), \qquad (1)$$

$$\mu_{\chi} \sim A(N_{f}) \left[g_{\chi}^{2}(N_{f}) - g_{*}^{2}(N_{f})\right]^{1/\theta(N_{f})}, \qquad (2)$$

$$N_{f}^{*} : \text{Lower Bound of CW.} g_{\chi}^{2}(N_{f}^{*}) = g_{*}^{2}(N_{f}^{*}), \qquad (3)$$

$$T_{\chi}(N_{f}) \sim \mu_{\chi}(N_{f}) \sim |N_{f} - N_{f}^{*}|^{1/\theta(N_{f}^{*})} \text{ (Braun-Gies('11))}. \qquad (4)$$

 $\begin{array}{c} \mbox{Results: Six Flavor QCD at Finite Temperature} \\ \mbox{Discussion: N_f Dependence of \mathcal{T}_c \\ \mbox{Summary and Future Works} \end{array}$

Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite ${\cal T}$ Chiral Trans.

< D > < P >

$$\frac{dg^{2}}{d \log(\mu/\Lambda_{\rm UV})} = \theta(N_{f}) \left(g^{2} - g_{*}^{2}(N_{f})\right), \qquad (1)$$

$$\mu_{\chi} \sim A(N_{f}) \left[g_{\chi}^{2}(N_{f}) - g_{*}^{2}(N_{f})\right]^{1/\theta(N_{f})}, \qquad (2)$$

$$N_{f}^{*} : \text{Lower Bound of CW.} g_{\chi}^{2}(N_{f}^{*}) = g_{*}^{2}(N_{f}^{*}), \qquad (3)$$

$$T_{\chi}(N_{f}) \sim \mu_{\chi}(N_{f}) \sim |N_{f} - N_{f}^{*}|^{1/\theta(N_{f}^{*})} \text{ (Braun-Gies('11))}. \qquad (4)$$

Results: Six Flavor QCD at Finite Temperature Discussion: N_f Dependence of T_c Summary and Future Works

Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite ${\cal T}$ Chiral Trans.

$$\frac{dg^{2}}{d \log(\mu/\Lambda_{\rm UV})} = \theta(N_{f}) \left(g^{2} - g_{*}^{2}(N_{f})\right), \qquad (1)$$

$$\mu_{\chi} \sim A(N_{f}) \left[g_{\chi}^{2}(N_{f}) - g_{*}^{2}(N_{f})\right]^{1/\theta(N_{f})}, \qquad (2)$$

$$N_{f}^{*} : \text{Lower Bound of CW.} g_{\chi}^{2}(N_{f}^{*}) = g_{*}^{2}(N_{f}^{*}), \qquad (3)$$

$$\mathcal{T}_{\chi}(N_{f}) \sim \mu_{\chi}(N_{f}) \sim \left|N_{f} - N_{f}^{*}\right|^{1/\theta(N_{f}^{*})} \left(\text{Braun-Gies}(11)\right). \qquad (4)$$

Results: Six Flavor QCD at Finite Temperature Discussion: N_f Dependence of T_c Summary and Future Works

Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite ${\cal T}$ Chiral Trans.

$$\frac{dg^{2}}{d \log(\mu/\Lambda_{\rm UV})} = \theta(N_{f}) \left(g^{2} - g_{*}^{2}(N_{f})\right), \qquad (1)$$

$$\mu_{\chi} \sim A(N_{f}) \left[g_{\chi}^{2}(N_{f}) - g_{*}^{2}(N_{f})\right]^{1/\theta(N_{f})}, \qquad (2)$$

$$N_{f}^{*} : \text{Lower Bound of CW.} g_{\chi}^{2}(N_{f}^{*}) = g_{*}^{2}(N_{f}^{*}), \qquad (3)$$

$$T_{\chi}(N_{f}) \sim \mu_{\chi}(N_{f}) \sim |N_{f} - N_{f}^{*}|^{1/\theta(N_{f}^{*})} \quad (\text{Braun-Gies('11)}). \quad (4)$$

Results: Six Flavor QCD at Finite Temperature Discussion: N_f Dependence of T_c Summary and Future Works Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite T Chiral Trans.

