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Outline

• Renormalization-group flow from UV to IR; types of IR behavior; role of an exact or
approximate IR fixed point; conditions for approximately scale-invariant behavior

• Higher-loop calculations of UV to IR evolution, including IR zero of β and anomalous
dimension γm of fermion bilinear

• Some comparisons with lattice measurements of γm

• Higher-loop calcs. of UV to IR evolution for supersymmetric gauge theory

• Study of scheme-dependence in calculation of IR fixed point

• Application to models of dynamical electroweak symmetry breaking

• Conclusions



Some new results covered in this talk are from the following recent papers by T. A.
Ryttov and R. Shrock

• Phys. Rev. D 83, 056011 (2011), arXiv:1011.4542

• Phys. Rev. D 85, 076009 (2012), arXiv:1202.1297

• Phys. Rev. D 86, 065032 (2012), arXiv:1206.2366

• Phys. Rev. D 86, 085005 (2012), arXiv:1206.6895

as well as earlier related papers and some new results.



Renormalization-group Flow from UV to IR; Types of IR
Behavior and Role of IR Fixed Point

Consider an asymptotically free, vectorial gauge theory with gauge group G and Nf

massless fermions in representation R of G.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV).

The question of how this theory behaves in the infrared (IR) is of fundamental
field-theoretic significance and motivates a detailed study of the UV to IR evolution.

Results are relevant to models of dynamical electroweak symmetry breaking (discussed
further below).

Denote running gauge coupling at scale µ as g = g(µ), and let
α(µ) = g(µ)2/(4π) and a(µ) = g(µ)2/(16π2) = α(µ)/(4π).



As theory evolves from the UV to the IR, α(µ) increases, governed by β function

βα ≡ dα

dt
= −2α

∞
∑

`=1

b` a
` = −2α

∞
∑

`=1

b̄`α
` ,

where t = lnµ, ` = loop order of the coeff. b`, and b̄` = b`/(4π)`.

Coeffs. b1 and b2 in β are indep. of regularization/renormalization scheme, while b` for
` ≥ 3 are scheme-dep.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0.

As the scale µ decreases from large values, α(µ) increases. Denote αcr (dependent
on R) as minimum value for formation of bilinear fermion condensates and resultant
spontaneous chiral symmetry breaking (SχSB).



There are two possibilities for the β function and resultant UV to IR evolution:

• There may not be any IR zero in β, so that as µ decreases, α(µ) increases,
eventually beyond the perturbatively calculable region. This is the case for QCD.

• β may have a zero at a certain value (closest to the origin) denoted αIR, so that as
µ decreases, α → αIR. In this class of theories, there are two further generic
possibilities: αIR < αcr or αIR > αcr.

If αIR < αcr, the zero of β at αIR is an exact IR fixed point (IRFP) of the ren.
group (RG); as µ → 0 and α → αIR, β → β(αIR) = 0, and the theory becomes
exactly scale-invariant with nontrivial anomalous dimensions (Caswell, Banks-Zaks).

If β has no IR zero, or an IR zero at αIR > αcr, then as µ decreases through a scale
denoted Λ, α(µ) exceeds αcr and SχSB occurs - fermions gain dynamical masses
∼ Λ (e.g., light quarks gain constituent quark masses ∼ ΛQCD ' 300 MeV in QCD).

If SχSB occurs, then in low-energy effective field theory applicable for µ < Λ, one
integrates these fermions out, and β function becomes that of a pure gauge theory,
which has no IR zero. Hence, if β has a zero at αIR > αcr, this is only an approx.
IRFP of RG.



If αIR > αcr, effect of approx. IRFP at αIR depends on how close it is to αcr.

If αIR is only slightly greater than αcr, then, as α(µ) approaches αIR, since
β = dα/dt → 0, α(µ) varies very slowly as a function of the scale µ, i.e., there is
approximately scale-invariant, i.e. dilatation-invariant or slow-running (“walking”)
behavior (Yamawaki et al.; Holdom; Appelquist, Wijewardhana...). For these theories,
this is equivalent to quasiconformal behavior.

Denote Λ∗ as scale µ where α(µ) grows to O(1) (with Λ the scale where SχSB
occurs). In the slow-running case, Λ << Λ∗. The approx. dilatation symmetry applies
in this interval Λ < µ < Λ∗.

The SχSB and attendant fermion mass generation at Λ spontaneously break the
approximate dilatation symmetry, plausibly leading to a resultant light
Nambu-Goldstone boson, the dilaton (dilaton mass estimates vary, see below). The
dilaton is not massless, because β is not exactly zero for α(µ) 6= αIR.



At two-loop (2`) level, β = −[α2/(2π)](b1 + b2a), so condition for an IR zero in β
is b1 + b2a = 0, i.e.,

αIR,2` = −4πb1

b2

which is physical for b2 < 0. One-loop coefficient b1 is

b1 =
1

3
(11CA − 4NfTf)

(Gross, Wilczek; Politzer), where CA ≡ C2(G) is the quadratic Casimir invariant, and
Tf ≡ T (R) is the trace invariant. We focus here on G = SU(N).

As Nf increases, b1 decreases and vanishes at

Nf,b1z =
11CA

4Tf

Hence, for asymp. freedom, require Nf < Nf,b1z; for fund. rep., this is
Nf < (11/2)N .



Two-loop coeff. b2 is

b2 =
1

3

[

34C2
A − 4(5CA + 3Cf)Nf Tf

]

(Caswell, Jones). For small Nf , b2 > 0; b2 decreases with increasing Nf and vanishes
with sign reversal at Nf = Nf,b2z, where

Nf,b2z =
34C2

A

4Tf(5CA + 3Cf)
.

