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Motivation
• We have a Higgs!  Or is it a Higgs 

impostor?  A composite?

• If the new Higgs-like particle is 
composite, presence of a new strongly-
coupled sector should reveal itself 
dramatically with many new 
resonances.

• However, scale where the resonances 
appear may high and difficult to reach 
directly.  First signs of such a sector 
may appear in low-energy EW physics!

• UV-complete theory determines low-
energy effective description, and fixes 
all low-energy constants (non-
perturbative -> lattice!)
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Exploring the space

• There exists a large parameter space of theories beyond QCD - cartoon above 
shows plane for Nf fundamental fermions only

• Many theories in this space can reduce to similar low-energy effective theories of 
EWSB. How do the coupling constants change in this space? (Lattice!)

• (Not mentioned in my talk, but interesting: bounding the edge of the window, 
study of IR-conformal theories.  See 1204.6000, G. Voronov - PoS Lattice11)

CBZ
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Composite Higgs and setting the scale

• Decay constant F gives the EW gauge boson masses, and thus EWSB scale.  
For simplest case (one EW doublet), identify v=F=246 GeV.
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At this point it is manifestly obvious that if we make the field redefinitions
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(where as above, Zµ and Aµ are rescaled so that their kinetic terms will have the

standard normalization), then the ✏a field is completely removed from the Lagrangian

at this order, and the remaining terms from the interaction are simply mass terms

for the shifted gauge fields. The fourth gauge degree of freedom Aµ, corresponding

to the photon, remains massless as it should. The Lagrangian (again, to lowest order

in ✏a) is now given by
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29

• For QCD, the higher resonances 
(ρ,N,...) start around 2πF - 
separation of scales!

• Integrate out --> chiral Lagrangian:

L�,LO =
F 2

4
Tr

⇥
DµU

†DµU
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+

F 2B

2
Tr

⇥
m(U + U †)

⇤

U = exp(2iT a⇡a/F )where                                         .
• B is related to mass generation and the chiral condensate:

hT̄ T i / F 2B

• Caveat: chiral Lagrangian only has “pion” states - if Higgs is a dilaton, then it 
needs to be accounted for as well... 
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The chiral Lagrangian at higher order

• At next order in momentum expansion, many new terms appear.  Three- and 
four-point pion interactions, and interactions with external left/right currents.  
Once again all LECs fixed by underlying strong dynamics.

• Looking on the electroweak side makes connection to experiment clearer...

Z Gasser, 14. Leutwyler/ ('hiral perturbation theory 481 

The efIective lagrangian of  order p2 then simplifies to 

~ ,  = ~ F~{tr (V,, U+V ~' U) + tr (X* U + x U  + )}, (6.14) 

and the constraint which eliminates the U( l )  field associated with the z/' becomes 

det U = 1 . ( 6 . 1 5 )  

Since we need the lagrangian ~-2 only at tree graph level, we may use the classical 
field equations (5.9) obeyed by U to simplify the general expression of order p4. 
Using the procedure outlined in sect. 3 to impose gauge invariance, Lorentz invari- 
ance, P and C, one finds the following expression for the general lagrangian of 
order p4: 

~2 = L , ( V ~ ' U ' V , U )  2 + L 2 ( V , U ~ V , , U ) ( V " U ~ V ' U )  

+ L3(V~'U+V~,UV'~U "V,,U)+ L4(W' U + V u U ) ( x  + U + x U  +) 

+ L ~ ( V " U W , , U ( x  + U + U+x) )  

+ L6( X '  U + x U + ) 2 +  L7( X '  U - x U + )  2 

+ L s ( x ~ U x  ~ U + x U * x U ' )  
• R p. v + - F,,~V U V U) tLo(FuvV U V  U + t. ~, + 

FL Fv-vL'~ + L , o ( U * F ~ U F C ~ ' ~ ) +  ~,,,\-,̀ ~-I'~R "c~'vR+ _,,,~_ , + H2(x~X) , (6.16) 

R L where CA) stands for the trace of the matrix A. The field strength tensors F,~, F~,~ 
are defined in (3.8). 

At leading order two constants Fo, Bo suffice to determine the low-energy behaviour 
of the Green functions (recall that we disregard the singlet vector and axial currents) - 
at first nonleading order we need l0 additional low-energy coupling constants 
L j , . . . ,  L,o. (Although the contact terms Hi, /42 are of no physical significance, 
they are needed as counterterms in the renormalization of  the one-loop graphs.) 

7. L o o p s  

To evaluate the one-loop graphs generated by the iagrangian .~.~ we consider the 
neighbourhood of the solution O(x) to the classical equations of motion. Denoting 
the square root of this solution by u ( x )  

13 = u 2 (7.1) 

we write the expansion around tJ in the form 

U = u(!  + i~- ~ 2 + . .  ")u, (7.2) 

where ~(x) is a traceless hermitian matrix. The number of flavours does not play a 
crucial role in the following analysis. We perform the one-loop calculations for the 

[Gasser and Leutwyler, NPB 250 (1985) 465]

(� = 2Bm)
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Next-to-leading order on the EW side
[Appelquist and Wu, Phys.Rev. D48 (1993) 3235]

extended technicolor interactions, typically at scales well above Λχ. Used at tree

level, L ′

1 contributes directly to the deviation of the ρ parameter from unity.

At the dimension-four level, there are a variety of new operators that can be

written down. Making use of the equations of motion, and first restricting attention

to CP-invariant operators, the list can be reduced to eleven independent terms:

L1 ≡
1

2
α1gg′BµνTr(TW µν) L2 ≡

1

2
iα2g

′BµνTr(T [V µ, V ν ])

L3 ≡ iα3gTr(Wµν [V µ, V ν ]) L4 ≡ α4[Tr(VµVν)]2

L5 ≡ α5[Tr(VµV µ)]2 L6 ≡ α6Tr(VµVν)Tr(TV µ)Tr(TV ν)

L7 ≡ α7 Tr(VµV µ)Tr(TVν)Tr(TV ν) L8 ≡
1

4
α8 g2 [Tr(TWµν)]

2

L9 ≡
1

2
iα9gTr(TWµν)Tr(T [V µ, V ν ]) L10 ≡

1

2
α10[Tr(TVµ)Tr(TVν)]

2

L11 ≡ α11gε µνρλ Tr(TVµ)Tr(VνWρλ) (6)

The first ten terms were written down by Longhitano [2]. They have been re-

considered recently by several authors [9, 12]. The operator L11 is new [13] and

it completes the list of all CP invariant operators up to dimension four (see Ap-

pendix A for more details). L11 corresponds to a CP-conserving, but C and P

violating, term in the general parameterization of the triple gauge boson vertex. It

will be considered further in Section 4. We use the convention ε0123 = −ε0123 = 1.

Longhitano’s list [2] also contains CP-violating, dimension-four operators.

The full list of such operators, after making use of the equations of motion, contains

five terms in addition to those written down by Longhitano. They are all listed

in Appendix A. In this paper, detailed considerations will be restricted to the CP

invariant operators.

4

• Corrections to two-point functions (oblique corrections) should appear first in 
low-energy experiments.

basic building blocks which are SU(2)L covariant and U(1)Y invariant as follows:

T ≡ Uτ3U
† , Vµ ≡ (DµU)U † (2)

Wµν ≡ ∂µWν − ∂νWµ + ig[Wµ,Wν ] (3)

where T , Vµ and Wµν have dimensions zero, one, and two respectively.

The familiar pieces of the chiral lagrangian, that emerge for example from

the MH → ∞ limit of the linear theory at tree level, are:

L0 ≡
1

4
f2Tr[(DµU)†(DµU)] −

1

4
BµνBµν −

1

2
TrWµνW

µν , (4)

where f % 250GeV is the symmetry breaking scale, and Bµν ≡ ∂µBν − ∂νBµ. The

first term has dimension two, while the second two (kinetic energy) terms have

dimension four. The gauge couplings to the quarks and leptons must also be added

to Eq. 4. The Yukawa couplings of the quarks and leptons to the symmetry breaking

sector will be neglected here.

There is one, additional dimension-two operator allowed by the SU(2)L ×

U(1) symmetry [2]:

L
′

1 ≡
1

4
β1g

2f2[Tr(TVµ)]2. (5)

This term, which does not emerge from the MH → ∞ limit of the renormalizable

theory at tree level, violates the SU(2)C custodial symmetry even in the absence

of the gauge couplings. It is the low energy description of whatever custodial-

symmetry breaking physics exists, and has been integrated out, at energies above

roughly Λχ ≡ 4πf % 3TeV. In technicolor theories, this breaking arises from the

3

S / ↵1 T / �1 U / ↵8

• Dominant contributions to W-W scattering at NLO from ↵4,↵5
Tuesday, December 4, 12



A tale of two effective theories

• In lattice simulations, no EW charges - work in terms of hadronic chiral 
Lagrangian.  Zero g,g’, massive pseudo-Goldstones.