イロト イポト イヨト イヨト

$T - N_f$ Phase Diagram: Functional Renormalization Group

 $T_c \propto |N_f - N_f^*|^{2.54} \quad \text{(Braun-Gies('06,'09,'11))}, \qquad (5)$ c.f.Miransky-Yamawaki Scaling ('97): $T_c \sim \exp\left[-\frac{B(N_f^*)}{\sqrt{|N_f^* - N_f|}}\right]. (6)$

Results: Six Flavor QCD at Finite Temperature Discussion: N_f Dependence of T_c Summary and Future Works

Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite T Chiral Trans.

イロト イポト イヨト イヨト

$T - N_f$ Phase Diagram: Functional Renormalization Group

 $T_{c} \propto |N_{f} - N_{f}^{*}|^{2.54} \quad (\text{Braun-Gies('06,'09,'11)}) , \qquad (5)$ c.f.Miransky-Yamawaki Scaling ('97): $T_{c} \sim \exp\left[-\frac{B(N_{f}^{*})}{\sqrt{|N_{f}^{*} - N_{f}|}}\right] . (6)$

Results: Six Flavor QCD at Finite Temperature Discussion: N_f Dependence of T_c Summary and Future Works Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite ${\cal T}$ Chiral Trans.

(日) (同) (三) (三)

Goal

Ultimate Goal

- We investigate finite T chiral phase transitions in $N_f = 0, 4, 6, 8$, (and 12) cases, (and more in future).
- The lower edge of the conformal window is extracted from a vanishing $T_c(N_f)$.
- Miranski and/or BG Scaling are interesting physics, and useful to find and study the walking region.

- Six flavor QCD is expected to be in the region of walking (pre-conformal) dynamics (Appelquist ('11)).
- The chiral and deconfinement dynamics at finite temperature has not been investigated, while they provide important data to complete the T_c - N_f phase diagram.

Results: Six Flavor QCD at Finite Temperature Discussion: N_f Dependence of T_c Summary and Future Works

Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite ${\cal T}$ Chiral Trans.

(日) (同) (三) (三)

Goal

Ultimate Goal

- We investigate finite T chiral phase transitions in $N_f = 0, 4, 6, 8$, (and 12) cases, (and more in future).
- The lower edge of the conformal window is extracted from a vanishing $T_c(N_f)$.
- Miranski and/or BG Scaling are interesting physics, and useful to find and study the walking region.

- Six flavor QCD is expected to be in the region of walking (pre-conformal) dynamics (Appelquist ('11)).
- The chiral and deconfinement dynamics at finite temperature has not been investigated, while they provide important data to complete the T_c - N_f phase diagram.

Results: Six Flavor QCD at Finite Temperature Discussion: N_f Dependence of T_c Summary and Future Works

Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite ${\cal T}$ Chiral Trans.

Image: A matrix

- 4 E b 4 E b

Goal

Ultimate Goal

- We investigate finite T chiral phase transitions in $N_f = 0, 4, 6, 8$, (and 12) cases, (and more in future).
- The lower edge of the conformal window is extracted from a vanishing $T_c(N_f)$.
- Miranski and/or BG Scaling are interesting physics, and useful to find and study the walking region.

- Six flavor QCD is expected to be in the region of walking (pre-conformal) dynamics (Appelquist ('11)).
- The chiral and deconfinement dynamics at finite temperature has not been investigated, while they provide important data to complete the T_c - N_f phase diagram.

Results: Six Flavor QCD at Finite Temperature Discussion: N_f Dependence of T_c Summary and Future Works

Emergence of Conformal Symmetry in Gauge Theory FRG Study for Finite ${\cal T}$ Chiral Trans.

Goal

Ultimate Goal

- We investigate finite T chiral phase transitions in $N_f = 0, 4, 6, 8$, (and 12) cases, (and more in future).
- The lower edge of the conformal window is extracted from a vanishing $T_c(N_f)$.
- Miranski and/or BG Scaling are interesting physics, and useful to find and study the walking region.

- Six flavor QCD is expected to be in the region of walking (pre-conformal) dynamics (Appelquist ('11)).
- The chiral and deconfinement dynamics at finite temperature has not been investigated, while they provide important data to complete the $T_c N_f$ phase diagram.