For arbitrary G and R, Nf,b2z < Nf,b1z, so there is always an interval in Nf for
which β has an IR zero, namely

I : Nf,b2z < Nf < Nf,b1z

If R = fund. rep., then

I :
34N 3

13N 2 − 3
< Nf <

11N

2
For example, for N = 2, this is 5.55 < Nf < 11, and for N = 3,
8.05 < Nf < 16.5. (Here, we evaluate these expressions as real numbers, but
understand that physical values of Nf are nonnegative integers.)

As N → ∞, interval I is 2.62N < Nf < 4.5N .



For Nf near lower end of I, b2 → 0 and αIR,2` is too large for calc. to be reliable.

In interval I, αIR is a decreasing fn. of Nf . As Nf decreases below Nf,b1z where
b1 = 0, αIR increases from 0. As Nf decreases to a value Nf,cr, αIR increases to
αcr, so

Nf = Nf,cr at αIR = αcr
The value of Nf,cr is of fundamental importance in the study of a non-Abelian gauge
theory, since it separates two different regimes of IR behavior, viz., an IR conformal
phase with no SχSB and an IR phase with SχSB.

Nf,cr is not exactly known. To obtain Nf,cr for a given gauge group, we need, calcs.
of αIR as fn. of Nf and estimate of αcr. To estimate αcr, analyze Schwinger-Dyson
(SD) eq. for fermion propagator. For α > αcr, this yields a nonzero sol. for a
dynamically generated fermion mass.

Ladder approach to SD eq. yields αcrC2(R) ' 1. Given the strong-coupling involved,
this is only rough estimate. Combining est. of αcr from ladder approx. to SD eq. with
2-loop calc. of αIR ≡ αIR,2` yields Nf,cr ' 4N .

Lattice gauge simulations are promising way to determine Nf,cr and measurement of
anomalous dimension γ ≡ γm describing running of m and bilinear operator, F̄ F as
fn. of lnµ.



Higher-Loop Corrections to UV → IR Evolution of Gauge
Theories

Because of the strong-coupling nature of the physics at an approximate IRFP, with
α ∼ O(1), there are significant higher-order corrections to results obtained from the
two-loop β function.

This motivates calculation of location of IR zero in β, αIR, and resultant value of γ
evaluated at αIR to higher-loop order. We have done this to 3-loop and 4-loop order in
Ryttov and Shrock, PRD 83, 056011 (2011), arXiv:1011.4542; see also Pica and
Sannino, PRD 83,035013 (2011), arXiv:1011.5917.

Although coeffs. in β at ` ≥ 3 loop order are scheme-dependent, results give a
measure of accuracy of the 2-loop calc. of the IR zero, and similarly with the value of γ
evaluated at this IR zero.

We use MS scheme, for which coeffs. of β and γ have been calculated to 4-loop
order by Vermaseren, Larin, and van Ritbergen. The value of this sort of higher-loop
calcululation using MS scheme is demonstrated by the excellent fit of the four-loop
αs(µ) to data as function of µ2 = Q2 in QCD (cf. Bethke).



For 3-loop analysis, we need

b3 =
2857

54
C3
A + TfNf

[

2C2
f − 205

9
CACf − 1415

27
C2
A

]

+(TfNf)
2

[

44

9
Cf +

158

27
CA

]

Coeff. b3 is quadratic fn. of Nf and vanishes, with sign reversal, at two values of Nf ,
denoted Nf,b3z,1 and Nf,b3z,2. b3 > 0 for small Nf and vanishes first at Nf,b3z,1,
which is smaller than Nf,b2z, the left endpoint of interval I. Furthermore,
Nf,b3z,2 > Nf,b1z, the right endpoint of interval I. For example,

for N = 2, Nf,b3z,1 = 3.99 < Nf,b2z = 5.55

Nf,b3z,2 = 27.6 > Nf,b1z = 11

for N = 3, Nf,b3z,1 = 5.84 < Nf,b2z = 8.05

Nf,b3z,2 = 40.6 > Nf,b1z = 16.5

Hence, b3 < 0 in interval I of interest for IR zero of β.



At this 3-loop level,

β = −α
2

2π
(b1 + b2a+ b3a

2)

so β = 0 away from α = 0 at two values,

α =
2π

b3

(

− b2 ±
√

b2
2 − 4b1b3

)

Since b2 < 0 and b3 < 0, this is

α =
2π

|b3|
(

− |b2| ∓
√

b2
2 + 4b1|b3|

)

One of these solutions is negative and hence unphysical; the other is manifestly positive,
and is αIR,3`. Note that if a scheme had b3 > 0 in I, since b2 → 0 at lower end of
I, b2

2 − 4b1b3 < 0, so this scheme would not have a physical αIR,3` in this region.



We find that for any fermion rep. R for which β has a 2-loop IR zero, the value of the
IR zero decreases when calculated at the 3-loop level, i.e.,

αIR,2` > αIR,3`

Proof:

αIR,2` − αIR,3` =
4πb1

|b2|
− 2π

|b3|
(−|b2| +

√

b2
2 + 4b1|b3| )

=
2π

|b2b3|

[

2b1|b3| + b2
2 − |b2|

√

b2
2 + 4b1|b3|

]

The expression in square brackets is positive if and only if

(2b1|b3| + b2
2)

2 − b2
2(b

2
2 + 4b1|b3|) > 0

This difference is equal to the positive-definite quantity 4b2
1b

2
3, which proves the

inequality.



For 4-loop analysis, we use b4, which is cubic polyn. in Nf . It is positive for Nf ∈ I
for N = 2, 3 but is negative in part of I for higher N .