• On the other side, we can write down an electroweak chiral Lagrangian to 
describe gauge-boson interactions; non-zero g,g’, massless Goldstones.2

ELECTROWEAK CHIRAL LAGRANGIAN AND WW
SCATTERING

The electroweak chiral Lagrangian (EW�L ) allows for
a systematic description of electroweak scale effects result-
ing from TeV scale physics [12, 13]. This effective chiral
Lagrangian must respect the SU(2)L⇥U(1)Y gauge sym-
metry. However, the chiral Lagrangian approximately re-
spects a larger “custodial” symmetry SU(2)L ⇥ SU(2)C ,
which spontaneously breaks to the diagonal subgroup.
From the EW�L [12, 13], the dominant contributions to
WW scattering come from the terms

LW 4

= �g2
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+2ig tr
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where Vµ = (DµU)U †, U(x) is the unitary matrix field
that transforms under SU(2)L ⇥ SU(2)C (akin to the
hadronic matrix of Goldstone fields), and the covariant
derivative of U(x) is given by

DµU = @µU + ig
~⌧

2

· ~WµU � ig0U
⌧
3

2

Bµ. (2)

The ↵
4

and ↵
5

terms describe O(g4

) corrections to WW
scattering.

In Ref. [21], Eboli et al found that with an integrated
luminosity of 100 fb�1, and by considering both W
and Z scattering, the LHC could place 99% CL bounds
�7.7 ⇥ 10

�3 < ↵
4

< 15 ⇥ 10

�3 and �12 ⇥ 10

�3 <
↵

5

< 10⇥10

�3. Because the fit to potential LHC data was
made using only the terms of Eq. (1) at tree level, the ↵-
parameters are, in effect, defined at a low scale, incorporat-
ing all radiative corrections including both standard-model
corrections and new physics. These parameters were also
constrained by unitarity considerations in Refs. [15, 16].
Other custodial-symmetry respecting coefficients in the
EW�L have been constrained experimentally and do not
lead to appreciable corrections to WW scattering [15].
More recent assessments of LHC constraints on vector bo-
son scattering were performed in Ref. [22] and Ref. [23].

In the limit g, g0 ! 0, the EW�L reduces to the massless
two-flavor hadronic chiral Lagrangian [17], as illustrated in
Fig. 1, where
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where `
1

and `
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are the next-to-leading-order (NLO)
Gasser-Leutwyler coefficients of the hadronic chiral La-
grangian with only derivative couplings,
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FIG. 1:
Comparison between limits of the hadronic chiral Lagrangian

with Nf flavors [17, 18] and the electroweak chiral Lagrangian
[12, 13]. Symbolic quantities are defined in the text.

To exhibit the flavor-dependent dynamics giving rise to
↵

4

and ↵
5

, an extension to the multi-flavor hadronic chi-
ral Lagrangian, with non-zero fermion masses is appropri-
ate. Theories with multiple flavors lead to additional Gold-
stone degrees of freedom, uneaten by the W and Z bosons,
which, with a small mass, become PNGBs. Their contribu-
tion to physical phenomena are parametrized by the many
low-energy constants (LECs) of the multi-flavor chiral La-
grangian. The presence of a finite fermion mass is also
essential for the lattice simulations employed here.

For theories with Nf � 4 massive fermions, there are
9 LECs in the NLO hadronic chiral Lagrangian, denoted
by L

0�8

[18]. The LECs L
4�8

multiply terms proportional
to the fermion mass, while L

0�3

multiply terms that are
independent of the fermion mass. One way to relate these
LECs to the EW�L is by assigning electroweak quantum
numbers to one fermion doublet among the Nf fermions,
leaving the others neutral.

Although our lattice simulations are carried out with a
common mass m for all the fermions, it is helpful for our
discussion to temporarily assign a mass md to the fermion
doublet with electroweak quantum numbers and a mass
ms � md to the remaining electroweak singlets. The for-
mer must be taken to zero, while the latter may or may
not be taken to zero. The N 2

f � 1 PNGBs are then sep-
arated into the 3 (with mass denoted by Mdd) which be-
come massless when md ! 0 and are eaten by the gauge
bosons, the 4(Nf � 2) composed of one electroweak-
doublet fermion and one electroweak-singlet fermion (with
mass denoted by Mds), and the (Nf � 2)

2 composed of
only electroweak-singlet fermions (with mass denoted by
Mss). All except the 3 eaten modes can also get masses
from standard-model and beyond-standard-model interac-
tions not included here.

The relation of the 9 NLO LECs of the general-flavor
hadronic Lagrangian to ↵

4

and ↵
5

in the electroweak La-
grangian is mapped out in Fig. 1. “High-energy physics”
including the PNGB particles composed of one or two of
the electroweak-singlet fermions of mass ms are integrated

restored symmetry

• With no Higgs, massless hadronic Goldstones eaten by W/Z, rest taken 
heavy.  With a pion “Higgs impostor”, more complicated matching...
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• In lattice simulations, no EW charges - work in terms of hadronic chiral 
Lagrangian.  Zero g,g’, massive pseudo-Goldstones.

• On the other side, we can write down an electroweak chiral Lagrangian to 
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Other custodial-symmetry respecting coefficients in the
EW�L have been constrained experimentally and do not
lead to appreciable corrections to WW scattering [15].
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son scattering were performed in Ref. [22] and Ref. [23].

In the limit g, g0 ! 0, the EW�L reduces to the massless
two-flavor hadronic chiral Lagrangian [17], as illustrated in
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FIG. 1:
Comparison between limits of the hadronic chiral Lagrangian

with Nf flavors [17, 18] and the electroweak chiral Lagrangian
[12, 13]. Symbolic quantities are defined in the text.

To exhibit the flavor-dependent dynamics giving rise to
↵

4

and ↵
5

, an extension to the multi-flavor hadronic chi-
ral Lagrangian, with non-zero fermion masses is appropri-
ate. Theories with multiple flavors lead to additional Gold-
stone degrees of freedom, uneaten by the W and Z bosons,
which, with a small mass, become PNGBs. Their contribu-
tion to physical phenomena are parametrized by the many
low-energy constants (LECs) of the multi-flavor chiral La-
grangian. The presence of a finite fermion mass is also
essential for the lattice simulations employed here.

For theories with Nf � 4 massive fermions, there are
9 LECs in the NLO hadronic chiral Lagrangian, denoted
by L

0�8

[18]. The LECs L
4�8

multiply terms proportional
to the fermion mass, while L

0�3

multiply terms that are
independent of the fermion mass. One way to relate these
LECs to the EW�L is by assigning electroweak quantum
numbers to one fermion doublet among the Nf fermions,
leaving the others neutral.

Although our lattice simulations are carried out with a
common mass m for all the fermions, it is helpful for our
discussion to temporarily assign a mass md to the fermion
doublet with electroweak quantum numbers and a mass
ms � md to the remaining electroweak singlets. The for-
mer must be taken to zero, while the latter may or may
not be taken to zero. The N 2

f � 1 PNGBs are then sep-
arated into the 3 (with mass denoted by Mdd) which be-
come massless when md ! 0 and are eaten by the gauge
bosons, the 4(Nf � 2) composed of one electroweak-
doublet fermion and one electroweak-singlet fermion (with
mass denoted by Mds), and the (Nf � 2)

2 composed of
only electroweak-singlet fermions (with mass denoted by
Mss). All except the 3 eaten modes can also get masses
from standard-model and beyond-standard-model interac-
tions not included here.

The relation of the 9 NLO LECs of the general-flavor
hadronic Lagrangian to ↵

4

and ↵
5

in the electroweak La-
grangian is mapped out in Fig. 1. “High-energy physics”
including the PNGB particles composed of one or two of
the electroweak-singlet fermions of mass ms are integrated

restored symmetry

(+ dilaton?) (+ Higgs boson)

• With no Higgs, massless hadronic Goldstones eaten by W/Z, rest taken 
heavy.  With a pion “Higgs impostor”, more complicated matching...
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(IBM Blue Gene/L 
supercomputer at LLNL)

(Cray XT5 “Kraken” at 
Oak Ridge)

(Computing cluster “7N” 
at JLab)

Results to be shown are 
state-of-the-art for lattice 
simulation - O(100 million) 
core-hours for full program

Many thanks to the computing 
centers and funding agencies 
(DOE through USQCD and 
LLNL, NSF through XSEDE)
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Simulation details

• Iwasaki gauge action + 
domain-wall fermions, fermion 
masses from mf=0.005 to 
mf=0.03, one volume (323x64).

• Residual chiral symmetry 
breaking reasonably small, 
mres~0.002.  All chiral 
extrapolations in m=mf+mres.