Table of Contents

Introduction

- Emergence of Conformal Symmetry in Gauge Theory
- FRG Study for Finite T Chiral Trans.

2 Results: Six Flavor QCD at Finite Temperature

- Critical Coupling Determination in $N_f = 6$ QCD-Like Theory
- Asymptotic Scaling

3 Discussion: N_f Dependence of T_c

- N_f Dependence of T_c/Λ_L
- N_f Dependence of T_c/M : Use of UV Reference Scale M
- Miransky-Yamawaki Diagram

Summary and Future Works

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

(7)

Critical Coupling Determination from R_{π} , $N_t = 4$

Kohtaroh Miura^A, M. Lombardo^A, E. Pallante^B A. Deuzeman^C, and T. Si Thermodynamic Study for (Pre-) Conformal and Dynamics in Many Flavo

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

Critical Coupling Determination from R_{π} , $N_t = 6$

 $\beta_{\rm L}^{\ \rm c} = 5.05 \pm 0.05$.

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

Critical Coupling Determination from R_{π} , $N_t = 8$

 $\beta_{\rm L}{}^{\rm c}=5.2\pm0.05$.

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

Critical Coupling Determination from R_{π} , $N_t = 12$

 $\beta_{\rm L}{}^{\rm c}=5.45\pm0.15$.

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

From $\beta_{\rm L}^{\rm c}$ To A Physical Quantity, $T_c/\Lambda_{\rm L}$

Table: The summary table of β_c at $N_f = 6$ with ma = 0.02.

$N_f \setminus N_t$	4	6	8	12
6	4.65 ± 0.05	5.05 ± 0.05	5.2 ± 0.05	5.45 ± 0.15

Comment

• We have used a single lattice mass ma = 0.02.

• Thermal scaling property indicates that $N_f = 6$ looks out of conformal window (*c.f.* Bulk Transition at $N_f = 12$ (Deuzaman et al, ('10))).

$$\Lambda_{L}a(\beta_{c}) = \left(\frac{\beta}{2N_{c}b_{0}}\right)^{(b1/(2b_{0}^{2}))} \exp\left[-\frac{\beta_{c}}{4N_{c}b_{0}}\right], \quad (2-\text{Loop}), \quad (8)$$
$$\frac{1}{N_{\tau}} = \frac{T_{c}}{\Lambda_{L}} \cdot \Lambda_{L}a(\beta_{c}). \quad (9)$$

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

From $\beta_{\rm L}^{\rm c}$ To A Physical Quantity, $T_c/\Lambda_{\rm L}$

Table: The summary table of β_c at $N_f = 6$ with ma = 0.02.

$N_f \setminus N_t$	4	6	8	12
6	4.65 ± 0.05	5.05 ± 0.05	5.2 ± 0.05	5.45 ± 0.15

Comment

- We have used a single lattice mass ma = 0.02.
- Thermal scaling property indicates that $N_f = 6$ looks out of conformal window (*c.f.* Bulk Transition at $N_f = 12$ (Deuzaman et al, ('10))).

$$\Lambda_{L} \boldsymbol{\partial}(\beta_{c}) = \left(\frac{\beta}{2N_{c}b_{0}}\right)^{(b1/(2b_{0}^{2}))} \exp\left[-\frac{\beta_{c}}{4N_{c}b_{0}}\right], \quad (2-\text{Loop}), \quad (8)$$
$$\frac{1}{N_{\tau}} = \frac{T_{c}}{\Lambda_{L}} \cdot \Lambda_{L} \boldsymbol{\partial}(\beta_{c}). \quad (9)$$

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

From $\beta_{\rm L}^{\rm c}$ To A Physical Quantity, $T_c/\Lambda_{\rm L}$

Table: The summary table of β_c at $N_f = 6$ with ma = 0.02.