The 4-loop β function is β = −[α2/(2π)](b1 + b2a+ b3a
2 + b4a

3), so β has three
zeros away from the origin. We determine the smallest positive real zero as αIR,4`.

We find

• As noted, when one goes from 2-loop level to 3-loop level, there is a decrease in the
value of the IR zero of β

• Going from 3-loop to 4-loop level, there is a slight change in the value of the IR
zero, but this change is smaller than the decrease from 2-loops to 3-loops, so
αIR,4` < αIR,2`.

• Fractional changes in the value of the IR zero of β decrease in magnitude as Nf

increases toward its maximum, Nf,b1z, and all of the values of αIR,n` → 0.

Our finding that the fractional change in the location of the IR zero of β is reduced at
higher-loop order agrees with the general expectation that calculating a quantity to
higher order in perturbation theory should give a more stable and accurate result.



Since αcr ∼ O(1) for SχSB, the decrease in αIR at higher-loop order, together with
the property that αIR increases as Nf decreases, means that

• one must go to smaller Nf for αIR,n` to grow to a given size for n = 3 and
n = 4 loop level as compared with n = 2 loop level; since αIR must exceed a
given size, αcr, for SχSB, this implies that

• the actual lower boundary of the IR-conformal phase could lie somewhat below the
old estimate that Nf,cr ' 4N from the 2-loop αIR,2` plus SD eq.

For example, in the case N = 3, these results suggest that the lower boundary of
IR-conformal phase could lie somewhat below 4N = 12.



Some numerical values of αIR,n` at the 2-loop, 3-loop, and 4-loop level for fermions in
fund. rep., Nf ∈ I, and illustrative groups G = SU(2) and G = SU(3):

N Nf αIR,2` αIR,3` αIR,4`
2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398

(For Nf values sufficiently close to Nf,b2z, αIR,n` is so large that perturb. calc. not
reliable; these are omitted.)



We have performed the corresponding higher-loop calculations for SU(N ) gauge
theories with Nf fermions in the adjoint, symmetric and antisymmetric rank-2 tensor
representations. The general result αIR,3` < αIR,2` applies. The difference
αIR,4` − αIR,3` tends to be relatively small, but can have either sign.

For example, for R = adjoint, Nf,b1z = 11/4 and Nf,b2z = 17/16 (indep. of N ),
so interval I where β has an IR zero, viz., Nf,b2z < Nf < Nf,b1z, is
1.06 < Nf < 2.75, which includes only one physical, integral value, Nf = 2. For
this value of Nf and some illustrative values of N , the results are:

N αIR,2`,adj αIR,3`,adj αIR,4`,adj
2 0.628 0.459 0.450
3 0.419 0.306 0.308
4 0.314 0.2295 0.234



The anomalous dimension γm ≡ γ for the fermion bilinear operator is

γ =

∞
∑

`=1

c`a
` =

∞
∑

`=1

c̄`α
`

where c̄` = c`/(4π)` is the `-loop coeff. The one-loop coeff. c1 is
scheme-independent, the c` with ` ≥ 2 are scheme-dependent, and the c` have been
calculated up to 4-loop level (Vermaseren, Larin, van Ritbergen):

c1 = 6Cf

c2 = 2Cf

[3

2
Cf +

97

6
CA − 10

3
TfNf

]

c3 = 2Cf

[

129

2
C2
f − 129

4
CfCA +

11413

108
C2
A

+CfTfNf(−46 + 48ζ(3)) − CATfNf(
556

27
+ 48ζ(3))

−140

27
(TfNf)

2

]

and similarly for c4.



It is of interest to calculate γ at the exact IRFP in IR-conformal phase and the approx.
IRFP in phase with SχSB.

We denote γ calculated to n-loop (n`) level as γn` and, evaluated at the n-loop value
of the IR zero of β, as

γIR,n` ≡ γn`(α = αIR,n`)

N.B.: In the IR conformal phase, an all-order calc. of γ evaluated at an all-order calc.
of αIR would be an exact property of the theory, but in the broken phase, just as the
IR zero of β is only an approximate IRFP, so also, the γ is only approx., describing the
running of ψ̄ψ and the dynamically generated fermion mass near the zero of β:

Σ(k) ∼ Λ
(Λ

k

)2−γ

In both phases, γ is bounded above as γ < 2. At the 2-loop level we calculate
γIR,2` =

Cf(11CA − 4TfNf)[455C2
A + 99CACf + (180Cf − 248CA)TfNf + 80(TfNf)

2]

12[−17C2
A + 2(5CA + 3Cf)TfNf ]2



Our analytic expressions for γIR,n` at the 3-loop and 4-loop level are too complicated
to list here. Illustrative numerical values of γIR,n` at the 2-, 3-, and 4-loop level are
given below for fermions in the fund. rep. and for the illustrative values N = 2, 3.

N Nf γIR,2` γIR,3` γIR,4`
2 7 (2.67) 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259

(Two-loop values in parentheses for Nf are unphysically large, reflect inadequacy of
lowest-order perturb. calc. if α too large.)



Figure 1: Anomalous dimension γm ≡ γ for SU(2) for Nf fermions in the fundamental representation; (i)

blue: γIR,2`; (ii) red: γIR,3`; (iii) brown: γIR,4`.



Figure 2: Anomalous dimension γm ≡ γ for SU(3) for Nf fermions in the fundamental representation; (i)

blue: γIR,2`; (ii) red: γIR,3`; (iii) brown: γIR,4`.