• Results also exist for Nf=8 (five 
ensembles, in progress) and 
Nf=10 (six ensembles, 
spectrum may indicate IR-
conformality, see 1204.6000)

Domain wall fermions

Form a fifth dimension from Ls copies of the 4d gauge fields
Exact chiral symmetry at finite lattice spacing in the limit Ls !1
At finite Ls, “residual mass” mres ⌧ mf ; m = mf + mres
323⇥64 with Ls = 16: significant computational expense

mres ⇡ 2.6⇥ 10�5 [2f]; 82⇥ 10�5 [6f]; 170⇥ 10�5 [10f]
David Schaich (Colorado) Lattice Strong Dynamics for the LHC SCGT12Mini (KMI Nagoya) 4 / 22

Nf = 2 Nf = 6 Nf = 10
amf “M⇡” L Ncfg “M⇡” L Ncfg “M⇡” L Ncfg

0.005 3.5 1430 4.7 1350 5.1 220
0.010 4.4 2750 5.4 1250 5.7 350
0.015 5.3 1060 6.6 550 6.3 360
0.020 6.5 720 7.8 400 7.9 510
0.025 7.0 600 8.8 420 8.6 310
0.030 7.8 400 9.8 360 8.8 680

1

a ⇠ 5m⇢.Runs tuned to
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Scale setting
Spectrum and chiral condensate enhancement Setup and methods

Setting the scale

Preliminary: LSD Nf=2 and 6 scale setting

• Lattice scale from MN, M!, r0 all matched at 10% level with more 
masses and increased statistics.

Ethan Neil (Yale) Spectrum at general Nf August 4, 2010 16 / 32
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Chiral condensate

• Condensate fixes other leading-order low-energy constant, B.  Once overall 
scale is set by F, the ratio B/F is meaningful.

• In a composite Higgs theory, mass terms arise from four-fermion operators 
and the condensate:

• Generically, standard model four-fermi operators also generated are a 
problem (FCNC!)  Viable models tend to require small coupling and large B/F.

yfHf̄f ! cf
⇤2

f̄f  ̄ 
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Condensate enhancement results

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.2

0.3

0.4

0.5

0.6

mf
M
B

(B/F )6
(B/F )2

= 1.9± 0.1

h��im
F 3
m

(M2
m/2m)3/2

h��i1/2m

M2
m

2mFm

B

F
 m!0

LSD preliminary

Nf = 2

Nf = 6

�f ⌘ hB|f̄f |Bi|q2!0 = mf
@MB

@mf

�6

�2
= 1.71(4)
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Overview: The S-parameter
• As stated previously, S measures 

corrections from new physics to 
gauge boson 2-pt functions

S parameter Basic setup and methods

The S-parameter

The S-parameter is sensitive to
electroweak “oblique corrections”, i.e.
vacuum polarization of EW gauge
bosons, in the limit of zero momentum
transfer:
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S = 16�(⇥�33(0)� ⇥�3Q(0)), where

⇥XY (q
2) ⇥

1

d � 1(q
2gµ� � qµq�)

⇤
ddx e iq·x⇤JµX(x)J

�
Y (0)⌅.

For a technicolor model with Nf /2 EW-charged technidoublets, this
becomes (in terms of vector and axial currents)

S = �4�(Nf /2)
�
⇥�V V (0)� ⇥�AA(0)

⇥
+ �SSM .

�SSM removes the Higgs boson contribution to S, and cancels an
IR divergence from the massless �T .

Ethan Neil (Yale) Spectrum at general Nf August 4, 2010 24 / 32

S = 16�(�0
33(0)��0

3Q(0))

• We measure the current correlators 
at fixed m and q2, and fit.  Operator 
product expansion constrains the 
form at large momentum: 

�V�A(q
2)

q2!1����⇥ NTC

8⇥2
m2 +

m⇤⇤⇤⌅
q2

+O(�) +O(q�4)

[M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Nucl. Phys. B 147 (1979)]

= �4⇡(⇧0
V V (0)�⇧0

AA(0))

• Fit using Pade approximants: �V�A(q
2) =

P
m amq2mP
n bnq

2n(Pade (1,2) gives best fit.)

(note: model assumption!)

Tuesday, December 4, 12



Momentum/mass fits

�V�A(q
2) =

P
m amq2mP
n bnq

2n
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For our Nf = 6 simulations, mf is not yet small enough
to see clear evidence for these chiral logs. For smaller mf ,
the log mf terms would be replaced by logarithmic depen-
dence on the PNGB masses in the full theory.

Simulation Details Simulations are performed using
domain-wall fermions and the Iwasaki improved gauge ac-
tion [11]. The domain-wall formulation suppresses the chi-
ral symmetry breaking associated with fermion discretiza-
tion, and preserves flavor symmetry at finite lattice spac-
ing, both desirable properties for computation of the S-
parameter. Gauge configurations are generated as in Ref.
[1]. Dimensionful quantities are given in lattice units.

The lattice volume is set to 323 ⇥ 64, with the length of
the fifth dimension Ls = 16 and the domain-wall height
m0 = 1.8. The choices � = 2.70 for Nf = 2 and � =
2.10 for Nf = 6 lead to nearly the same physical scale in
lattice units. Simulations are performed for fermion masses
mf = 0.005 to 0.03, although the Nf = 2 results for
mf = 0.005 may suffer from finite-volume effects, and
are not included in the analysis. At finite lattice spacing,
even with mf = 0, the chiral symmetry is not exact, with
the violation captured in a residual mass mres ⇧ mf . The
total fermion mass m is then m ⇤ mf +mres.

Current Correlators The lattice expression for the cur-
rent correlator of interest is

�µ�
V V (Q) = ⇥µ��V V (Q

2) � (QµQ�/Q2)⇥�V V (Q
2)

= Z
�

x

eiQ·(x+µ̂/2)�Vµ(x)V �(0) (2)

and similarly for �AA. Here Vµ is the conserved domain-
wall vector current, V � is the non-conserved local cur-
rent, and Z is a non-perturbative renormalization constant.
(x + µ̂/2) appears because Vµ(x) is point split on the
link (x, x + µ). The use of conserved currents ensures
that lattice artifacts cancel in the V � A current correlator
�V�A(Q2) ⇤ �V V (Q2) � �AA(Q2) [12].

We calculate �V�A(Q2) for a range of positive (space-
like) Q2 values, and for each mf extrapolate to Q2 = 0 to
determine the slope 4⇤�⇥

V�A(0) entering the S parame-
ter. In Fig. 1, we show the simulation data for �V�A(Q2),
along with fit curves. The data itself indicates that for
Nf = 2, �⇥

V�A(0) increases at smaller mf values, while
for Nf = 6, it decreases, already suggesting a relative de-
crease in S per electroweak doublet at Nf = 6. We fit
the �V�A(Q2) data for Q2 < 0.4 using a four-parameter,
Pade(1,2) form (linear numerator, quadratic denominator).
These fits, behaving like 1/Q2 at large positive Q2, are
shown with statistical error bands in Fig. 1. Each has two
poles at real, negative Q2, but they represent a time-like
structure with cuts and multiple poles. Each fit leads to
a value of �⇥

V�A(0) stable as the number of Q2 points is
varied.

The correlator slopes at Q2 = 0 are plotted in Fig. 2. In
this figure and others to follow, we plot versus M 2

P/M
2
V 0

rather than m, where MP is the Goldstone-boson mass [1],
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FIG. 1: �V�A(Q2) data and fits for Nf = 2 and 6. Fits, over the
range Q2 < 0.40, are done separately for each mf .
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FIG. 2: V � A correlator slopes at Q2 = 0 for Nf = 2 (red dia-
monds) and Nf = 6 (blue circles). For each of the solid points,
MPL > 4.

and MV 0 is the extrapolated mass of the lightest vector
state. We plot in this way since the relation between M 2

P
and m is strongly Nf -dependent. The value of MV 0, to
be discussed later, is roughly 0.2 in lattice units for both
Nf = 2 and 6. For each Nf = 6 point and for the five
heaviest Nf = 2 points, MPL > 4, keeping the pion
Compton wavelength well inside the lattice.

As anticipated from inspection of the data in Fig. 1,
�⇥

V�A(0) at Nf = 6 drops below �⇥
V�A(0) at Nf = 2 for

the smaller M 2
P values, suggesting a suppression of S at

Nf = 6. This interpretation requires care, however, since
the extrapolation M 2

P ⌥ m ⌃ 0 is dominated by chiral
logs (⌅ log(1/m)) for both Nf = 2 and 6.

2

For our Nf = 6 simulations, mf is not yet small enough
to see clear evidence for these chiral logs. For smaller mf ,
the log mf terms would be replaced by logarithmic depen-
dence on the PNGB masses in the full theory.

Simulation Details Simulations are performed using
domain-wall fermions and the Iwasaki improved gauge ac-
tion [11]. The domain-wall formulation suppresses the chi-
ral symmetry breaking associated with fermion discretiza-
tion, and preserves flavor symmetry at finite lattice spac-
ing, both desirable properties for computation of the S-
parameter. Gauge configurations are generated as in Ref.
[1]. Dimensionful quantities are given in lattice units.

The lattice volume is set to 323 ⇥ 64, with the length of
the fifth dimension Ls = 16 and the domain-wall height
m0 = 1.8. The choices � = 2.70 for Nf = 2 and � =
2.10 for Nf = 6 lead to nearly the same physical scale in
lattice units. Simulations are performed for fermion masses
mf = 0.005 to 0.03, although the Nf = 2 results for
mf = 0.005 may suffer from finite-volume effects, and
are not included in the analysis. At finite lattice spacing,
even with mf = 0, the chiral symmetry is not exact, with
the violation captured in a residual mass mres ⇧ mf . The
total fermion mass m is then m ⇤ mf +mres.

