Coloron Models and LHC Phenomenology

ELIZABETH H. SIMMONS MICHIGAN STATE UNIVERSITY

SCGT 12

KMI-GCOE Workshop on Strong Coupling Gauge Theories in the LHC Perspective

SCGT 12

- New Strong Dynamics
- Models
- LHC Phenomenology
- Other Phenomenology
- Conclusions

DECEMBER 5, 2012

LHC'S REDISCOVERY AND NEW PARTICLE

OUR QUEST IN THE BSM LANDSCAPE

NEW STRONG DYNAMICS

New colored gauge bosons

Classic Axigluon: P.H. Frampton and S.L. Glashow, Phys. Lett. B 190, 157 (1987).

Topgluon: C.T. Hill, Phys. Lett. B 266, 419 (1991).

Flavor-universal Coloron: R.S. Chivukula, A.G. Cohen, & E.H. Simmons, Phys. Lett. B 380, 92 (1996). Chiral Color with $g_L \neq g_R$: M.V. Martynov and A.D. Smirnov, Mod. Phys. Lett. A 24, 1897 (2009). New Axigluon: P.H. Frampton, J. Shu, and K. Wang, Phys. Lett. B 683, 294 (2010).

Other color-octet states:

KK gluon: H. Davoudiasl, J.L. Hewett, and T.G. Rizzo, Phys. Rev. D63, 075004 (2001) B. Lillie, L. Randall, and L.-T. Wang, JHEP 0709, 074 (2007). Techni-rho: E. Farhi and L. Susskind, Physics Reports 74, 277 (1981).

Recent catalog of colored states:

Color sextets, colored scalars, low-scale scale string resonances... T. Han, I. Lewis, Z. Liu, JHEP 1012, 085 (2010).

NEW STRONG DYNAMICS ... AND A^{T}_{FB}

Coloron might impact At_{FB} at FNAL:

- L. M. Sehgal and M. Wanninger, Phys. Lett. B 200, 211 (1988).
- D. Choudhury, R.M. Godbole, R. K. Singh, and K. Wagh, Phys. Lett. B 657, 69 (2007).
- P. Ferrario and G. Rodrigo, J. High Energy Phys. 02 (2010) 051.
- M.V. Martynov and A. D. Smirnov, arXiv:1006.4246.
- Q. H. Cao, D. McKeen, J. L. Rosner, G. Shaughnessy, and C. E. M. Wagner, Phys. Rev. D 81, 114004 (2010).
- P. Ferrario and G. Rodrigo, Proc. XVIII Int'l Workshop on Deep-Inelastic Scattering, April 19 -23, 2010, Firenze.
- R.S. Chivukula, E.H. Simmons, and C.-P. Yuan, Phys. Rev. D82 (2010).
- G. Rodrigo and P. Ferrario, 3rd Int'l Workshop on Top Quark Physics, Brugges, Belgium, 31 May to 4 Jun 2010.
- G. Rodrigo and P. Ferrario arXiv:1007.4328 [hep-ph]

...

ANTI-TOP

PROTON BEAM

ANTI-PROTON BEAM

ΤΟΡ

COLORON MODELS: GAUGE SECTOR

SU(3)₁ x SU(3)₂ color sector with $M^2 = \frac{u^2}{4} \begin{pmatrix} h_1^2 & -h_1h_2 \\ -h_1h_2 & h_2^2 \end{pmatrix}$

unbroken subgroup: $SU(3)_{1+2} = SU(3)_{QCD}$

$$h_1 = \frac{g_s}{\cos\theta} \qquad h_2 = \frac{g_s}{\sin\theta}$$

gluon state: $G^A_\mu = \cos \theta A^A_{1\mu} + \sin \theta A^A_{2\mu}$ couples to: $g_S J^\mu_G \equiv g_S (J^\mu_1 + J^\mu_2)$

coloron state:
$$C^A_\mu = -\sin\theta A^A_{1\mu} + \cos\theta A^A_{2\mu}$$
 $M_C = \frac{u}{\sqrt{2}}\sqrt{h_1^2 + h_2^2}$
couples to: $g_S J^\mu_C \equiv g_S (-J^\mu_1 \tan\theta + J^\mu_2 \cot\theta)$

low-energy current-current interaction:

$$\mathcal{L}_{FF}^2 = -\frac{g_S^2}{2M_C^2} J_C^{\mu} J_{C\mu}$$

COLORON MODELS: QUARK CHARGES

$$g_S J_G^{\mu} \equiv g_S (J_1^{\mu} + J_2^{\mu})$$
$$g_S J_C^{\mu} \equiv g_S (-J_1^{\mu} \tan \theta + J_2^{\mu} \cot \theta)$$

low-energy current-current interaction: $\mathcal{L}_{FF}^2 = -\frac{g_S^2}{2M_C^2} J_C^{\mu} J_C^{\mu}$

