SCGT 12

KMI-GCOE Workshop on Strong Coupling Gauge Theories in the LHC Perspective Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

M. Shifman W.I. Fine Theoretical Physics Institute, University of Minnesota

Non-Abelian strings in supersymmetric Yang-Mills: 4D-2D correspondence

A. Yung,

A. Gorsky, ... W. Vinci, M. Nitta

IPMU, December 3, 2012

Tiscovery of non-Abelian strings in supersymmetric Yang-Mills and applications

★ ★ Beyond supersymmetry

DUAL MEISSNER EFFECT (Nambu-'t Hooft-Mandelstam, ~1975)

M. Shifman 3

The Meissner effect: 1930s, 1960s

DUAL MEISSNER EFFECT (Nambu-'t Hooft-Mandelstam, ~1975)

Wednesday.	December 5.	12

M. Shifman 3

* Non-Abelian theory, but Abelian flux tube

"...[monopoles] turn to develop a non-zero vacuum expectation value. Since they carry color-magnetic charges, the vacuum will behave like a superconductor for color-magnetic charges. What does that mean? Remember that in ordinary electric superconductors, magnetic charges are connected by magnetic vortex lines ... We now have the opposite: it is the color charges that are connected by color-electric flux tubes." G. 't Hooft (1976) $\mathcal{N}=2 \Rightarrow add$ the second gluino + add a scalar gluon φ^a (a complex scalar field in the adjoint)

 $V(\phi^a) = |\epsilon^{abc} \phi^b \phi^c|^2$

In the vacuum $\phi^3 \neq 0$ while $\phi^1 = \phi^2 = 0 \Rightarrow$

 $SU(2)_{gauge} \rightarrow U(1) \Rightarrow$

Georgi-Glashow model

⇒ `t Hooft-Polyakov monopoles

If $|\phi^3| \gg \Lambda$, then monopoles are very heavy!

- gluons+complex scalar superpartner
- two gluinos
- Georgi-Glashow model built in

analytic continuation

Wednesday, December 5, 12

- gluons+complex scalar superpartner
- two gluinos
- Georgi-Glashow model built in

 $SU(2) \rightarrow U(1)$, monopoles \rightarrow

gluons+complex scalar superpartner

📍 two gluinos

Georgi-Glashow model built in

 $SU(2) \rightarrow U(1)$, monopoles \rightarrow

Monopoles become light if $|\varphi^3| \leq \Lambda \rightarrow At$ two points, massless!

analytic continuation

- gluons+complex scalar superpartner
- 📍 two gluinos
- Georgi-Glashow model built in

 $SU(2) \rightarrow U(1)$, monopoles \rightarrow

Monopoles become light if $|\varphi^3| \leq \Lambda \rightarrow At$ two points, massless!

N=1 deform. forces M condensatition \rightarrow

gluons+complex scalar superpartner

📍 two gluinos

Georgi-Glashow model built in

 $SU(2) \rightarrow U(1)$, monopoles \rightarrow

Monopoles become light if $|\varphi^3| \leq \Lambda \rightarrow At$ two points, massless!

N=1 deform. forces M condensatition \rightarrow

U(1) broken, electric flux tube formed \rightarrow

analytic continuation

gluons+complex scalar superpartner

two gluinos

Georgi-Glashow model built in

 $SU(2) \rightarrow U(1)$, monopoles \rightarrow

Monopoles become light if $|\varphi^3| \leq \Lambda \rightarrow At$ two points, massless!

N=1 deform. forces M condensatition \rightarrow

U(1) broken, electric flux tube formed \rightarrow

😔 😔 Dynamical Abelization ... dual Abrikosov string

analytic continuation

Wednesday, December 5, 12

Son-Abelian Strings, 2003 → Now

"Non-Abelian" string is formed if all non-Abelian degrees of freedom participate in dynamics at the scale of string formation

2003: Hanany, Tong Auzzi et al. Yung + M.S.