Current Correlators The lattice expression for the cur-
rent correlator of interest is

�µ�
V V (Q) = ⇥µ��V V (Q

2) � (QµQ�/Q2)⇥�V V (Q
2)

= Z
�

x

eiQ·(x+µ̂/2)�Vµ(x)V �(0) (2)

and similarly for �AA. Here Vµ is the conserved domain-
wall vector current, V � is the non-conserved local cur-
rent, and Z is a non-perturbative renormalization constant.
(x + µ̂/2) appears because Vµ(x) is point split on the
link (x, x + µ). The use of conserved currents ensures
that lattice artifacts cancel in the V � A current correlator
�V�A(Q2) ⇤ �V V (Q2) � �AA(Q2) [12].

We calculate �V�A(Q2) for a range of positive (space-
like) Q2 values, and for each mf extrapolate to Q2 = 0 to
determine the slope 4⇤�⇥

V�A(0) entering the S parame-
ter. In Fig. 1, we show the simulation data for �V�A(Q2),
along with fit curves. The data itself indicates that for
Nf = 2, �⇥

V�A(0) increases at smaller mf values, while
for Nf = 6, it decreases, already suggesting a relative de-
crease in S per electroweak doublet at Nf = 6. We fit
the �V�A(Q2) data for Q2 < 0.4 using a four-parameter,
Pade(1,2) form (linear numerator, quadratic denominator).
These fits, behaving like 1/Q2 at large positive Q2, are
shown with statistical error bands in Fig. 1. Each has two
poles at real, negative Q2, but they represent a time-like
structure with cuts and multiple poles. Each fit leads to
a value of �⇥

V�A(0) stable as the number of Q2 points is
varied.

The correlator slopes at Q2 = 0 are plotted in Fig. 2. In
this figure and others to follow, we plot versus M 2

P/M
2
V 0

rather than m, where MP is the Goldstone-boson mass [1],
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FIG. 1: �V�A(Q2) data and fits for Nf = 2 and 6. Fits, over the
range Q2 < 0.40, are done separately for each mf .
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FIG. 2: V � A correlator slopes at Q2 = 0 for Nf = 2 (red dia-
monds) and Nf = 6 (blue circles). For each of the solid points,
MPL > 4.

and MV 0 is the extrapolated mass of the lightest vector
state. We plot in this way since the relation between M 2

P
and m is strongly Nf -dependent. The value of MV 0, to
be discussed later, is roughly 0.2 in lattice units for both
Nf = 2 and 6. For each Nf = 6 point and for the five
heaviest Nf = 2 points, MPL > 4, keeping the pion
Compton wavelength well inside the lattice.

As anticipated from inspection of the data in Fig. 1,
�⇥

V�A(0) at Nf = 6 drops below �⇥
V�A(0) at Nf = 2 for

the smaller M 2
P values, suggesting a suppression of S at

Nf = 6. This interpretation requires care, however, since
the extrapolation M 2

P ⌥ m ⌃ 0 is dominated by chiral
logs (⌅ log(1/m)) for both Nf = 2 and 6.
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Nf = 2

Nf = 6

(m=1, n=2)

(above quantity gives LEC L10.)

Tuesday, December 4, 12



S-parameter results

0.0 0.5 1.0 1.5 2.0
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0.6
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MP
2⇤MV0

2

S
⇥
4⇧
�N f⇤2

⇥⌅' V�
A
�0⇥�⇤

S S
M

S2f (m=0) = 0.35(6) - agrees with other determinations

S(x) = A+Bx +

1

12�

 
N2

f

4

� 1

!
log(1/x)

S6f drops far below naive scaling estimate at light masses!  Still above conjectured bound:

Nf = 6

Nf = 2

For 6f, divergence due to PNGBs:

S � ND

2⇡
(F. Sannino, arXiv:1006.0207)
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Preview: S-parameter at Nf=8
Initial 8f 32nt64 results

8f results use my primitive analysis of MP and MV

mf � 0.015 points use more conservative thermalization cut

LSD preliminary
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Overview: WW scattering
• Direct probe of EW symmetry 

breaking physics.  Unitarized by 
the Higgs boson in SM.

• Experimental process as shown 
(VBF).  Relatively clean signal, 
especially with Z’s, but low rates 
for large momentum transfer!

• At low energy, corrections 
appear through LECs α4, α5:

(2). How Do We See the Signal?

Signal features:

• high-energy gauge boson pairs EW ∼ 0.5 TeV.

• forward jets Ej ∼ O(1) TeV, pTj ∼ MW/2.

pp → W1W2 j1j2 X.

Where we Stand

Two Flavor results:

Estimates for 99% CL bounds for 100 inverse fb: 

Six flavor shows early signs for enhanced 
values, but is currently inconclusive

µ ⇠ 2 TeV

�7.7⇥ 10�3 < �4 < 15⇥ 10�3

�12⇥ 10�3 < �5 < 10⇥ 10�3

�4 + �5 =

(
(3.43± 0.31)� 10�3 µ ⇥ 246 GeV

(0.15± 0.31)� 10�3 µ ⇥ 2 TeV

(Preliminary)

Eboli et. al.
2006
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On the lattice: pi-pi scattering

• We measure I=2 (“maximal isospin”) pion scattering - identified with WW 
scattering on the electroweak side.

• Finite-volume scaling of two-particle energy used to extract scattering phase 
shift (Luscher method.)  Then, fit mass dependence to get LECs:

7
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FIG. 3: Plot of MP /|↵k| cot � ' MP aPP vs. (MP /FP )2. The
error bars are statistical plus systematic. The red circles represent
the two-flavor data and the blue squares represent the six-flavor
data. The dashed line is the LO ⇥PT result (zero parameter fit).
Larger negative results correspond to more repulsive scattering.

The dashed line, representing the LO expression
�M2

P/16⇤
2F 2

P , is a reasonably good first approximation
to the data for both Nf = 2 and Nf = 6. For Nf = 2, the
data show that the effect of the NLO term is to make the
interaction more repulsive. The quantity in square brackets
in Eq. (23) is positive and of order unity within the range
shown. A fit to just MPaPP with µ = F leads to the
value b⇥rPP (µ = F ) = �4.67 ± 0.65+1.06

�0.05. Clearly there
is some cancelation between this term and the chiral loga-
rithm. Nonetheless, this b⇥rPP value (when combined with
the brM and brF values in Table I) is consistent with the brPP
value in Eq. (21).

For Nf = 6, the data is even closer to the LO dashed
line, suggesting that NLO perturbation theory in the form
of Eq. 23 might again be reliable. If this expression is
used to fit the Nf = 6 data, then the quantity in square
brackets is again positive and of order unity within the
range shown, but somewhat smaller in magnitude than for
Nf = 2. Since we don’t yet know the precise value of F
in lattice units for Nf = 6, we carry out the NLO fit using
the scale µ = 0.023a�1 (F for Nf = 2). The fit leads to
b⇥rPP (µ = 0.023a�1 ⇤ F ) = �7.81 ± 0.46+1.23

�0.56, larger
in magnitude than for Nf = 2. There is now more cance-
lation between this term and the chiral logarithm than for
Nf = 2.

The above values of b⇥rPP emerge from a fit of Eq. (23)
to each of the three lightest data points (corresponding to
mf = 0.01� 0.02), with a fixed choice µ = 0.023a�1 ⇤
F . A plot of the resultant value of b⇥rPP versus m (Fig. 4),
shows that b⇥rPP (µ = 0.023a�1 ⇤ F ) is relatively inde-
pendent of m for both Nf = 2 and Nf = 6 as expected
if NLO perturbation theory is reliable. The evident shift
going from Nf = 2 to Nf = 6 is interesting since this
quantity is contains LEC’s that enter into WW scattering
through Eq. (24).
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FIG. 4: Chiral parameter b⇥rPP versus fermion mass m for Nf =
2 and Nf = 6.

It is not yet clear whether this fit can be trusted for
Nf = 6, but even if it can, the resultant value for
br⇥PP (µ = 0.023a�1 ⇤ F ) determines only the combi-
nation of LECs in Eq. (24), which includes Lr

i (µ) values
not directly relevant to WW scattering. Further calcula-
tions will be necessary to isolate ��4(MH ,MP = Mds)
and ��5(MH ,MP = Mds) (Eq. (7)). This will then de-
scribe the effect of beyond-standard-model physics for a
range of PNGB masses MP .

SUMMARY AND DISCUSSION

Using lattice simulations, we have computed
pseudoscalar-pseudoscalar scattering in the maximal
isospin channel for an SU(3) gauge theory with two and
six fermion flavors in the fundamental representation.
Our calculation of the S-wave scattering length was then
related to the next-to-leading order (NLO) corrections
to WW scattering through the low-energy coefficients
of the chiral Lagrangian. For Nf = 2, our result for
the scattering length agreed with previous calculations,
showing an increase in repulsion due to the NLO correc-
tions. For WW scattering, we obtained an estimate for
��4(MH)+ ��5(MH) (Eq. (22)) describing deviations from
the standard model.