$N_f \setminus N_t$	4	6	8	12
6	4.65 ± 0.05	5.05 ± 0.05	5.2 ± 0.05	5.45 ± 0.15

Comment

- We have used a single lattice mass ma = 0.02.
- Thermal scaling property indicates that $N_f = 6$ looks out of conformal window (*c.f.* Bulk Transition at $N_f = 12$ (Deuzaman et al, ('10))).

$$\Lambda_{L}a(\beta_{c}) = \left(\frac{\beta}{2N_{c}b_{0}}\right)^{(b1/(2b_{0}^{2}))} \exp\left[-\frac{\beta_{c}}{4N_{c}b_{0}}\right], \quad (2-\text{Loop}), \quad (8)$$
$$\frac{1}{N_{\tau}} = \frac{T_{c}}{\Lambda_{L}} \cdot \Lambda_{L}a(\beta_{c}). \quad (9)$$

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

Asymptotic Scaling and Its Violation

Critical Coupling Determination in $N_f = 6$ QCD-Like Theory Asymptotic Scaling

Asymptotic Scaling and Its Violation II

$$\frac{1}{N_{\tau}} = \frac{I_c}{\Lambda_{\rm L}} \cdot \Lambda_{\rm L} a(\beta_c) , \quad \beta = 10/g_0^2 \to 6/g^2 . \tag{11}$$

Table of Contents

 ${\rm N_f}$ Dependence of ${\mathcal T_C}/{\Lambda_{\rm L}}$, Dependence of ${\mathcal T_C}/{M_{\rm L}}$ Use of UV Reference Scale M Miransky-Yamawaki Diagram

Introduction

- Emergence of Conformal Symmetry in Gauge Theory
- FRG Study for Finite T Chiral Trans.

2 Results: Six Flavor QCD at Finite Temperature

Critical Coupling Determination in N_f = 6 QCD-Like Theory
 Asymptotic Scaling

Asymptotic Scaling

3 Discussion: N_f Dependence of T_c

- N_f Dependence of T_c/Λ_L
- N_f Dependence of T_c/M : Use of UV Reference Scale M
- Miransky-Yamawaki Diagram

4 Summary and Future Works

 N_f Dependence of \mathcal{T}_c/Λ_L N_f Dependence of \mathcal{T}_c/M : Use of UV Reference Scale M Miransky-Yamawaki Diagram

Collection of β_c , for several N_f

Table: The summary table of β_c . The values are obtained by using the same action except the number of flavors. Blue: Deuzeman-Lombardo-Pallante ('08).

$N_f \setminus N_t$	4	6	8	12
0	-	7.88 ± 0.05	-	-
4	-	5.89 ± 0.03	-	
6	4.675 ± 0.025	5.025 ± 0.025	5.225 ± 0.025	5.45 ± 0.05
8	-	4.1125 ± 0.0125	-	$\textbf{4.34} \pm \textbf{0.04}$

Comment

- We have used a single lattice mass ma = 0.02.
- We have used the same action (upto N_f) and the same (MILC) code to get the above collection.

$$\frac{1}{N_{\tau}} = \frac{T_c}{\Lambda_{\rm L}} (N_f) \cdot \Lambda_{\rm L} a(\beta_c(N_f)) .$$
(12)

 N_f Dependence of \mathcal{T}_c/Λ_L N_f Dependence of \mathcal{T}_c/M : Use of UV Reference Scale M Miransky-Yamawaki Diagram

Collection of β_c , for several N_f

Table: The summary table of β_c . The values are obtained by using the same action except the number of flavors. Blue: Deuzeman-Lombardo-Pallante ('08).

$N_f \setminus N_t$	4	6	8	12
0	-	7.88 ± 0.05	-	-
4	-	5.89 ± 0.03	-	
6	4.675 ± 0.025	5.025 ± 0.025	5.225 ± 0.025	5.45 ± 0.05
8	-	4.1125 ± 0.0125	-	$\textbf{4.34} \pm \textbf{0.04}$

Comment

- We have used a single lattice mass ma = 0.02.
- We have used the same action (upto N_f) and the same (MILC) code to get the above collection.

$$\frac{1}{N_{\tau}} = \frac{T_c}{\Lambda_{\rm L}}(N_f) \cdot \Lambda_{\rm L} a(\beta_c(N_f)) . \qquad (12)$$

Kohtaroh Miura^A, M. Lombardo^A, E. Pallante^B A. Deuzeman^C, and T. Si Thermodynamic Study for (Pre-) Conformal and Dynamics in Many Flavo

 N_{f} Dependence of $\mathcal{T}_{c}/\Lambda_{L}$ N_{f} Dependence of \mathcal{T}_{c}/M : Use of UV Reference Scale M Miransky-Yamawaki Diagram

N_f Dependence of T_c/Λ_L

Enhancement of T_c/Λ_L

• Vanishing IR-Scale Λ_L with closer to the conformal window.