classically gapless excitation

 $SU(2)/U(1) = CP(1) \sim O(3)$ sigma model

Prototype model

$$S = \int d^{4}x \left\{ \frac{1}{4g_{2}^{2}} \left(F_{\mu\nu}^{a}\right)^{2} + \frac{1}{4g_{1}^{2}} \left(F_{\mu\nu}\right)^{2} + \frac{1}{g_{2}^{2}} |D_{\mu}a^{a}|^{2} \right. \\ + \operatorname{Tr} \left(\nabla_{\mu}\Phi\right)^{\dagger} \left(\nabla^{\mu}\Phi\right) + \frac{g_{2}^{2}}{2} \left[\operatorname{Tr} \left(\Phi^{\dagger}T^{a}\Phi\right)\right]^{2} + \frac{g_{1}^{2}}{8} \left[\operatorname{Tr} \left(\Phi^{\dagger}\Phi\right) - N\xi\right]^{2} \\ + \left. \frac{1}{2}\operatorname{Tr} \left|a^{a}T^{a}\Phi + \Phi\sqrt{2}M\right|^{2} + \frac{i\theta}{32\pi^{2}}F_{\mu\nu}^{a}\tilde{F}^{a\mu\nu}\right\}, \qquad \Phi = \begin{pmatrix} \varphi^{11}\varphi^{12} \\ \varphi^{21}\varphi^{22} \end{pmatrix} \\ M = \begin{pmatrix} m & 0 \\ 0 - m \end{pmatrix}$$

Basic idea:

- Color-flavor locking in the bulk \rightarrow Global symmetry G;
- G is broken down to H on the given string;
- G/H coset; G/H sigma model on the world sheet.

 $\Phi = \sqrt{\xi} \times I$

Prototype model

$$S = \int d^{4}x \left\{ \frac{1}{4g_{2}^{2}} \left(F_{\mu\nu}^{a}\right)^{2} + \frac{1}{4g_{1}^{2}} \left(F_{\mu\nu}\right)^{2} + \frac{1}{g_{2}^{2}} |D_{\mu}a^{a}|^{2} \right. \\ + \operatorname{Tr} \left(\nabla_{\mu}\Phi\right)^{\dagger} \left(\nabla^{\mu}\Phi\right) + \frac{g_{2}^{2}}{2} \left[\operatorname{Tr} \left(\Phi^{\dagger}T^{a}\Phi\right)\right]^{2} + \frac{g_{1}^{2}}{8} \left[\operatorname{Tr} \left(\Phi^{\dagger}\Phi\right) - N\xi\right]^{2} \\ + \left. \frac{1}{2}\operatorname{Tr} \left|a^{a}T^{a}\Phi + \Phi\sqrt{2}M\right|^{2} + \frac{i\theta}{32\pi^{2}} F_{\mu\nu}^{a}\tilde{F}^{a\mu\nu}\right\}, \qquad \Phi = \begin{pmatrix} \varphi^{11}\varphi^{12} \\ \varphi^{21}\varphi^{22} \end{pmatrix}$$

U(2) gauge group, 2 flavors of (scalar) quarks SU(2) Gluons A^{a}_{μ} + U(1) photon + gluinos+ photino $M = \begin{pmatrix} m & 0 \\ 0 & -m \end{pmatrix}$

Basic idea:

• Color-flavor locking in the bulk
$$\rightarrow$$
 Global symmetry G;

- G is broken down to H on the given string;
- G/H coset; G/H sigma model on the world sheet.

 $\Phi = \sqrt{\xi} \times I$

★ ANO strings are there because of U(1)!
 ★ New strings:

 \star ANO strings are there because of U(1)! ★ New strings: $\pi_1(SU(2) \times U(1)) = Z_2$: rotate by π around 3-d axis in SU(2) \rightarrow -1; another -1 rotate by π in U(1) $\pi_1(U(1) \times SU(2))$ nontrivial due to Z₂ center of SU(2) Ζ **ANO** $\sqrt{\xi} e^{i\alpha} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ string X T=4πξ Non-Abelian $\sqrt{\xi} \begin{pmatrix} e^{i\alpha} \\ 0 \end{pmatrix}$ $T_{U(1)} \pm T^3_{SU(2)}$ X0 ← string center in perp. plane T=2πξ $SU(2)/U(1) \leftarrow orientational moduli; O(3) \sigma model$