Six-flavor scattering showed a somewhat less repulsive
NLO interaction than its two-flavor counterpart for a fixed
ratio of the pseudoscalar mass to its decay constant. The
range of fermion masses employed so far does not allow a
clearly reliable use of chiral perturbation theory. Also, the
appearance of more terms in the hadronic chiral lagrangian
for six flavors does not allow the extraction of only the
combination of parameters entering WW scattering. Fur-
ther simulations of additional low-energy scattering param-
eters at lower fermion-mass values will be required to com-
plete this study.

MPa
I=2
PP = � M2

P

8⇡F 2
P

⇢
1 +

M2
P

16⇡2F 2
P


3 log

✓
M2

P

µ2

◆
� 1� `I=2

PP (µ)

��

• Plotted on right: MPaPP vs. mass for 
Nf=2,6.  Good agreement in both 
cases with zero-parameter LO 
prediction - triumph of Weinberg.
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Getting the LECs 7
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FIG. 3: Plot of MP /|↵k| cot � ' MP aPP vs. (MP /FP )2. The
error bars are statistical plus systematic. The red circles represent
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data. The dashed line is the LO ⇥PT result (zero parameter fit).
Larger negative results correspond to more repulsive scattering.

The dashed line, representing the LO expression
�M2

P/16⇤
2F 2

P , is a reasonably good first approximation
to the data for both Nf = 2 and Nf = 6. For Nf = 2, the
data show that the effect of the NLO term is to make the
interaction more repulsive. The quantity in square brackets
in Eq. (23) is positive and of order unity within the range
shown. A fit to just MPaPP with µ = F leads to the
value b⇥rPP (µ = F ) = �4.67 ± 0.65+1.06

�0.05. Clearly there
is some cancelation between this term and the chiral loga-
rithm. Nonetheless, this b⇥rPP value (when combined with
the brM and brF values in Table I) is consistent with the brPP
value in Eq. (21).

For Nf = 6, the data is even closer to the LO dashed
line, suggesting that NLO perturbation theory in the form
of Eq. 23 might again be reliable. If this expression is
used to fit the Nf = 6 data, then the quantity in square
brackets is again positive and of order unity within the
range shown, but somewhat smaller in magnitude than for
Nf = 2. Since we don’t yet know the precise value of F
in lattice units for Nf = 6, we carry out the NLO fit using
the scale µ = 0.023a�1 (F for Nf = 2). The fit leads to
b⇥rPP (µ = 0.023a�1 ⇤ F ) = �7.81 ± 0.46+1.23

�0.56, larger
in magnitude than for Nf = 2. There is now more cance-
lation between this term and the chiral logarithm than for
Nf = 2.

The above values of b⇥rPP emerge from a fit of Eq. (23)
to each of the three lightest data points (corresponding to
mf = 0.01� 0.02), with a fixed choice µ = 0.023a�1 ⇤
F . A plot of the resultant value of b⇥rPP versus m (Fig. 4),
shows that b⇥rPP (µ = 0.023a�1 ⇤ F ) is relatively inde-
pendent of m for both Nf = 2 and Nf = 6 as expected
if NLO perturbation theory is reliable. The evident shift
going from Nf = 2 to Nf = 6 is interesting since this
quantity is contains LEC’s that enter into WW scattering
through Eq. (24).
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FIG. 4: Chiral parameter b⇥rPP versus fermion mass m for Nf =
2 and Nf = 6.

It is not yet clear whether this fit can be trusted for
Nf = 6, but even if it can, the resultant value for
br⇥PP (µ = 0.023a�1 ⇤ F ) determines only the combi-
nation of LECs in Eq. (24), which includes Lr

i (µ) values
not directly relevant to WW scattering. Further calcula-
tions will be necessary to isolate ��4(MH ,MP = Mds)
and ��5(MH ,MP = Mds) (Eq. (7)). This will then de-
scribe the effect of beyond-standard-model physics for a
range of PNGB masses MP .

SUMMARY AND DISCUSSION

Using lattice simulations, we have computed
pseudoscalar-pseudoscalar scattering in the maximal
isospin channel for an SU(3) gauge theory with two and
six fermion flavors in the fundamental representation.
Our calculation of the S-wave scattering length was then
related to the next-to-leading order (NLO) corrections
to WW scattering through the low-energy coefficients
of the chiral Lagrangian. For Nf = 2, our result for
the scattering length agreed with previous calculations,
showing an increase in repulsion due to the NLO correc-
tions. For WW scattering, we obtained an estimate for
��4(MH)+ ��5(MH) (Eq. (22)) describing deviations from
the standard model.

Six-flavor scattering showed a somewhat less repulsive
NLO interaction than its two-flavor counterpart for a fixed
ratio of the pseudoscalar mass to its decay constant. The
range of fermion masses employed so far does not allow a
clearly reliable use of chiral perturbation theory. Also, the
appearance of more terms in the hadronic chiral lagrangian
for six flavors does not allow the extraction of only the
combination of parameters entering WW scattering. Fur-
ther simulations of additional low-energy scattering param-
eters at lower fermion-mass values will be required to com-
plete this study.

• Can’t isolate α4 and α5 for Nf=6 
yet - with only I=2 scattering, 
entangled with other LECs.

Two Flavor WW LECs
NLO calculations of MP FP MPaPP

Three EQs, four unknowns

�4 + �5 =

(
(3.43± 0.31)� 10�3 µ ⇥ 246 GeV

(0.15± 0.31)� 10�3 µ ⇥ 2 TeV

(Preliminary)

For 2 flavors:

6

tion theory provides an acceptable fit allowing a reliable
extrapolation to m = 0, determing the extrapolated decay
constant F and chiral condensate h  i.

TABLE I: Results (in lattice units) of a combined NLO fit for
Nf = 2 to MP aPP , M2

P , FP , and the chiral condensate.

mf =0.01–0.015 mf =0.01–0.02 mf =0.015–0.02 Ref. [10]
brC(F ) 80(10) 110.7(9.0) 198(60) 91(29)
brF (F ) 5.20(28) 5.38(15) 5.09(58) 5.70(27)
brM (F ) -2.36(21) -1.74(24) 0.5(2.2) -2.22(62)
brPP (F ) -17.32(88) -16.89(59) -13.3(3.8) —
F 0.0220(16) 0.0229(10) 0.0262(35) 0.0209(41)
h  i/F 2 1.049(74) 0.885(39) 0.65(10) 0.99(17)
�2/dof 16 / 2 83 / 6 13 / 2 26 / 4

For the present fit, we choose µ = F ' 250 GeV (In
Ref. [10], the scale µ = 4⇡F was used.) The (combined)
fits for M 2

P /2m, FP and MP /m|~k| cot � ' MP aPP /m
are shown in Fig. 2. Only the points mf = 0.01 � 0.02

(shown in solid red) are used in the fit. For all quantities,
NLO chiral perturbation theory again provides an accept-
able fit as in Ref. [10].

The fit parameters are shown in bold face in the central
column of Table I. In addition, fit parameters for two other
mf ranges are shown, and used to estimate systematic er-
rors. From the table, the quantity of interest here is

br
PP (µ = F ) = �128⇡2

⇥
lr
1

(µ = F ) + lr
2

(µ = F )

⇤

= �16.89 ± 0.59

+3.59
�0.43

�2

dof
=

83

6

,

(21)

where we have used the central value from the fit range
mf = 0.01 � 0.02. The errors are statistical plus system-
atic. This result is consistent with previous lattice simula-
tions of I=2 pion-pion scattering [20, 30–35], other 2+1 lat-
tice QCD determinations of these LECs [19, 20], and QCD
phenomenology. Lighter mass ensembles will be required
for future calculations to achieve higher precision.

From Eq. (14), we then have, for Nf = 2,

e↵
4

(MH) +

e↵
5

(MH) = (3.34 ± 0.17

+0.08
�0.71) ⇥ 10

�3

�
⇥
log

M2
H

F 2 + O(1)

⇤

128⇡2

, (22)

where the errors are again statistical plus systematic. Re-
call that the expression in the second line arises from hav-
ing removed the one-loop contribution arising from the
eaten Goldstone bosons and a Higgs boson with reference
mass MH . For a wide range of MH , it is O(10

�3

) or
smaller.

Once the additional one-loop standard-model correc-
tions with the same MH are included, the above result can
be compared directly with LHC data. If the standard-model
corrections are also of order 10

�3 or smaller, then the full

set of O(g4

) contributions will fall comfortably within the
Eboli et al bounds based on 100 fb�1 of LHC data. Fu-
ture measurements will have to be more precise to compare
meaningfully with Eq. (22).

Nf = 6

The Nf = 6 data for MP /m|~k| cot � ' MP aPP /m
displayed in Fig. 2 lies statistically on top of the Nf = 2

data. A NLO fit using Eq. (9) would nevertheless lead to
a different value for br

PP (µ) because the chiral-logarithm
term in this expression has a much larger coefficient, grow-
ing linearly with Nf . However, the larger coefficient indi-
cates that it is very unlikely that Eq. (9) can be employed
in the Nf = 6 case for the existing range of m values.
This point was already made in Ref. [10] where FP , MP

and the chiral condensate were computed. The NLO ex-
pression for FP (Eq. (11)) also has a chiral-logarithm term
with a coefficient growing linearly with Nf .