We have also performed these higher-loop calculations for higher fermion reps. R. In
general, we find that, for a given N , R, and Nf , the values of γIR,n` calculated to
3-loop and 4-loop order are smaller than the 2-loop value.

The value of these higher-loop calcs. to 3-loop and 4-loop order is evident from the
figures. A necessary condition for a perturb. calc. to be reliable is that higher-order
contribs. do not modify the result too much. One sees from the tables and figures that,
especially for smaller Nf , there is a substantial decrease in αIR,n` and γIR,n` when
one goes from 2-loop to 3-loop order, but for a reasonable range of Nf , the 3-loop and
4-loop results are close to each other.

Thus, our higher-loop calcs. of αIR and γ allow us to probe the theory reliably down
to smaller values of Nf and thus stronger couplings.



Some Comparisons with Lattice Measurements

For SU(3) with Nf = 12, from table above,

γIR,2` = 0.77, γIR,3` = 0.31, γIR,4` = 0.25

Some lattice results (N.B.: some error estimates do not include all syst. uncertainties)

γ = 0.414 ± 0.016 (Appelquist, Fleming, Lin, Neil, Schaich, PRD 84, 054501
(2011), arXiv:1106.2148, analyzing data of Kuti et al., PLB 703, 348 (2011),
arXiv:1104.3124, inferring conformality [Kuti et al. find SχSB])

γ ∼ 0.35 (DeGrand, PRD 84, 116901 (2011), arXiv:1109.1237, also analyzing data of
Kuti et al., finding conformality)

0.2 <∼ γ <∼ 0.4 (Fodor, Holland, Kuti, Nogradi, Schroeder, Wong (method-dep.),
arXiv:1205.1878, arXiv:1211.3548, 1211.6164, finding SχSB)

γ = 0.4 − 0.5 (Y. Aoki et al., (LatKMI) PRD 86, 054506 (2012), arXiv:1207.3060,
finding IR-conformality)

γ = 0.27 ± 0.03 (Hasenfratz, Cheng, Petropoulos, Schaich, arXiv:1207.7162, finding
IR-conformality)



So here the 2-loop value is larger than, and the 3-loop and 4-loop values closer to,
these lattice measurements. Thus, our higher-loop calcs. of γ yield better agreement
with these lattice measurements than two-loop calc.

This SU(3) theory with Nf = 12 fermions in fund. rep. was found to be in the
IR-conformal phase by Appelquist et al. (PRL, 100, 171607 (2008)); other studies by
Deuzeman, Lombardo, Pallante; Hasenfratz et al.; Degrand et al.; Aoki et al. also find
IR-conformality, while Kuti et al. and Jin and Mawhinney find SχSB.

For SU(3) with Nf = 10 fermions in fund. rep., Appelquist et al., LSD Collab.,
arXiv:1204.6000 get γIR ∼ 1, consistent with idea that γIR ' 1 at lower end of
IR-conformal phase. Also LATKMI get γ ' 1 for SU(3) with Nf = 8.

Similar comparisons can be carried out for SU(2) with Nf fermions in fund. rep.
Lattice studies indicate that for SU(2), Nf = 10 is in IR-conformal phase and
Nf = 4 is in SχSB phase; Nf = 6, 8 are also being considered, e.g., Bursa et al.,
PRD 84, 034506 (2011), arXiv:1104.4301; Karavirta, Rantaharju, Rummukainen,
Tuominen, JHEP 1205, 003 (2012), arXiv:1111.4104; Hayakawa, Ishikawa, Osaki,
Takeda, Yamada, arXiv:1210.4985; G. Voronov and LSD Collab., in progress.



Our results for some higher fermion reps.: For R = adj. rep., interval I contains only
the integer Nf = 2. For this we get

N γIR,2`,adj γIR,3`,adj γIR,4`,adj
2 0.820 0.543 0.500
3 0.820 0.543 0.523
4 0.820 0.543 0.532

For SU(2) with Nf = 2 fermions in the adjoint rep., lattice results include (N.B.:
various groups quote uncertainties differently):

γ = 0.31 ± 0.06 DeGrand, Shamir, Svetitsky, PRD 83, 074507 (2011),
arXiv:1102.2843

γ = 0.17 ± 0.05 (Appelquist et al., PRD 84, 054501 (2011) (analyzing data of
Bursa, Del Debbio et al.), arXiv:1106.2148)

−0.6 < γ < 0.6 (Catterall, Del Debbio, Giedt, Keegan, PRD 85, 094501 (2012),
arXiv:1108.3794)



Case of SU(N ) with fermions in symmetric rank-2 tensor rep. (for SU(2), this is equiv.
to adjoint rep.) Here,

Nf,b1z =
11N

2(N + 2)
, Nf,b2z =

17N 2

(N + 2)(8N + 3 − 6N−1)

and interval I is Nf,b2z < Nf < Nf,b1z;

N = 3 : 1.22 < Nf < 3.30 , =⇒ Nf = 2, 3

N = 4 : 1.35 < Nf < 3.67 , =⇒ Nf = 2, 3

(as N → ∞, 2.125 < Nf < 4.5, =⇒ Nf = 3, 4).

Analytic expressions are given in our paper; here, only list numerical values.

N Nf αIR,2`,S2 αIR,3`,S2 αIR,4`,S2

3 2 0.842 0.500 0.470
3 3 0.085 0.079 0.079
4 2 0.967 0.485 0.440
4 3 0.152 0.129 0.131



N Nf γIR,2`,S2 γIR,3`,S2 γIR,4`,S2

3 2 (2.44) 1.28 1.12
3 3 0.144 0.133 0.133
4 2 (4.82) (2.08) 1.79
4 3 0.381 0.313 0.315

Some lattice results for Nf = 2 fermions in this symmetric rank-2 tensor rep.:

e.g., SU(3), Nf = 2: here, need to resolve a difference between two groups on the
presence or absence of SχSB and value of γ before comparison with our continuum
higher-loop calcs.

