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What and why a Dilaton?

A Nambu-Goldstone boson of a spontaneously broken scale (dilatation)
symmetry. If scale symmetry is only approximate, we get a pseudo NGB
iInstead, also called dilaton.

Why would one be interested in a light dilaton?
e It can serve as a scalar analog of the graviton.

 If SM is embedded in a CFT, a dilaton could have properties similar to
the Higgs.

e |t can serve as a force mediator between dark matter and normal
matter.

* If the dilaton is sufficiently decoupled, can serve as a dark matter
candidate.



Scale Invariant Theory

A

@M

Coupling runs from UV fixed point (origin) to IR fixed point
(which it reaches in exponential RG-time).



(Approximate) Scale Invariant Theory

A schematic B function of a WTC-like theory. Alg)

The coupling constant flows toward the
“would be” IR fixed-point, gx.

Close to the fixed-point, the flow is slow and
the theory posses approximate scale
symmetry.

If the RG-trajectory reaches g, scale invariance
becomes exact.

However, some order parameter may get a vev.

If this happens close to the fixed-point, scale invariance is
spontaneously broken and one expects a light dilaton in the
spectrum.
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(Approximate) Scale Invariant Theory

A schematic B function of a WTC-like theory. Alg)

The coupling constant flows toward the
“would be” IR fixed-point, gx. ﬁ
Close to the fixed-point, the flow is slow and g 9
the theory posses approximate scale
symmetry.

It's the statement
If the RG-trajectory reaches g«, scale invariance  (equally ohiscure to me)
becomes exact. that gc < g«

athat does this M EAN?

spectrum.

A field theory with this behavior is not common!



(Approximate) Scale Invariant Theory (cont.)

In the WTC framework, the fixed-point is strongly interacting.
As a result (wish?), fermion condensate forms and breaks scale

Invariance.
But the strong interacting nature of the model makes it difficult to

analyze analytically.
In particular, the existence of a light dilaton in WTC is not clear and is

the subject of a recent rekindled debate

* Yes
e No

In a nut-shell: small 8 vs n*like (QCD anomaly).
Having a perturbative toy model with the above properties — an

interacting fixed-point and an approximate scale invariance which
IS broken dynamically — would help me understand this better.

Can it be done??



Why is it non-straightforward? Try the obvious stuff first:

SSB in CFT?

e Take CFT with moduli space (common in SCFT). Say, for
definiteness:
N'=4 SUSY SU(N) = flat directions " expand about a point

away from origin.
« EFT = SU(N) = SU(N - k) x SU(k) x U(1).

 But EFT has /=4 SUSY unbroken, “Dilaton” is exactly
massless together with partners " no mass gap.

* Perturbations: flow into ??? (possibly another CFT,
interacting), fate of “dilaton?”



Better attempt(?): Coleman-Weinberg abelian-higgs model.
1
L=~ FuF" + D'¢ Dy — Ng|*

Fine tune mass to zero, classically scale invariant.
Effective potential develops a minimum away from origin:

A s 334) 4( @ 25)
TR +%2+64112 P \In 7 =g

Gauge and scale symmetries spontaneously broken.
Gauge field acquires mass.

But would-be-dilaton acquires mass too: trace anomaly spoils
scaling symmetry.

So far, so good. But now:

Mdilaton/ Mvector ~ 62/ 1 6752



Better attempt(?): Coleman-Weinberg abelian-higgs model.
1
L=~ FuF" + D'¢ Dy — Ng|*

Fine tune mass to zero, classically scale invariant.
Effective potential develops a minimum away from origin:

A s 334) 4( @ 25)
TR +%2+64112 P \In 7 =g

Gauge and scale symmetries spontaneously broken.
Gauge field acquires mass.

But would-be-dilaton acquires mass too: trace anomaly spoils
scaling symmetry.

So far, so good. But now:

Mdilaton/ Mvector ~ 62/ 1 6752

. arbitrarily light dilaton without turning off interactions

(note: Hashimoto and Yamawaki argue that in WTC:
as Muiaton — 0 then the decay constant f— oo and dilaton decouples).



We construct a model which

™ Is perturbative (naively)

M Has a perturbative IR fixed point (naively)

M Spontaneously breaks approximate scale symmetry
M Dilaton can be made arbitrarily light (mass gap!)

while still interacting

follow-up by
some qualitative differences; unresolved

In the rest of the talk | will explain this model.