Onset of Walking? c.f. S.Guputa('01) and Appelquist('10).

 N_{f} Dependence of $\mathcal{T}_{c}/\Lambda_{L}$ N_{f} Dependence of \mathcal{T}_{c}/M : Use of UV Reference Scale M Miransky-Yamawaki Diagram

N_f Dependence of T_c/Λ_L

Enhancement of T_c/Λ_L

- \bullet Vanishing IR-Scale $\Lambda_{\rm L}$ with closer to the conformal window.
- Onset of Walking? c.f. S.Guputa('01) and Appelquist('10).

 N_f Dependence of ${\mathcal T}_c/\Lambda_L$ N_f Dependence of ${\mathcal T}_c/M$: Use of UV Reference Scale M Miransky-Yamawaki Diagram

Reference-Scale *M*: **Renomalization Scale**

Integrating 2-loop beta function, $dg/dM = -g^3(b_0 + b_1g^2)$, from $M(\beta_{\rm ref})$ to $a^{-1}(\beta_c)$, We obtain

$$\mathcal{M}(\beta_{\rm ref}) \times \mathbf{a}(\beta_c) = \left(\frac{b_0^2}{b_1} \frac{\beta_c + 2N_c b_1/b_0}{\beta_{\rm ref} + 2N_c b_1/b_0}\right)^{b1/(2b_0^2)} \exp\left[-\frac{\beta_c - \beta_{\rm ref}}{4N_c b_0}\right].$$
 (13)

• $a^{-1}(\beta_c)$: UV Cutoff, and including lattice output β_c .

- $M(\beta_{\rm L}^{\rm ref})$: Renormalization scale in 2-loop perturbations.
- c.f: Braun-Gies ('06), $\alpha_s(M = 1.7 \text{GeV}) = 0.322$.

 N_f Dependence of ${\mathcal T}_c/\Lambda_L$ N_f Dependence of ${\mathcal T}_c/M$: Use of UV Reference Scale M Miransky-Yamawaki Diagram

Reference-Scale *M*: **Renomalization Scale**

Integrating 2-loop beta function, $dg/dM = -g^3(b_0 + b_1g^2)$, from $M(\beta_{\rm ref})$ to $a^{-1}(\beta_c)$, We obtain

$$\mathcal{M}(\beta_{\rm ref}) \times \mathbf{a}(\beta_c) = \left(\frac{b_0^2}{b_1} \frac{\beta_c + 2N_c b_1/b_0}{\beta_{\rm ref} + 2N_c b_1/b_0}\right)^{b1/(2b_0^2)} \exp\left[-\frac{\beta_c - \beta_{\rm ref}}{4N_c b_0}\right].$$
(13)

- $a^{-1}(\beta_c)$: UV Cutoff, and including lattice output β_c .
- $M(\beta_{\rm L}^{\rm ref})$: Renormalization scale in 2-loop perturbations.
- c.f: Braun-Gies ('06), $\alpha_s(M = 1.7 \text{GeV}) = 0.322$.

 N_f Dependence of ${\mathcal T}_c/\Lambda_L$ N_f Dependence of ${\mathcal T}_c/M$: Use of UV Reference Scale M Miransky-Yamawaki Diagram

Reference-Scale *M*: **Renomalization Scale**

Integrating 2-loop beta function, $dg/dM = -g^3(b_0 + b_1g^2)$, from $M(\beta_{\rm ref})$ to $a^{-1}(\beta_c)$, We obtain

$$\mathcal{M}(\beta_{\rm ref}) \times \mathbf{a}(\beta_c) = \left(\frac{b_0^2}{b_1} \frac{\beta_c + 2N_c b_1/b_0}{\beta_{\rm ref} + 2N_c b_1/b_0}\right)^{b1/(2b_0^2)} \exp\left[-\frac{\beta_c - \beta_{\rm ref}}{4N_c b_0}\right].$$
(13)

- $a^{-1}(\beta_c)$: UV Cutoff, and including lattice output β_c .
- $M(\beta_{\rm L}^{\rm ref})$: Renormalization scale in 2-loop perturbations.
- c.f: Braun-Gies ('06), $\alpha_s(M = 1.7 \text{GeV}) = 0.322$.