γ <∼ 0.45 (Degrand, Shamir, Svetitsky, arXiv:1201.0935, find IR-conformality)

γ ∼ 1 (method-dep.) (Fodor, Holland, Kuti, et al., arXiv:1205.1878, arXiv:1211.3548,
finding SχSB)



Higher-Loop Calculations of UV to IR Evolution for an
N = 1 Supersymmetric Gauge Theory

It is of interest to carry out a similar analysis in an asymptotically free N = 1
supersymmetric gauge theory with vectorial chiral superfield content Φi, Φ̃i,
i = 1, ..., Nf in the R, R̄ reps., respectively.

We have done this in Ryttov and Shrock, Phys. Rev. D 85, 076009 (2012),
arXiv:1202.1297.

An appeal of this analysis: exact results on the IR properties of the theory are known
from work of Seiberg (1994).

One goal of this study: to compare results from higher-loop perturb. calcs. with exact
results, in particular, for Nf,cr.



1-loop and 2-loop coeffs. in β function (Jones), which are scheme-indep. :

b1 = 3CA − 2TfNf

b2 = 6C2
A − 4TfNf(CA + 2Cf)

To maintain asympt. freedom, require b1 > 0 and hence

Nf < Nf,b1z =
3CA

2Tf

For R = fund. rep., Nf < Nf,b1z = 3N .

Condition for 2-loop β fn. to have IR zero: b2 < 0.

Qualitative behavior of b2 similar to that in the non-SUSY theory; b2 is a decreasing fn.
of Nf , which is positive for small Nf and decreases through zero to negative values as
Nf increases through

Nf,b2z =
3C2

A

2Tf(CA + 2Cf)



For arbitrary G and R, Nf,b1z > Nf,b2z, as shown by

Nf,b1z −Nf,b2z =
3CACf

Tf(CA + 2Cf)
> 0

So again, there is always an interval in Nf for which the 2-loop β fn. has an IR zero,
namely I : Nf,b2z < Nf < Nf,b1z.

If R = fund. rep., then

I :
3N 3

2N 2 − 1
< Nf < 3N

For example,

For N = 2, I : 3.43 < Nf < 6, so Nf = 4, 5

For N = 3, I : 4.76 < Nf < 9, so Nf = 5, 6, 7, 8.

As N → ∞, I: 3N
2
< Nf < 3N



Exact result for R = fund. rep. (Seiberg): for (3/2)N < Nf < 3N , theory evolves
from UV to an IR-conformal (non-Abelian Coulomb) phase, so

Nf,cr =
3N

2
=
Nf,b1z

2
(for fund. rep.)

(This is only formal for odd N , since then Nf,cr is not an integer.)

Note that Nf,b2z > Nf,cr;

Nf,b2z −Nf,cr =
3N

2(2N 2 − 1)
> 0

so here, Nf,b2z, the lower end of the interval I, lies within the IR-conformal phase.

For Nf ∈ I, the 2-loop β function has an IR zero at

αIR,2` = −4πb1

b2

=
2π(3CA − 2TfNf)

2TfNf(CA + 2Cf) − 3C2
A

Since b2 = 0 at Nf = Nf,b2z, αIR,2` diverges within the IR-conformal phase, this
restricts the range in Nf where our perturbative analysis can be applied.



The b` have been calculated up to ` = 3 loop order.

For the analysis of the 3-loop β function, we need b3 (from Jack, Jones, North, 1996,
in DR scheme):

b3 = 21C3
A + 4TfNf(−5C2

A − 13CACf + 4C2
f) + 4(TfNf)

2(CA + 6Cf)

b3 is positive for small Nf and vanishes at two values of Nf , again denoted Nf,b3z,1

and Nf,b3z,2. As in the non-SUSY case, we find that Nf,b3z,1 < Nf,b2z and
Nf,b3z,2 > Nf,b1z, so b3 < 0 for Nf ∈ I.

For example, for R = fund. rep., N = 2, Nf,b3z,1 = 3.09 < Nf,b2z = 3.43,
and Nf,b3z,2 = 8.38 > Nf,b1z = 6.

Since b3 < 0 for all Nf ∈ I, we find, by the same type of proof as for the non-SUSY
case, that for any G, R, and Nf ∈ I (i.e., where the 2-loop β function has an IR
zero),

αIR,2` > αIR,3`



Some numerical values of αIR,2` and αIR,3` below for R = fund. rep. and illustrative
values of N and Nf :

Nc Nf αIR,2` αIR,3`
2 4 (6.28) 2.65
2 5 1.14 0.898

3 5 (18.85) (3.05)
3 6 2.69 1.40
3 7 0.992 0.734
3 8 0.343 0.308

4 7 (5.03) 1.64
4 8 1.795 0.984
4 9 0.867 0.615
4 10 0.426 0.357
4 11 0.169 0.158

For fixed N , we find that αIR,n` increases monotonically with decreasing Nf at both
the 2-loop and 3-loop level.



Next, analyze anomalous dim. γm ≡ γ of the (gauge-invariant) superfield operator
product ΦΦ̃ containing the bilinear fermion product in term θθψψ̃ (recall
component-field decomposition of superfield, Φ = φ+ θψ + θθF ).