First the big picture:



Theory parameter space: couplings at fixed o
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The Model

SU(N) gauge theory with n;, = n, fundamental fermions ¢ and x
and two scalar singlets ¢; and ¢,.

1

. . 1 1
L= TP Fy, + Z; (i + X i) + 5(9:61)" + 5(9u02)°
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This theory is invariant under discrete Z, as well as SU(n,,) symmetry
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Nota bene

Masses set to zero (I am not solving the hierarchy problem).
Precisely as with Coleman and Weinberg.
Set them to zero and use dimensional regularization.

Theory has Landau pole. This is a UV issue.
We study the IR properties of the model.
We can take it to be a cut-off theory.

This is not the theory of everything.

It is a Toy Model that displays some behavior that mimics
some wanted behavior of WTC, may answer some questions
and seems to be interesting in its own right (as a field theory).



MS 3 Functions
For large N with n, = 11N/4 (1 — /11), the leading terms are

0g ON 5 25N? g°

6m) 5 = =38 + 3 16

(167 )aa); = 4y, ys + 11IN?y? — 3Ng?y,
(16722 = 352y, + 11Ny — 3Ngy,

(167 )aail = 3X\2 4 3)3 + 44N>\ yf — 264N°y;
(167 )aa? — 302 4 3)2 + 44N2)\, )2 — 264N2y
(167 )aa: = A3+ dodz + 4)2

+ 22N A3y2 4 22N2 \sy? — 264N2y2y2



Fixed-point

To get a fixed-point for the gauge coupling, need to balance a 1-loop
against a 2-loop.

This is possible because for large N, o can be made small by a
carefully chosen n,.

The fixed-point to leading order in 1/N is

2 0
2 2

— 16722

& = T 75N
3 g°
2 2 .~ Sx
18 g2

)\1* :)\2* :)\3* — = :6)/12*



Effective Potential

At tree-level, (¢;) = 0 and all the particle are massless. The theory
flows to the IR fixed-point.

However, quantum effect could drastically change the structure of the
vacuum

Vo(o) Verp(o)

/
¢ ¢

The non-trivial vev gives mass to both fermions and scalars and alters
the RG trajectory.




Effective Potential (cont.)

The effective potential in MS is

Vet = —24)\1¢1 24>\2¢2 )\3¢%¢§
LN, ( ME 3\ LINAME (0 ME 3
(6472) " 2u2 2 (6472)

n

2u% 2
N M2, Mz 3 N M Mz 3
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Effective Potential (cont.)

Minimizing the potential analytically is difficult. But easy to identify
some local minima. Focus on minimum which preserves discrete Z,

The potential reduces to
(Mo1)? (Mot 3N | (As91)” [ Az 3
Verr = —qbl In S R In >
25672 2u°2 2 25672 2u° 2
22Nyt () yidr 3
6472 (12 2

The extremum, 0/9¢1 Vesr({(¢1)) = 0, is at
A A " Ai(d1)? 1) 4 A3 " A3(d1)? .
6 6472 2147 6472 2142
88Ny} " yilo1)? .
6472 e




Vacuum Expectation

A1 can be traded with (¢;) as a free parameter. For consistency,
2L | q;l> < 1. Stability of the vev is determined from the

1672
eigenvalues of second derivative matrix

0? A2 — 88N2y
067 ((¢1),0) = = 392 = (¢1)°
82

557 Ve (92),0) = 3 {62)* + O(1-loop)

Evaluate Vg at (¢1) yields

A2 — 88N2y*
Ver((01)) = =252 ()

Thus when ¢ = A3 — 88N?y} > 0, there is a non-trivial minimum.



Role of ¢,

Note that ¢.never enters any calculations above.
Moreover, one can get an attractive IR fixed—point

with just one scalar singlet.
This raises the question: what is the purpose of the

second singlet?



Role of ¢,

Note that ¢.never enters any calculations above.
Moreover, one can get an attractive IR fixed—point

with just one scalar singlet.
This raises the question: what is the purpose of the

second singlet?

e It allows us to introduce more couplings, in particular
the cross—coupling 4s.

e Without the second singlet, the extremum found by
perturbative analysis would have been the maximum.