Nevertheless, our results for Nf = 6 do indicate an in-
teresting trend, which can be seen more easily by plotting
the data in a different way. If the NLO chiral expansion Eq.
(9) is reorganized in terms of the physical values MP and
FP , it takes the form

MP aPP = � M 2

P
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where

A0
(Nf ) =

2(1 � Nf + N 2

f )

N 2

f

b0r
PP (µ) = �256⇡2
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0

(µ) + 2Lr
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5
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6
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8
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With MP aPP expressed in this way, the coefficient of the
logarithmic term remains finite as NF increases, and the
LEC combination b0r

PP (µ) contains no explicit Nf depen-
dence.

The above expansion, while not a priori more reliable for
Nf = 6 than Eq. (9), suggests that a plot of MP aPP '
MP /|~k| cot � versus the physical quantity M2

P /F 2

P could
be revealing. This is done in Fig. 3, where the solid-color
points correspond to the range mf = 0.01�0.02. A small
upward shift of the Nf = 6 points relative to Nf = 2 is
indicated. Since a negative value for aPP corresponds to
a repulsive interaction, the data indicate that the Nf = 6

theory is somewhat less repulsive than the Nf = 2 theory
for pseudoscalar scattering in the maximal-isospin channel.

• Still, comparison with Nf=2 
shows a hopeful trend...

• At Nf=2 some of the extra LECs don’t exist, and we can get the 
linear combination α4+α5 by itself.
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Switching gears: composite dark matter

• Composite Higgs models tend to have a natural dark matter candidate - 
lightest “baryon” can be stable and electroweak neutral.

• Composite dark matter is interesting even without a direct EWSB connection!  
Allows balance between EW interactions (relic density) and lack thereof (direct 
detection.)

• Lattice can contribute in several ways: spectrum, pion-nucleon interactions, 
etc.  A major application is baryon form factors, which determine recoil rates 
in direct-detection experiments.

• No longer working with a chiral Lagrangian - baryons will be heavy*.  But now 
connection to experiment is more obvious: compute baryon form factors, 
take appropriate combination for EM current.

• *(exception: PNGB dark matter - see 1209.6054 and references therein)
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Simulation results: form factors
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• Results shown for Nf=2,6 theories.  “Neutron” charges assumed (+2/3, -1/3), 
with hypercharge only (no net weak charge allowed.)
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mass MB and carrying no net electroweak charge. It is sta-
bilized by conservation of dark baryon number. The other
charged baryons are expected to be heavier due to electro-
magnetic mass corrections of order �M ⇠ ↵MB/4⇡. We
include a fermion mass mf , with mf ⌧ MB .

Our dark sector thus contains N 2
f � 1 pseudo-Nambu-

Goldstone-boson (PNGB) states, with MP ⌧ MB . We
assume that these states are unstable, decaying to standard-
model particles with a sufficient rate that their presence
does not influence the cosmological history of the Uni-
verse. For the neutral PNGBs, this decay occurs naturally
through the triangle anomaly for P 0 ! ��, and through
a virtual Z-boson for P 0 ! f ¯f . The charged PNGBs
are protected from decay by flavor symmetry of the dark
fermions, so some additional interactions at a high scale
must be postulated to mediate the decay.

The presence of unstable PNGB states places strong con-
straints on the treatment of our dark matter as a thermal
relic. Roughly, the confinement scale ⇤ determines both
the dark matter mass MB ⇠ ⇤, and the annihilation cross-
section �(

¯NN ! ¯PP ) ⇠ ⇤

�2. This process efficiently
keeps N in equilibrium with the thermal bath, so that very
large ⇤ would be required to obtain the correct relic den-
sity, pushing MB

>⇠ 20 TeV. (This constraint on thermal
confining dark matter can be evaded by using the PNGB
states as the dark matter, as in [6–9]).

Here, we take the relic density to arise due to an asym-
metry. In the context of technicolor models, where the
fermions are SU(2)L-nonsinglets, this asymmetry is nat-
urally created by SU(2)L sphaleron interactions, connect-
ing dark and ordinary baryon number [2, 3, 10]. Our
theory has no SU(2)L charges, but asymmetric gener-
ation of the relic density is still possible, for example
through higher-dimension operators that directly violate
both baryon-number symmetries [11]. Such a construction
may also admit operators that violate dark baryon number
by two units, allowing for indirect-detection signals as dark
anti-particles are regenerated by oscillations [12, 13].

As our focus is on direct-detection signatures, which
should be independent of the details of the asymmetric relic
density, we do not consider the dark matter generation in
further detail. The confinement scale ⇤, or equivalently the
dark matter mass MB , is a free parameter in our construc-
tion. Motivated by direct-detection experiment, we will
consider the phenomenologically interesting mass range 10
GeV  MB  100 TeV.

Electromagnetic Form Factors Since the neutral
baryon in the SU(2)-singlet theory is the dark matter can-
didate of interest [20], the baryon mass MB (degenerate
in the absence of other interactions) is the dark matter
mass. This mass and all other dimensionful quantites are
expressed in lattice units here.

The quantities of central interest here are the Dirac and
the Pauli electromagnetic form factors of a neutral dark-
matter baryon |N(p)i. They can be expressed in terms of

the vector-quark-current matrix elements,
hN(p0

)|q�µq|N(p)i

= up0

"

F q
1 (Q2

)�µ
+ F q

2 (Q2
)

i�µ⌫q⌫

2MB

#

up.
(1)

where q = u, d and Q is the momentum transfer.
From these one constructs the isovector and isoscalar

form factors of the neutral dark baryon
F v

1,2(Q
2
) = F u

1,2(Q
2
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1,2(Q
2
) ,

F s
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1,2(Q
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) .

(2)

Both of these quantities can be extracted from lattice cal-
culations, but the isoscalar contribution contains expen-
sive disconnected diagrams, which cancel in the isovector
case, and as a result, isovector form factors are far more
tractable. While we ultimately will calculate the discon-
nected pieces of the isoscalar form factor as well, this work
will focus on only the connected contributions (which ap-
pears to provide a good approximation in QCD).

The full electromagnetic form factors of the neutral dark
baryon are given by

F1,2(Q
2
) =

2

3
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3
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=

1
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) ,

(3)

where F s
1 (0) = 3 and F v

1 (0) = �1, giving F1(0) = 0.
The parameters extracted from these neutral form factors
will be used to generate the exclusion plots.

For small momentum transfer Q2 ! 0, the electro-
magnetic form factors may be simply characterized by the
anomalous magnetic moment

 ⌘ F2(0) , (4)
and the Dirac charge radius

hr21i ⌘ �6

dF1(Q2
)

dQ2

���
Q2=0

. (5)

They are related to the corresponding isoscalar and isovec-
tor anomalous moment and charge radius by

 =

1

6

s +

1

2

v , (6)

hr21i =

1

6

hr21is +

1

2

hr21iv . (7)

Simulation Details Lattice calculations are performed
using 32

3 ⇥ 64 domain-wall lattices with the Iwasaki im-
proved gauge action and a fifth-dimensional length Ls =

16 and a domain-wall height of m0 = 1.8. By using
domain-wall fermions, the calculation preserves exact fla-
vor symmetry, and chiral-breaking lattice spacing artifacts
are exponentially suppressed (mres ⌧ mf ). The calcula-
tion is performed for Nf = 2 at � = 2.70 and Nf = 6 at
� = 2.10. The beta values are tuned to match the confine-
ment scale of both theories relative to the lattice spacing,
including MB as we shall see below. For both Nf = 2

and Nf = 6, five separate mass points are analyzed with
mf = 0.010, 0.015, 0.020, 0.025, 0.030.

• Form factors Fi(Q2) computed 
from three-point function (right).  
Fit and extract κ, <r2>.
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mass MB and carrying no net electroweak charge. It is sta-
bilized by conservation of dark baryon number. The other
charged baryons are expected to be heavier due to electro-
magnetic mass corrections of order �M ⇠ ↵MB/4⇡. We
include a fermion mass mf , with mf ⌧ MB .

Our dark sector thus contains N 2
f � 1 pseudo-Nambu-

Goldstone-boson (PNGB) states, with MP ⌧ MB . We
assume that these states are unstable, decaying to standard-
model particles with a sufficient rate that their presence
does not influence the cosmological history of the Uni-
verse. For the neutral PNGBs, this decay occurs naturally
through the triangle anomaly for P 0 ! ��, and through
a virtual Z-boson for P 0 ! f ¯f . The charged PNGBs
are protected from decay by flavor symmetry of the dark
fermions, so some additional interactions at a high scale
must be postulated to mediate the decay.

The presence of unstable PNGB states places strong con-
straints on the treatment of our dark matter as a thermal
relic. Roughly, the confinement scale ⇤ determines both
the dark matter mass MB ⇠ ⇤, and the annihilation cross-
section �(

¯NN ! ¯PP ) ⇠ ⇤

�2. This process efficiently
keeps N in equilibrium with the thermal bath, so that very
large ⇤ would be required to obtain the correct relic den-
sity, pushing MB

>⇠ 20 TeV. (This constraint on thermal
confining dark matter can be evaded by using the PNGB
states as the dark matter, as in [6–9]).