In a conformally invariant field theory (whether supersymmetric or not), unitarity yields
a lower bound on the dim. DO of a spin-0 operator O (other than the identity):
DO ≥ (d− 2)/2, where d = spacetime dim.; so DO ≥ 1 here (Mack, 1977; see
also Grinstein, Intriligator, Rothstein, PLB 662, 367 (2008); arXiv:0801.1140).

In the non-SUSY theory, with dim(ψ̄ψ) = 3 − γm, this constraint is
Dψ̄ψ = 3 − γm > 1, so γm < 2.

In the SUSY theory, with dim(θ) = −1/2 and dim(ψψ̃) = 3 − γm, the constraint
is DΦΦ̃ = −1 + 3 − γm > 1, so γm < 1.

Perturbative expansion: γm =
∑∞

`=1 c`a
` =

∑∞
`=1 c̄`α

`, where, as before, 1-loop
coeff. is scheme-indep., higher-loop coeffs. are scheme-dep.

values of coeffs: c1 = 4Cf



and, to 3-loop order (from Jack, Jones, North (1996); Harlander, Mihaila, Steinhauser
(2009), in DR scheme):

c2 = 4Cf(−2Cf + 3CA − 2TfNf)

c3 = 8Cf

[

4C2
f+3CA(CA−Cf)+TfNf

{

(−8+12ζ(3))Cf+(1−12ζ(3))CA

}

−2T 2
fN

2
f

]

We evaluate the n-loop expression for γ at the n-loop value of the IR zero of β. At
the 2-loop level,

γIR,2` =
Cf(3CA − 2TfNf)(2TfNf − CA)(2TfNf − 3CA + 6Cf)

[2(CA + 2Cf)TfNf − 3C2
A]2



Some numerical values:

Nc Nf γIR,2` γIR,3`
2 5 0.260 0.0802

3 7 0.399 0.0584
3 8 0.139 0.104

4 9 0.490 0.0219
4 10 0.239 0.127
4 11 0.0970 0.0835

γIR,2` increases monotonically as Nf decreases, while γIR,3` is a non-monotonic
function of Nf .

We find γIR,3` < γIR,2`, as in non-SUSY case.



To get a perturbative estimate of Nf,cr, assume that the upper bound γm ≤ 1 is
saturated as Nf ↘ Nf,cr and solve eq. γIR,n` = 1 for Nf,cr.

The 2-loop condition γIR,2` = 1 is a cubic eq. in Nf ; for the unique, physical root for
the estimated (est.) Nf,cr,est., we find

N = 2 ⇒ Nf,cr,est. = 4.24, factor 1.41 larger than exact Nf,cr = 3

N = 3 ⇒ Nf,cr,est. = 6.15, factor 1.37 larger than exact Nf,cr = 4.5

As N → ∞, Nf,cr,est. → 2N , factor (4/3) larger than exact Nf,cr = (3/2)N

From this analysis of N = 1 supersymmetric gauge theory we conclude:

Perturbative calc. slightly overestimates the value of Nf,cr, i.e., slightly underestimates
the size of the IR-conformal phase.

- similar to conclusion from our analysis of the non-SUSY theory.



Study of Scheme-Dependence in Calculation of IR Fixed
Point

Since the coeffs. in β at 3-loops and higher are scheme-dependent, so is the resultant
value of αIR,n` calculated to a (finite-loop order) of n ≥ 3 loops - important to assess
quantitatively the uncertainty due to this scheme dependence.

A way to do this is to perform scheme transformations and determine how much of a
change there is in αIR,n`. We have carried out this study in Ryttov and Shrock, PRD
86, 065032 (2012), arXiv:1206.2366; PRD 86, 085005 (2012), arXiv:1206.6895.

A scheme transformation (ST) is a map between α and α′ or equivalently, a and a′,
where a = α/(4π), which can be written as

a = a′f(a′)

with f(0) = 1 to keep the UV properties unchanged. Considering STs analytic about
a = 0, we write

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s ,

where the ks are constants, k̄s = ks/(4π)s, and smax may be finite or infinite.



Hence, the Jacobian J = da/da′ = dα/dα′ satisfies J = 1 at a = a′ = 0. We
have

βα′ ≡ dα′

dt
=
dα′

dα

dα

dt
= J−1 βα .

This has the expansion

βα′ = −2α′
∞
∑

`=1

b′
`(a

′)` = −2α′
∞
∑

`=1

b̄′
`(α

′)` ,

where b̄′
` = b′

`/(4π)`.

Using these two equiv. expressions for βα′, one can solve for the b′
` in terms of the b`

and ks. This leads to the well-known result that

b′
1 = b1 , b′

2 = b2

i.e, the one-loop and two-loop terms in β are scheme-indep.

To assess the scheme-dependence of an IRFP, we have calculated the relations between
the b′

` and b` for higher ` values. For example, for ` = 3, 4, 5, we obtain

b′
3 = b3 + k1b2 + (k2

1 − k2)b1 ,



b′
4 = b4 + 2k1b3 + k2

1b2 + (−2k3
1 + 4k1k2 − 2k3)b1

b′
5 = b5 + 3k1b4 + (2k2

1 + k2)b3 + (−k3
1 + 3k1k2 − k3)b2

+(4k4
1 − 11k2

1k2 + 6k1k3 + 4k2
2 − 3k4)b1

Since β function coefficients b` with ` ≥ 3 are scheme-dep.,, there should exist a ST
in which one can make these coeffs. zero (’t Hooft). We constructed an explicit ST
that can does this at a UVFP.