 N_f Dependence of ${\mathcal T}_c/\Lambda_L$ N_f Dependence of ${\mathcal T}_c/M$: Use of UV Reference Scale M Miransky-Yamawaki Diagram

Reference-Scale *M*: **Renomalization Scale**

Integrating 2-loop beta function, $dg/dM = -g^3(b_0 + b_1g^2)$, from $M(\beta_{\rm ref})$ to $a^{-1}(\beta_c)$, We obtain

$$\mathcal{M}(\beta_{\rm ref}) \times \mathbf{a}(\beta_c) = \left(\frac{b_0^2}{b_1} \frac{\beta_c + 2N_c b_1/b_0}{\beta_{\rm ref} + 2N_c b_1/b_0}\right)^{b1/(2b_0^2)} \exp\left[-\frac{\beta_c - \beta_{\rm ref}}{4N_c b_0}\right].$$
 (13)

- $a^{-1}(\beta_c)$: UV Cutoff, and including lattice output β_c .
- $M(\beta_{\rm L}^{\rm ref})$: Renormalization scale in 2-loop perturbations.
- c.f: Braun-Gies ('06), $\alpha_s(M = 1.7 \text{GeV}) = 0.322$.

 N_f Dependence of ${\mathcal T}_c/\Lambda_{\rm L}$ N_f Dependence of ${\mathcal T}_c/M$: Use of UV Reference Scale M Miransky-Yamawaki Diagram

Reference-Scale *M* **II**

Kohtaroh Miura^A, M. Lombardo^A, E. Pallante^B A. Deuzeman^C, and T. S Thermodynamic Study for (Pre-) Conformal and Dynamics in Many Flavo

 N_f Dependence of $\mathcal{T}_c/\Lambda_{\rm L}$ N_f Dependence of \mathcal{T}_c/M : Use of UV Reference Scale M Miransky-Yamawaki Diagram

T_c/M as a function of N_f

Kohtaroh Miura^A, M. Lombardo^A, E. Pallante^B A. Deuzeman^C, and T. S. Thermodynamic Study for (Pre-) Conformal and Dynamics in Many Flavo

 N_f Dependence of ${\mathcal T}_c/\Lambda_{\rm L}$ N_f Dependence of ${\mathcal T}_c/M$: Use of UV Reference Scale M Miransky-Yamawaki Diagram

 T_c/M as a function of N_f : UV M

Kohtaroh Miura^A, M. Lombardo^A, E. Pallante^B A. Deuzeman^C, and T. S. Thermodynamic Study for (Pre-) Conformal and Dynamics in Many Flavo

 N_f Dependence of ${\mathcal T}_c/\Lambda_{\rm L}$ N_f Dependence of ${\mathcal T}_c/M$: Use of UV Reference Scale M Miransky-Yamawaki Diagram

Critical Flavor Number N^{*}_f

$$T_c(N_f) = K |N_f - N_f^*|^{2.54}, \text{ (Braun-Geis ('11))}$$
(14)
$$N_f^* = 10.43 \pm 0.6, \text{ (Presnt Work with } \beta_{ref} = 4.0)$$
(15)

 N_f Dependence of ${\mathcal T}_c/\Lambda_{\rm L}$ N_f Dependence of ${\mathcal T}_c/M$: Use of UV Reference Scale M Miransky-Yamawaki Diagram

Critical Flavor Number N^{*}_f

$$T_c(N_f) = K |N_f - N_f^*|^{2.54}, \text{ (Braun-Geis ('11))}$$
(16)

$$N_f^* = 11.49 \pm 0.9, \text{ (Presnt Work with } \beta_{ref} = 3.4)$$
(17)