Here, we take the relic density to arise due to an asym-
metry. In the context of technicolor models, where the
fermions are SU(2)L-nonsinglets, this asymmetry is nat-
urally created by SU(2)L sphaleron interactions, connect-
ing dark and ordinary baryon number [2, 3, 10]. Our
theory has no SU(2)L charges, but asymmetric gener-
ation of the relic density is still possible, for example
through higher-dimension operators that directly violate
both baryon-number symmetries [11]. Such a construction
may also admit operators that violate dark baryon number
by two units, allowing for indirect-detection signals as dark
anti-particles are regenerated by oscillations [12, 13].

As our focus is on direct-detection signatures, which
should be independent of the details of the asymmetric relic
density, we do not consider the dark matter generation in
further detail. The confinement scale ⇤, or equivalently the
dark matter mass MB , is a free parameter in our construc-
tion. Motivated by direct-detection experiment, we will
consider the phenomenologically interesting mass range 10
GeV  MB  100 TeV.

Electromagnetic Form Factors Since the neutral
baryon in the SU(2)-singlet theory is the dark matter can-
didate of interest [20], the baryon mass MB (degenerate
in the absence of other interactions) is the dark matter
mass. This mass and all other dimensionful quantites are
expressed in lattice units here.

The quantities of central interest here are the Dirac and
the Pauli electromagnetic form factors of a neutral dark-
matter baryon |N(p)i. They can be expressed in terms of

the vector-quark-current matrix elements,
hN(p0
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where q = u, d and Q is the momentum transfer.
From these one constructs the isovector and isoscalar

form factors of the neutral dark baryon
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Both of these quantities can be extracted from lattice cal-
culations, but the isoscalar contribution contains expen-
sive disconnected diagrams, which cancel in the isovector
case, and as a result, isovector form factors are far more
tractable. While we ultimately will calculate the discon-
nected pieces of the isoscalar form factor as well, this work
will focus on only the connected contributions (which ap-
pears to provide a good approximation in QCD).

The full electromagnetic form factors of the neutral dark
baryon are given by
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where F s
1 (0) = 3 and F v

1 (0) = �1, giving F1(0) = 0.
The parameters extracted from these neutral form factors
will be used to generate the exclusion plots.

For small momentum transfer Q2 ! 0, the electro-
magnetic form factors may be simply characterized by the
anomalous magnetic moment

 ⌘ F2(0) , (4)
and the Dirac charge radius
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Simulation Details Lattice calculations are performed
using 32

3 ⇥ 64 domain-wall lattices with the Iwasaki im-
proved gauge action and a fifth-dimensional length Ls =

16 and a domain-wall height of m0 = 1.8. By using
domain-wall fermions, the calculation preserves exact fla-
vor symmetry, and chiral-breaking lattice spacing artifacts
are exponentially suppressed (mres ⌧ mf ). The calcula-
tion is performed for Nf = 2 at � = 2.70 and Nf = 6 at
� = 2.10. The beta values are tuned to match the confine-
ment scale of both theories relative to the lattice spacing,
including MB as we shall see below. For both Nf = 2

and Nf = 6, five separate mass points are analyzed with
mf = 0.010, 0.015, 0.020, 0.025, 0.030.
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mass MB and carrying no net electroweak charge. It is sta-
bilized by conservation of dark baryon number. The other
charged baryons are expected to be heavier due to electro-
magnetic mass corrections of order �M ⇠ ↵MB/4⇡. We
include a fermion mass mf , with mf ⌧ MB .

Our dark sector thus contains N 2
f � 1 pseudo-Nambu-

Goldstone-boson (PNGB) states, with MP ⌧ MB . We
assume that these states are unstable, decaying to standard-
model particles with a sufficient rate that their presence
does not influence the cosmological history of the Uni-
verse. For the neutral PNGBs, this decay occurs naturally
through the triangle anomaly for P 0 ! ��, and through
a virtual Z-boson for P 0 ! f ¯f . The charged PNGBs
are protected from decay by flavor symmetry of the dark
fermions, so some additional interactions at a high scale
must be postulated to mediate the decay.

The presence of unstable PNGB states places strong con-
straints on the treatment of our dark matter as a thermal
relic. Roughly, the confinement scale ⇤ determines both
the dark matter mass MB ⇠ ⇤, and the annihilation cross-
section �(

¯NN ! ¯PP ) ⇠ ⇤

�2. This process efficiently
keeps N in equilibrium with the thermal bath, so that very
large ⇤ would be required to obtain the correct relic den-
sity, pushing MB

>⇠ 20 TeV. (This constraint on thermal
confining dark matter can be evaded by using the PNGB
states as the dark matter, as in [6–9]).

Here, we take the relic density to arise due to an asym-
metry. In the context of technicolor models, where the
fermions are SU(2)L-nonsinglets, this asymmetry is nat-
urally created by SU(2)L sphaleron interactions, connect-
ing dark and ordinary baryon number [2, 3, 10]. Our
theory has no SU(2)L charges, but asymmetric gener-
ation of the relic density is still possible, for example
through higher-dimension operators that directly violate
both baryon-number symmetries [11]. Such a construction
may also admit operators that violate dark baryon number
by two units, allowing for indirect-detection signals as dark
anti-particles are regenerated by oscillations [12, 13].

As our focus is on direct-detection signatures, which
should be independent of the details of the asymmetric relic
density, we do not consider the dark matter generation in
further detail. The confinement scale ⇤, or equivalently the
dark matter mass MB , is a free parameter in our construc-
tion. Motivated by direct-detection experiment, we will
consider the phenomenologically interesting mass range 10
GeV  MB  100 TeV.

Electromagnetic Form Factors Since the neutral
baryon in the SU(2)-singlet theory is the dark matter can-
didate of interest [20], the baryon mass MB (degenerate
in the absence of other interactions) is the dark matter
mass. This mass and all other dimensionful quantites are
expressed in lattice units here.

The quantities of central interest here are the Dirac and
the Pauli electromagnetic form factors of a neutral dark-
matter baryon |N(p)i. They can be expressed in terms of

the vector-quark-current matrix elements,
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Both of these quantities can be extracted from lattice cal-
culations, but the isoscalar contribution contains expen-
sive disconnected diagrams, which cancel in the isovector
case, and as a result, isovector form factors are far more
tractable. While we ultimately will calculate the discon-
nected pieces of the isoscalar form factor as well, this work
will focus on only the connected contributions (which ap-
pears to provide a good approximation in QCD).

The full electromagnetic form factors of the neutral dark
baryon are given by
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where F s
1 (0) = 3 and F v

1 (0) = �1, giving F1(0) = 0.
The parameters extracted from these neutral form factors
will be used to generate the exclusion plots.

For small momentum transfer Q2 ! 0, the electro-
magnetic form factors may be simply characterized by the
anomalous magnetic moment

 ⌘ F2(0) , (4)
and the Dirac charge radius
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Simulation Details Lattice calculations are performed
using 32

3 ⇥ 64 domain-wall lattices with the Iwasaki im-
proved gauge action and a fifth-dimensional length Ls =

16 and a domain-wall height of m0 = 1.8. By using
domain-wall fermions, the calculation preserves exact fla-
vor symmetry, and chiral-breaking lattice spacing artifacts
are exponentially suppressed (mres ⌧ mf ). The calcula-
tion is performed for Nf = 2 at � = 2.70 and Nf = 6 at
� = 2.10. The beta values are tuned to match the confine-
ment scale of both theories relative to the lattice spacing,
including MB as we shall see below. For both Nf = 2

and Nf = 6, five separate mass points are analyzed with
mf = 0.010, 0.015, 0.020, 0.025, 0.030.

Form factors independent of Nf at this precision (for these masses)!
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Connecting to experiment

• Computed event rate for XENON100 latest results.  Dominated by magnetic 
moment interaction κ, exclusion for DM up to 5-10 TeV in this model.

• Dashed lines show bound from charge radius operator only (e.g. even Nc?)
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Conclusion

• A composite Higgs sector may reveal itself first through low-energy effects - 
deviations in EW precision, WW scattering, etc.

• Many UV theories can reduce to one effective theory, but low-energy 
constants determined by strong dynamics.  Lattice lets us explore these 
constants and how they evolve in the large parameter space.

• LSD program focused on SU(3) thus far, Nf=2 to Nf=6.  Hints of interesting 
trends for chiral condensate, S-parameter, WW scattering length.  Nf=8,10 in 
progress - stay tuned

• Part of getting the low-energy theory right is getting the states right, so 
priority focus now on other light states, in particular light scalar!  Scalar 
meson and glueball calculations in progress on all our lattices.
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Finite-volume issues and S?Finite volume issues

m� 0

Nf = 2

Nf = 6

Nf = 10

      













 !



!



Finite volume issues

m� 0

Nf = 2

Nf = 6

Nf = 10

      













 !