» The scalar potential appears to be unbounded
from below.

» Possible to have non-trivial minimum at higher
scale which is inaccessible to perturbative

analysis.



Pole mass in Broken Phase
The explicit 1-loop pole masses are

2

g= N y2v?
M¢(“):MX(M):Y1V[1—167T2§<3|n L —4>]

14
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1672 P17 T 12 _3<y1‘/ - 12)('” /ﬂ)

= 3/01dx <y12v2 - X(12_X))\1v2) In <1 — x(1 —x);7112> }

-~ A3 _88N2)/f‘/2 _ &

30772 — 30727

Since v = (¢1), it has the same anomalous dimension as ¢.
Using the anomalous dimension and the 3 functions, one can verify
that the masses are RG invariant at 1-loop.
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Dilatation Current

The dilatation current, D#, is constructed from the improved
energy-moementum tensor, ©#”, of Callan, Coleman and Jackiw.

DH = x, ©OH

1_ 1 -
O = —F¥ 4 “Xi(y"D¥ + 7" D) + S $i(y*D" + " D"}y
1
+ 0906, — gL — SR(0"0 — 6" )}

k Is the improvement term. It is a total derivative.
The CCJ improved tensor is the one with Kk = 1/3.

@ The improvement term does not change the charges constructed
from ©H",

@ [ he matrix elements of ©#"arefinite, it doesn't get
renormalized.



Trace Anomaly

The divergence of the dilatation current is the trace of the improved
energy-momentum tensor.

Classically ©f vanishes for theory without any dimensional couplings.
Quantum effects make ©/ non-zero, this is known as trace anomaly.
For the theory under consideration

@Z — 7¢1§b102¢1 + (4%1)\1 - 5/\1)—1 T ..
Terms involving other fields are omitted.

Terms proportional to vy,, are usually omitted.

They cancel when EOM is applied but can contribute to off-shell
matrix element and Green functions.

Also these terms are needed to make the trace RG-invariant.



Dilaton: The particle (state)

We may look for the dilaton state, o, by using the following
generic criteria:

e spinless state
e couples strongly/linearly to the energy-momentum tensor

* lightest such state

Clearly ¢: satisfies all of the above.

e ltis the only state whose mass start at 1-loop (modulo

gauge fields)
* |tis the only state which couples linearly to the energy-
momentum tensor when expanded about

P1) =v, (92> =0

Thus we identify o with a single particle state created by ¢1.



Decay Constanst
Define the decay constant £, by

]L'

010" (x)|o) = = (p"p" — g"p?) "

where p is the momentum of |o). The form of the right hand side
is constrained by conservation of ©*”. The factor 1/3 comes from

010, D*|o) = (0|&h]0) = —f, MZeP™
p v o

Note that ©* = —1/3vo* 0" ¢1 +
Thus to lowest order f, = v + - - -
The RG invariant expression is easy to guess

12
f, = VZ¢1

where Z,, is the wavefunction renormalization factor.



Dilaton Mass

Having determined the decay constant f,, the mass of the dilaton can
be obtained from the trace anomaly.
To lowest order, the mass is

M2

where \? term is dropped for consistency.
RG invariance of M, can be inferred from M,,.

@ Given the vev, we can tune £ to make the dilaton light
by comparison
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Broken Phase

Recall the theory admits a non-trivial minimum provided

@ Ay Is much smaller than other couplings,
@ ¢ = )5 — 88N?y} > 0.

We want to study symmetry breaking close to the IR fixed-point.
However, near the fixed-point these conditions are not satisfied.

Use RGE to trace back the RG trajectory to large RG time where

perturbative analysis of effective potential yields a non-trivial
minimum.

Alternatively, define the theory at scale 1o where perturbative analysis
yields a non-trivial minimum. Moreover, if the vev is well below i,
RG flows will get close to the fixed-point before the massive
particles decouple.



Theory parameter space: couplings at fixed uo

¥ IRFP

Flow towards IRFP

Region where we can
reliably find minimum
Of Veff



Symmetric Phase

For a point in parameter space where ¢ < 0

@ Vr({¢p1)) becomes positive and the non-trivial minimum
disappears,

@ the effective potential seems to be unbounded from below along
@1 direction for large ¢.

The second point threatens the validity of the model.