 N_f Dependence of $T_c/\Lambda_{\rm L}$ N_f Dependence of T_c/M : Use of UV Reference Scale M Miransky-Yamawaki Diagram

Miransky-Yamawaki Phase Diagram: Naive Speculation

Kohtaroh Miura^A, M. Lombardo^A, E. Pallante^B A. Deuzeman^C, and T. Si Thermodynamic Study for (Pre-) Conformal and Dynamics in Many Flavo

 N_f Dependence of ${\mathcal T}_c/\Lambda_{\rm L}$ N_f Dependence of ${\mathcal T}_c/M$: Use of UV Reference Scale M Miransky-Yamawaki Diagram

Thermal Transition Lines in Miransky-Yamwaki Phase Diagram

Table of Contents

Introduction

- Emergence of Conformal Symmetry in Gauge Theory
- FRG Study for Finite T Chiral Trans.

2 Results: Six Flavor QCD at Finite Temperature

- Critical Coupling Determination in $N_f = 6$ QCD-Like Theory
- Asymptotic Scaling

3 Discussion: N_f Dependence of T_c

- N_f Dependence of T_c/Λ_L
- N_f Dependence of T_c/M : Use of UV Reference Scale M
- Miransky-Yamawaki Diagram

Summary and Future Works

Summary

Summary

- To clarify the $T_c N_f$ and the MY phase diagram is important to investigate the (pre-) conformal nature of a strongly flavored gauge theory.
- We have investigated a finite *T* chiral phase transition (crossover) in the QCD-Like theory with six flavors, and observed thermal scaling property of the critical coupling.
- The ratio T_c/Λ_L starts increasing from $N_f = 6$, which implies a change of dynamics.
- The ratio T_c/M_{UV} with a UV renormalization scale M_{UV} turns to be a decreasing function of N_f . This property would be consistent with FRG investigations with the use of a UV reference scale.

- 4 E b - 4 E b

Summary

Summary

- To clarify the T_c N_f and the MY phase diagram is important to investigate the (pre-) conformal nature of a strongly flavored gauge theory.
- We have investigated a finite *T* chiral phase transition (crossover) in the QCD-Like theory with six flavors, and observed thermal scaling property of the critical coupling.
- The ratio T_c/Λ_L starts increasing from $N_f = 6$, which implies a change of dynamics.
- The ratio T_c/M_{UV} with a UV renormalization scale M_{UV} turns to be a decreasing function of N_f . This property would be consistent with FRG investigations with the use of a UV reference scale.

- 4 @ ト 4 ヨト 4 ヨト

Summary

Summary

- To clarify the T_c N_f and the MY phase diagram is important to investigate the (pre-) conformal nature of a strongly flavored gauge theory.
- We have investigated a finite *T* chiral phase transition (crossover) in the QCD-Like theory with six flavors, and observed thermal scaling property of the critical coupling.
- The ratio T_c/Λ_L starts increasing from $N_f = 6$, which implies a change of dynamics.
- The ratio T_c/M_{UV} with a UV renormalization scale M_{UV} turns to be a decreasing function of N_f . This property would be consistent with FRG investigations with the use of a UV reference scale.

- 4 E b 4 E b

Summary

Summary

- To clarify the T_c N_f and the MY phase diagram is important to investigate the (pre-) conformal nature of a strongly flavored gauge theory.
- We have investigated a finite *T* chiral phase transition (crossover) in the QCD-Like theory with six flavors, and observed thermal scaling property of the critical coupling.
- The ratio T_c/Λ_L starts increasing from $N_f = 6$, which implies a change of dynamics.
- The ratio T_c/M_{UV} with a UV renormalization scale M_{UV} turns to be a decreasing function of N_f . This property would be consistent with FRG investigations with the use of a UV reference scale.

Future Works

Future Works

- To set a scale a^{-1} from zero T simulatoin and complete $T N_f$ and MY Phase Diagram: Work in Progress!
- Critical behavior near the IR-Fixed Pt.
- The color $SU(N_c = 2)$ with 8 flavors at finite T.