To be physically acceptable, a ST must satisfy several conditions, Ci. For finite smax,
the ST is is an algebraic eq. of degree smax + 1 for α′ in terms of α. We require that
at least one of the smax + 1 roots must satisfy these conditions. For smax = ∞, the
eq. for α′ in terms of α is generically transcendental, and again we require that the
relevant sol. must satisfy these conditions, which are:

•C1: the ST must map a real positive α to a real positive α′, since a map taking
α > 0 to α′ = 0 would be singular, and a map taking α > 0 to a negative or
complex α′ would violate the unitarity of the theory.

•C2: the ST should not map a moderate value of α, for which pert. theory may be
reliable, to an excessively large value of α′ where pert. theory is inapplicable



•C3: J should not vanish in the region of α and α′ of interest, or else there would
be a pole in the relation between βα and βα′.

•C4: The existence of an IR zero of β is a scheme-independent property,
depending (in an AF theory) only on the condition that b2 < 0. Hence, a ST should
satisfy the condition that βα has an IR zero if and only if βα′ has an IR zero.

These four conditions can always be satisfied by STs near a UV fixed point, and hence
in applications to pert. QCD calcs., since α is small, and one can choose the ks to be
small also, so α′ ' α.

However, these conditions C1-C4 are not automatically satisfied, and are a significant
constraint, on a ST applied in the vicinity of an IRFP, where α may be O(1).

For example, consider the ST
α = tanh(α′)

with inverse

α′ =
1

2
ln

(1 + α

1 − α

)

If α << 1, as at a UVFP, this is acceptable, but if α exceeds 1, even if by a small
amount, then it is unacceptable, since it maps a real positive α to a complex α′.



We have studied scheme dependence of the IR zero of β using several STs; e.g., the
ST (depending on a parameter r)

Ssh,r : a =
sinh(ra′)

r

Since sinh(ra′)/r is an even fn. of r, we take r > 0 with no loss of generality.

This has the inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2

]

and the Jacobian
J = cosh(ra′)

For this ST,

f(a′) =
sinh(ra′)

ra′ .

This has a series expansion with ks = 0 for odd s and for even s,

k2 =
r2

6
, k4 =

r4

120

k6 =
r6

5040
, k8 =

r8

362880
,

etc. for higher s.



Substituting these results for ks into the general eq. for b′
`, we obtain

b′
3 = b3 − r2b1

6

b′
4 = b4

b′
5 = b5 +

r2b3

6
+

31r4b1

360
etc. for higher `.

We apply this Sshr ST to the β function in the MS scheme, calculated up to ` = 4
loop level. For Nf in the interval I where the 2-loop β function has an IR zero, we
then calculate the resultant IR zeros in βα′ at the 3- and 4-loop order and compare the
values with those in the MS scheme.

We list some numerical results for illustrative values of r and for N = 2, 3. We
denote the IR zero of βα′ at the n-loop level as α′

IR,n` ≡ α′
IR,n`,r.



For example, for N = 3, Nf = 10, αIR,2` = 2.21, and:

αIR,3`,MS = 0.764, α′
IR,3`,r=3 = 0.762, α′

IR,3`,r=6 = 0.754,

α′
IR,3`,r=9 = 0.742, α′

IR,3`,r=4π = 0.723

αIR,4`,MS = 0.815, α′
IR,4`,r=3 = 0.812, α′

IR,4`,r=6 = 0.802,

α′
IR,4`,r=9 = 0.786, α′

IR,4`,r=4π = 0.762

In general, the effect of scheme dependence tends to be reduced (i) for a given N and
Nf , as one calculates to higher-loop order, and (ii) for a given N , as Nf → Nf,b1z,
so that the value of αIR → 0.

The results provide a quantitative measure of scheme dependence of the location of an
IR zero of β.



Application of Quasiconformal Gauge Theories to Models
of Dynamical Electroweak Symmetry Breaking and

Implications for LHC Data

Models with dynamical electroweak symmetry breaking (EWSB) have been of interest
as one way to avoid the hierarchy (fine-tuning) problem with the Standard Model
(SUSY is another).

These models use an asymp. free vectorial gauge interaction, technicolor (TC), with a
set of massless technifermions {F} and a gauge coupling αTC(µ) that gets large at
TeV scale, producing condensates 〈F̄ F 〉 = 〈F̄LFR〉 + h.c. ∼ Λ3

TC.

These dynamically break EW symmetry, since the technifermions include a left-handed
SU(2)L doublet with corresponding right-handed SU(2)L singlets. Their condensates
transform as EW I = 1/2, Y = 1, same as SM Higgs, and give masses to W and Z
satisfying m2

W/(m
2
Z cos2 θW ) = 1 to leading order.

Indeed quark condensates 〈q̄q〉 also dynamically break EW symmetry (at much smaller
scale, ΛQCD), also transform as I = 1/2, Y = 1.



The TC theory is embedded in extended technicolor (ETC) to give masses to SM
fermions via exchanges of ETC gauge bosons, which take SM fermion ↔
technifermions.

Resultant SM fermion mass matrices

M
(f)
ii ∼ ηΛ3

TC

Λ2
ETC,i

where i = 1, 2, 3 is generation index, ΛETC,i is a corresponding ETC mass scale, and

ηi = exp

[
∫ Λi

ΛTC

dµ

µ
γ(α

TC
(µ))

]

is RG factor

Typical values: Λ1 ' 103 TeV, Λ2 ' 50 − 100 TeV, Λ3 ' few TeV. Hierarchy in
ETC symmetry breaking scales ΛETC,1 > ΛETC,2 > ΛETC,3 produces inverse
generational hierarchy in SM fermion masses.