However, at large ¢, perturbative analysis breaks down.
Can extend the range of perturbativity using the improved effective
potential which effectively re-sum large logarithms.

: ]. - t/ /
Ver® = S h(t)e "o et g

Here t = In ¢1/to. This form is valid as long as A\1(t) is perturbative.



Symmetric Phase (cont.)

For points in parameter space closed to the IR fixed-point, gauge
coupling drives the Yukawa coupling to 0 in the UV.

@ The effective potential is bounded from below because
A1(t) > 0 for large ¢1.
@ The theory need a UV cutoff.
» One can view the model as being a low energy effective theory
of some UV completed models.

» Since the cutoff will be many order of magnitude above the
scale of symmetry breaking, one can (safely) ignore it.



Theory parameter space: couplings at fixed o
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Numerical Value
N = 20, nf_11/2N §=0.2
g(to) = 9g* y1(to) = 0.32y1., y2(o) = 3 ¥2x,

A1 (10) = 35 20, A2(tt0) = 3A24, As(po) = 5.2Xs,.
These condltlon corresponds to € 2 0.

The vev is at

00
Ho
and the spectrum are
M
UX 85 %1073, —~70x107% 2 ~095x%x 1072
% % %

Fractional correction to the effective potential from higher order
terms are approximated to be

N 2.,2
g* In yiv ~ 0.2.
1672 (12




Numerical: Couplings Evolution

N =20, nf=11/2N, § = 0.2,

g(to) = 58 y1(10) = 0.45y1., y2(110) = £¥2e,
)\1(,LLO) = %)\1*, )\2(#0) = 3)\2*, )\3(,LLO) = 52)\3* These condition

corresponds to € < 0.

0.08; g(t) 0.025;

0020 Aa(1)

0.02 (0 /:;Lj A1 (1)
i U T
B : y2(1) / : / ‘

Tt \

L | L T L L I L I I L [ T L [ I 1 T
—400 -300 —-200 —100 100 —400 -300 -200 —100 f 100

Fixed point pqs!tlve
minimum




Numerical: Broken Phase
vi(pto) = 0.32y4,. This corresponds to a positive «.

0.025 |-

0020 -
0.015 / A2 (1)
0010+

0.00006 |-

0.00004 |

0.00002 -

The coupling A\; becomes negative during the flow.
This agrees with our expectation from the improved effective
potential.

Gauge coupling walks. Eventually runs again. Endgame: glueballs.
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Summary

@ We construct a perturbative model which a non-trivial IR fixed
point.
@ T here are two distinct phases in our model:
» Symmetric phase: the flow reaches the fixed point (in infinite
RG time.)
» Broken phase: the vev is dynamically generated. this phase
somewhat mimics the behavior of walking technicolor.
@ The broken phase can be used to study the dilaton:
» The mass of the dilaton can be made arbitrary small compared
to the vev by tuning the parameter ¢ = )\:23 — 88N2yf.
@ The model can be used to verify results/conjectures in literature
which are obtained via indirect argument.



Applications

We can use this model to verify various results in the literature. For a
specific example we will verify the dilaton potential in nearly
conformal theory (Goldberger, BG, Skiba) . Taking

L= Lcrr + Y., AnO,, GGS arrives, via indirect argument, at the
dilaton potential

M? 1
Verr(x) = 4—fZX4 [ln (%) — Z] +O(7%).
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Applications

We can use this model to verify various results in the literature. For a
specific example we will verify the dilaton potential in nearly
conformal theory of Goldberger, Grinstein and Skiba. Taking

L= Lcrr + Y., AnO,, GGS arrives, via indirect argument, at the
dilaton potential

M? X 1
Veff(X) — EX4 [ln <7> — Z] + O(’}/z)

To compare our model with GGS, we view our model as
L(g)=L(g.)+ (L(g)— L(g:)). In our model the dilaton field is
identified with ¢; and the anomalous dimensions are small.

Our effective potential for ¢; turns out to be exactly the same as
GGS.



Dilaton in WTC?

AB say: S(Oz* _ Oéc)

First equation: In our model the critical coupling is a critical surface,
the IRFP is on critical surface, 0=0, correct but not interesting and
not what is intended

Second equation: ( N¢- N) /N plays role of ¢, measures distance to
critical surface, and equation is qualitatively correct!

G«