M. Shifman 11

CP(1) model with
twisted mass
$$S = \int d^2x \left\{ \frac{2}{g^2} \frac{\partial_\mu \bar{\phi} \partial^\mu \phi - (\Delta m)^2 \bar{\phi} \phi}{(1 + \bar{\phi} \phi)^2} + fermions \right\}$$

Evolution in dimensionless parameter m^2/ξ

M. Shifman 13

Kinks are confined in 4D (attached to strings).
Kinks are confined in 2D:

Kink = Confined Monopole

■ World-sheet theory ↔ strongly coupled bulk theory inside

M. Shifman 15

Dewar flask

1) Confined monopoles in dense QCD

Color Superconductivity (CSC)

➢ QCD at high density → Fermi surface, weak-coupling

Attractive channel → Cooper instability
[3]_C×[3]_C = [6]_S + [3]_A
(\(\tau_a)_{ij}(\tau_a)_{kl} = \frac{2}{3}(\tau_S)_{ik}(\tau_S)_{lj} - \frac{4}{3}(\tau_A)_{ik}(\tau_A)_{lj}\)

2 Ginsburg–Landau effective description

At large μ QCD is in the CFL phase. Diquark condensate 3 colors and 3 flavors

$$\Phi^{kC} \sim \varepsilon_{ijk} \varepsilon_{ABC} \left(\psi^{iA}_{\alpha} \psi^{jB\alpha} + \bar{\tilde{\psi}}^{iA\dot{\alpha}} \bar{\psi}^{jB}_{\dot{\alpha}} \right)$$

At $T \to T_c$ gap fluctuations become important. Chiral fluctuations (π -mesons) are considered less important

$$S = \int d^4x \left\{ \frac{1}{4g^2} \left(F^a_{\mu\nu} \right)^2 + 3 \operatorname{Tr} \left(\mathcal{D}_0 \Phi \right)^\dagger \left(\mathcal{D}_0 \Phi \right) \right\}$$

+ $\operatorname{Tr}(\mathcal{D}_{i}\Phi)^{\dagger}(\mathcal{D}_{i}\Phi) + V(\Phi) \Big\}$

with the potential

$$V(\Phi) = -m_0^2 \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) + \lambda \left(\left[\operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2 + \operatorname{Tr} \left[\left(\Phi^{\dagger} \Phi \right)^2 \right] \right)$$

 $\Delta H_{GL} = (T/2)(\partial_z x_{perp} \partial_z x_{perp}) + h.d.$ The derivatives can be rel. or non-relat. Nambu-Goto \rightarrow String Theory Kelvin modes or Kelvons

2 NG gapless modes in relat. 1 NG gapless mode in non-rel. $E_{str} = TL + C/L$ Counts # of gapless modes !

M. Shifman 18

L=1, S=1 \rightarrow Cooper pair order parameter $e_{\mu i} \leftarrow 3 \times 3$ matrix

Spin-orbit small, symmetry of H is $G = U(1)_p \times SO_S(3) \times SO_L(3)$

In the ground state $U_p(1) \times SO_S(3) \times SO_L(3) \rightarrow H_B = SO(3)_{S+L}$

Hence, contrived NG modes in the bulk!

Wednesday, December 5, 12

Amending Abrikosov to non-Abelian

◇ $\Delta H_{GL} = D_k \varphi^{\dagger} D_k \varphi + \lambda (\varphi^{\dagger} \varphi - \eta^2)^2 \implies$ time derivatives can be rel. or non-relat.

with $\eta^2 > \mu^2$

* In ground state $\phi^{\dagger}\phi_{gr.st} = \eta^2$, hence the mass term of $n^i = \eta^2 - \mu^2 > 0$ and O(3) is unbroken

****** Inside Abrikosov $\phi^{\dagger}\phi_{\text{gr.st.}} = 0$ hence the mass term of $n^{i} = -\mu^{2} < 0$ and O(3) is broken down to O(2), while $n^{i}n^{i} = \mu^{2}/2\beta$

*** Classically O(3) sigma model on vortex, 2 gapless interacting modes

Conclisions

★ Non-Abelian strings in N=1 SUSY → heterotic CP(n-1) models on string; poorly explored.

 \star \star Unexpected applications in condensed matter (not explored).