The running mass mfi(p) of a SM fermion of generation i is constant up to the ETC
scale ΛETC,i and has the power-law decay (Christensen and Shrock, PRL 94, 241801
(2005))

mfi(p) ∝ p−2 for p >> ΛETC,i



Original TC models were scaled-up versions of QCD and were excluded by their inability
to produce sufficiently large SM fermion masses without having ETC scales so low as to
cause excessively large flavor-changing neutral current (FCNC) effects.

TC models after mid 1980s have been built to have a coupling that gets large but runs
very slowly (walking, quasiconformal TC, WTC) (Yamawaki et al.; Holdom; Appelquist,
Wijewardhana...). This quasiconformal behavior arises naturally from an approx. IR zero
of the TC β function, with αIR slightly greater than αcr.

If γIR is approx. const. near this IRFP, then, e.g., third-gen. SM fermion masses are
increased by factor

η3 '
( Λ3

ΛTC

)γIR

which could give significant enhancement. Hence, one can raise ETC scales Λi,
reducing FCNC effects.

Further, studies of reasonably UV-complete ETC models showed that approximate
residual generational symmetries suppress FCNC effects (Appelquist, Piai, Shrock, PRD
69, 015002 (2004); PLB 593, 175 (2004); PLB 595, 442 (2004); Appelquist,
Christensen, Piai, Shrock, PRD 70, 093010 (2004).)



ETC models still face challenges in trying to reproduce all features of SM fermion
masses, such as mt >> mb, etc. Here focus on TC.

TC models that include color-nonsinglet technifermions, such as the one-family TC
model, in which technifermions comprise one SM family, are disfavored at present, for
several reasons, including (i) possibly excessive contributions to precision electroweak S
parameter; (ii) prediction of pseudo-NGB’s (PNGB’s), some of which are
color-nonsinglets, with O(100) GeV masses that they should have been observed at
LHC; (ii) color-octet techni-vector mesons, with masses of order TeV, in tension with
the current lower bound of ∼ 2.5 TeV set by ATLAS and CMS.

But TC models need not have any color-nonsinglet technifermions; a TC model may
have a minimal EW-nonsinglet technifermion content of one SU(2)L doublet with
corresponding right-handed SU(2)L singlets, all of which are color-singlets.

TC models of this type can exhibit quasiconformal behavior. For models in which
technifermions are in fund. rep. of TC group, one may add SM-singlet technifermions
to get Nf slightly less than Nf,cr (Christensen and Shrock, Phys. Lett. B632, 92
(2006); Ryttov and Shrock, Phys. Rev. D84, 056009 (2011), arXiv:1107.3572).
Alternatively, one can use higher-dim. TC reps. (Dietrich, Tuominen, Ryttov; e.g.,
Dietrich, Sannino, and Tuominen, PRD 72, 055001 (2005); Sannino, arXiv:0911.0931).



In these minimal TC models, all NGBs with EW quantum numbers are eaten, so no
left-over EW-nonsinglet NGBs, in contrast with one-family TC. Also, S parameter may
be sufficiently reduced (also by walking) to satisfy precision EW constraints.

As noted, because quasiconformal TC has approx. scale invariance, dynamically broken
by 〈F̄ F 〉, this could plausibly lead to a light approx. NGB, the techidilaton
(Yamawaki..Goldberger, Grinstein, and Skiba.. Fan; Sannino...; Appelquist and Bai;
Elander, Nunez, and Piai; for different estimates of χ mass, see Bardeen, Leung, Love;
Holdom and Terning). Approx. Bethe-Salpeter calc. finds mS/mV ∼ 0.3 in WTC
(Kurachi, Shrock, JHEP 12, 034 (2006)). Much recent work on estimates of the dilaton
mass; e.g., Matsuzaki and Yamawaki, PRD85, 095020 (2012); arXiv:1201.4722.
arXiv:1209.2017; Lawrance and Piai, arXiv:1207.0427; Elander and Piai,
arXiv:1208.0546; Bellazzini, Csáki, Hubisz, Serra and Terning, arXiv:1209.3299. A
technidilaton might be as light as 125 GeV.

Eventually, lattice gauge measurements may be able to determine the mass of a dilaton
in a quasiconformal theory (a difficult calculation). Important progress from the
LATKMI reported at this conf. (Rinaldi’s talk).

N.B. Technicolor gauge fields are color-singlets and all technifermions may be
color-singlets as well, in which case a technidilaton χ may have no color-nonsinglet
constituents, affecting couplings to gluons.



The boson discovered at the LHC by ATLAS and CMS with mass of ∼ 125 GeV is
consistent with being the SM Higgs, although the diphoton rate is slightly high.
However, it might also be explained as a technidilaton, χ, resulting from a
quasiconformal TC theory; further experimental and theoretical work should settle this
decisively.

A general TC collider signature is resonant scattering of longitudinally polarized W and
Z bosons, via techni-vector mesons in s-channel. A decisive search at LHC may require
∫ Ldt ∼ 50 − 100 fb−1 at

√
s = 14 TeV.



Conclusions

• Understanding the UV to IR evolution of an asymptotically free gauge theory and
the nature of the IR behavior is of fundamental field-theoretic interest

• Our higher-loop calculations give new information on this UV to IR flow and on
determination of αIR,n` and γIR,n`; valuable to compare and combine results from
higher-loop continuum calcs. with lattice measurements

• Higher-loop study of UV to IR flow for supersymmetric gauge theories yields further
insights

• Quantitative study of scheme-dependence in higher-loop calculations, noting that
scheme transformations are subject to constraints that are easily satisfied at a UVFP
but are quite restrictive at IRFP

• Application of quasiconformal gauge theories to models of dynamical EWSB; role of
a light dilaton

• Importance of these calculations in deciding the outstanding question of whether
dynamical EWSB is realized in nature