Depending on how quarks transform under $SU(3)_1 \times SU(3)_2$ the presence of colorons may impact

- LHC dijet mass distribution (or angular distribution)
- kinematic distributions of tt or bb final states
- asymmetry in top-quark production: A^t_{FB}
- FCNC processes: $K\bar{K}, D\bar{D}, B\bar{B}$ mixing, $b \to s\gamma$
- precision EW observables: delta-rho, Rb

PATTERNS OF QUARK CHARGES

SU(3)1	SU(3) ₂	model	pheno.	
	(t,b) _L q _L t _R ,b _R q _R	coloron	dijet	
ЯR	(t,b) _L q _L t _R ,b _R			
t _R ,b _R	(t,b) _L q _L q _R			
qL	(t,b) _L t _R ,b _R q _R			
q _L t _R ,b _R	(t,b) _L q _R	new axigluon	dijet, At _{FB,} FCNC	
Q L Q R	(t,b) _L t _R ,b _R	topgluon	dijet, tt, bb, FCNC, R _b	
t _R ,b _R q _R	(t,b)∟ q∟	classic axigluon	dijet, At _{FB}	
q _L t _R ,b _R q _R	(t,b)L			

q = u,d,c,s

LHC PHENOMENOLOGY

LHC LIMITS ON COLORONS

LHC searches for colorons in dijet constrain M_C > 3.5 TeV

 But these calculations have treated the colorons only at LO and QCD to NLO (or beyond) ... we can do better!

COLORON PRODUCTION

LO vs NLO production

- cross-section
- pT of coloron

COLORONS AT NLO

R.S.Chivukula, A.Farzinnia, R.Foadi, EHS arXiv:1111.7261

IMPACT OF NLO CORRECTIONS

- K-factor: $\sigma_{NLO}/\sigma_{LO} \sim 30\%$
- 30% of produced colorons have $p_T > 200 \text{ GeV}!$

RSC, Farzinnia, Foadi, EHS arXiv:1111.7261

IMPACT OF NLO CORRECTIONS

• 30% of produced colorons have $p_T > 200 \text{ GeV}!$

RSC, Farzinnia, Foadi, EHS arXiv:1111.7261

IMPACT OF NLO CORRECTIONS

- K-factor: $\sigma_{NLO}/\sigma_{LO} \sim 30\%$
- 30% of produced colorons have $p_T > 200 \text{ GeV}!$

RSC, Farzinnia, Foadi, EHS arXiv:1111.7261

BEYOND PRODUCTION:

Suppose we discover a coloron... What then?

Remember the diversity of models:

$$\underbrace{g_s \bar{q} C^{\mu} \gamma_{\mu} \left(g_V^q + g_A^q \gamma_5\right) q}_{q=u,d,c,s} \quad \text{and} \quad \underbrace{g_s \bar{T} C^{\mu} \gamma_{\mu} \left(g_V^T + g_A^T \gamma_5\right) T}_{T=t,b}$$

How to establish which coloron has been found?

Goal

Goal

" Using associated production* with W and dijet resonance to determine colorons/axigluons couplings."

*Idea introduced by Cvetic and Langacker (1992) for measuring Z' couplings

NEW MODE: W+C^A PROBES CHIRAL COUPLINGS

Different production modes probe several combinations of the coloron's couplings to RH and LH fermions:

Event Generation and Event Selection

Event Generation: MadGraph 5.1.3 \rightarrow Pythia 6.4 \rightarrow PGS4

Event Selection ("Basic cuts"):

- At least two isolated jets
 - $p_T > 40 \,\mathrm{GeV}$
 - $|\eta| < 2.5$
 - $\Delta R_{jj} > 0.4$
- One isolated electron or muon
 - $p_T > 25 \,\mathrm{GeV}$
 - $\Delta R_{jl} > 0.4, \, \Delta R_{ll} > 0.2$
- Missing energy $> 25 \, {
 m GeV}$

Optimization:

- p_T of leading jets
- total transverse jet energy $(H_T \simeq \sum p_T)$

• Invariant masss m_{jj} or m_{jjW} maximize significance $\simeq \frac{s}{\sqrt{b}}$ at 10 fb^{-1} and 100 fb^{-1} for LHC 14 TeV

W+C^A: HEAT MAP OF SIGNIFICANCE

LHC 14 TeV L = 10 fb⁻¹ >5σ W+C^a >5σ LHC 14 TeV W+C^a $L = 100 \text{ fb}^{-1}$ 5σ 5σ significance significance $M_{\rm c} = 3.5 \, {\rm TeV}$ 2 $M_C = 3.5 \text{ TeV}$ 4σ 4σ - 3σ 3σ all of these 1 2σ 2σ heat maps <2σ <2σ <u>я</u> о <u>н</u>о are for //M=0.05 $M_c = 3.5 \text{ TeV}$ - 1 - 1 at 14 TeV Г/М=0.20 Г/М=0.20 -2 -2 Г/М=0.30 Г/М=0.30 LHC -3-3 -3-3 0 9L 2 - 2 0 2 -2 - 1 1 3 - 1 1 3 g LHC 14 TeV LHC\14\Te >5σ >5**σ** Z+C^a = 10 fb 100 fb⁻⁷ grey ring is 5σ 5σ significance significance MC = 3.5 TeV = 3.5 TeV 2 ΛC 2 4σ 4σ excluded 3σ 3σ 2σ 2σ by 7 TeV <2σ <2σ LHC dijet 9_В <u>д</u> 0 searches 1×M=0.05 -1 - 1 with 5 fb⁻¹ Г/M=0.20 Г/<u>М=0.2</u>С -2 -2 of data Г/M=0.30 Г/М=0.30 -3 -3 -3 -3 -2 2 -2 0 2 -1 0 1 3 -1 1 3 ΞĽ gL

W+C^A: HEAT MAP AND AFB RANGE

PRECISION Phenomenology

PRECISION EW TESTS

• Coloron exchange does impact $\Delta \rho$ at one-loop

the size of the effect is small

- Likewise, coloron exchange across the $Zb\overline{b}$ vertex yields effects proportional to m_b^2 which are negligible
- New weak-charged states would give larger effects...

FCNC IN COLORON MODELS

- Coloron exchange can produce FCNC if the coloron coupling to quarks are flavor non-universal
- The total rate of FCNC will depend quite strongly on how flavor is implemented overall in the model
 - Are there other states that quarks mix with?
 - Are there additional composite states made from quarks, whose exchange can boost FCNC's?

• Let's look at a specific implementation

A NEW TOY TOPGLUON MODEL

R.S. Chivukula, EHS, N. Vignaroli (2012) in preparation

OUR TOY TOPGLUON MODEL

particles		SU(3) ₁	SU(3) ₂	SU(2) _W
3rd generation quarks	(t,b)∟	3	1	2
	t _R ,b _R	3	1	1
light quarks	(u,d)∟ (c,s)∟	1	3	2
	u _R ,d _R C _R ,S _R	1	3	1
vector quarks	Q _L ,Q _R	3	1	2
light scalar	oo <i>q</i>	1	1	2
heavy scalar	Φ	3	3*	1

R.S. Chivukula, EHS, N. Vignaroli (2012) in preparation

GENERATIONAL MIXING IN TOY MODEL

$SU(3)_1 \ge SU(3)_2 \ge SU(2)_W$

- Coloron exchange yields KK, DD, and BB mixing
 - quark charges under strong gauge groups are non-universal
 - the top and bottom mass eigenstate quarks are admixtures of ordinary and heavy vector gauge eigenstate quarks

- Mixing among ordinary and heavy vector quarks also leads to flavor-changing b-quark decays: $b\to s\gamma$

LIMITS ON TOY TOPGLUON MODEL

R.S. Chivukula, EHS, N. Vignaroli (2012) in preparation

CONCLUSIONS

CONCLUSIONS

Physics beyond the SM may lurk in the strong interactions

LHC can discover and study colorons,

- incorporate NLO results for the coloron K-factor and p_T distribution into dijet searches
- use associated W+ C^a production to probe the coloron's couplings.

Additional coloron effects?

- FCNC: yes, if couplings are flavor non-universal
- precision EW: negligible in $\Delta \rho$, $Zb\overline{b}$
- top-quark asymmetry: for some coupling values