!



Tuesday, December 4, 12



Comparing with the spectrum
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OPE and extrapolation to large q2
S parameter Correlator data, q2 dependence

Fit comparison with OPE, Nf = 2

0.000 0.005 0.010 0.015 0.020 0.025 0.030
�0.0012

�0.0010

�0.0008

�0.0006

�0.0004

�0.0002

0.0000

0.0002

m

lim
q
2
⌥
⌃

�q2 ⌅⇤
q
2
⌅⇥

Leading q2⌥⌃ coeff. and ⇥⇧⇧⇤, Pade�⇤1,2⌅

Correlator fit

Direct meas.

Good agreement between best-fit extrapolation and m���⇥ direct!
Ethan Neil (Yale) Spectrum at general Nf August 4, 2010 28 / 32Tuesday, December 4, 12



From slope to S

S =
1

3�

Z 1

0

ds

s
{(Nf/2) [RV (s)�RA(s)]

�1

4

"
1�

✓
1� m2

h

s

◆3

�(s�m2
h)

#)

Standard model subtraction:

ref. Higgs mass;
we take mh ⌘ MV 0

(=1 TeV, roughly)

⇠ 4⇡�0
V�A(0)

assumes all 
technifermions 
carry EW charge!

�SSM =
1

12�


11

6
+ log

✓
M2

V 0

4M2
P

◆�

✓
M2

V 0

M2
P

< 1/4

◆

*

*

• SM subtraction 
removes Higgs 
scalar contribution to 
S, cancels IR 
divergence
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Finite-volume again from the spectrum

m ! 0

Nf = 2

Nf = 6

Nf = 10
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Scale setting: rho vs. F

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.1

0.2

0.3

0.4

m

m�

Nf = 2

Nf = 6

Figure 5.1: Data and best-fit curves for m� vs. m at Nf = 2 (red diamonds) and
Nf = 6 (blue triangles.) The lightest data points at mf = 0.005 are shown as
open symbols, indicating that they were not included in the fit due to potential
contamination with unknown systematic errors.

0.005 0.010 0.015 0.020 0.025 0.030
0.0
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1.5

2.0

m

Mm
2

2m

Nf = 2

Nf = 6

Figure 5.2: Data and best-fit curves for M2
m/2m vs. m at Nf = 2 (red diamonds)

and Nf = 6 (blue triangles.) Fits are obtained using the closed symbols only. No fit
curve is shown for Nf = 6, due to the inability to obtain a good chiral fit as discussed
in the text.

124

Figure 5.1: Data and best-fit curves for m vs. m at Nf = 2 (red diamonds) and

Nf = 6 (blue triangles.) The lightest data points at mf = 0.005 are shown as

open symbols, indicating that they were not included in the fit due to potential

contamination with unknown systematic errors.
Results - Vector mass vs. Fm

0.000 0.005 0.010 0.015 0.020 0.025 0.030

8
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12

m

M�

Fm

Nf = 2

Nf = 6

QCD

Ethan Neil (Yale) Spectrum at general Nf August 4, 2010 35 / 32
Figure 5.2: Ratio ofm to Fm vs. m at bothNf = 2 (red diamonds) andNf = 6 (blue

triangles.) The green line represents the value of this ratio in QCD phenomenology.

The data points at heavier mass show good agreement with the QCD ratio, while

the mf = 0.010 point indicates some potential divergence between the Nf = 2 and

Nf = 6 data.

125
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S-parameter SM subtraction
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If MV 0 > 2MP , then the integral can be split to get rid of the Heaviside
function:
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On the other hand, if MV 0  2MP , then the Heaviside function is identically
1, and we have
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As a function of x ⌘ M
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V 0, then, the SM subtraction is
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Sanity checks: the log term is always positive for x < 1/4, so that �SSM !
+1 as x ! 0. At x = 1/4, both expressions are equal to 11/72⇡ ⇡ 0.05. As
x ! 1, �SSM ! 0 as the infrared cuto↵ approaches infinity.

2
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Ordered vs. disordered at 10 flavors

• Internal analysis has revealed that frozen topological charge can explain the 
discrepancy between our two starts:

0 100 200 300 400
Q2

0.24

0.25

0.26

0.27

0.28
M

P

Q != 0 (calculated)
Q  = 0 (calculated)
M0+B Q2

extrapolated

Figure 1: Q2-dependence of the pseudo scalar meson mass for
mf = 0.025. The blue squares are results from different non-zero
topological sectors, while the red diamond is the result from the or-
dered, Q = 0, ensemble. The extrapolation does not include the Q = 0

point.

4

• Current plan is to measure topological susceptibility (slope of the Q-
dependence) and correct our results

(plot from Meifeng Lin)
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Scaling fit results, Nf=10

S
V

N
F

C
total

Nf = 10
0.0 0.5 1.0 1.5 2.0

0.1
0.2
0.5
1
2
5
10
20
50
100

g*

c2

4

Obs. mf � 0.010 mf � 0.015 mf � 0.020

�? 1.69(16) 1.10(17) 1.35(47)
[68% CI] [1.54,1.86] [0.95,1.27] [1.06,1.73]
[95% CI] [1.40,2.06] [0.82,1.46] [0.83,2.27]

CP 0.98(9) 1.44(21) 1.21(37)
CV 1.17(10) 1.70(25) 1.42(44)
CA 1.43(13) 2.14(32) 1.79(56)
CN 1.75(16) 2.53(37) 2.10(65)
CN? 2.23(25) 3.35(55) 2.87(92)
CFP 0.121(12) 0.190(28) 0.164(51)
CFV 0.165(15) 0.238(35) 0.195(60)
CFA 0.136(13) 0.192(28) 0.154(48)

�2/d.o.f. 69/31 14/23 3.1/15

TABLE I. Global fit results for the conformal hypothesis of
Eqs. (1) and (2), based on combined ordered/disordered data as
described in the text. The labels P, V,A,N,N? correspond to the
pseudoscalar, vector, axial-vector, nucleon and nucleon-prime,
respectively. Decay constants for channel X are denoted by FX.
Errors shown on all quantities are purely statistical, and ignore
correlations between observables. For �?, two-sided 68% and
95% confidence intervals are also shown. The mf � 0.010 fit
(left column) has significantly worse �2/d.o.f., possibly due to
the presence of finite-volume effects.

ipated for a theory with Nf at the edge of the conformal
window [25–27].

To better understand our fit results, we show in Fig. 2
scans over �2 as a function of �?, broken up for each indi-
vidual observable included in the mf � 0.015 fit. Several
of the observables show an individual minimum in �2 com-
patible with the global best-fit value �? ⇡ 1.10. The chiral
condensate (shown in red) has no clear minimum, but it
contributes very little to overall �2, so we omit it from the
global fits in Table I. The global fit with the condensate in-
cluded is not significantly different, but exhibits very strong
correlations between the parameters �?, AC and BC ; this
behavior is expected for �? near 1, for which the AC and
BC terms in Eq. (2) are nearly degenerate.

As is evident from Fig. 2, the distribution of �2/d.o.f.
as a function of �? is not symmetric about the minimum.
We estimate a two-sided 68% (95%) confidence interval
on �? directly, varying by ��2 = 1 (��2 = 4) about the
minimum of the �2 contour shown in Fig. 2. Results for
each mass range are shown in Table I. In all cases we find
�? & 0.8 at two sigma.

A similar plot using our Nf = 2 results is shown for
comparison. As expected the Nf = 2 theory shows gen-
erally very poor power-law fits for any �? < 2, with the
exception of the pseudoscalar mass (green, dashed), which
scales as M2

P ⇠ m in accordance with chiral perturbation
theory.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
0.0

0.1

0.2

0.3

0.4

0.5

m

M
P
,V
,A

FIG. 3. Simulation results for the pseudoscalar mass (circles),
vector mass (squares), and axial-vector mass (triangles). Error
bars on the points are estimated using the combination method
described in the text. Two fit types are compared: linear MV ⇠
aV + bV m (red), and power law MV ⇠ m1/2 (blue). The power-
law fits correspond to a mass-deformed conformal theory with
�? = 1. Only observable values with mf � 0.015 (filled sym-
bols) are used in the fits.

Chirally Broken Hypothesis Despite the quality of fits
obtained under the infrared-conformal hypothesis, it re-
mains possible that the Nf = 10 theory is chirally broken.
A rigorous test of this possibility would involve chiral per-
turbation theory to extrapolate to m = 0. But as discussed
in the context of Fig. 1, we do not expect this expansion
to be convergent for mf � 0.015. We have nevertheless
attempted to fit our Nf = 10 results using NLO chiral per-
turbation theory, as done previously for Nf = 2 [1] and
Nf = 6 [28], finding (at Nf = 10) generally large values
of �2/d.o.f. and best-fit values pointing to a poorly conver-
gent expansion. We omit the details of these fits here, but
will present them in a future work.

An alternative, crude approach is to use the extrapola-
tion formula MP ⇠ bP m1/2 for the pseudoscalar mass,
and the linear expression MX ⇠ aX + bXm for the other
masses and decay constants. In Fig. 3, we compare fits of
this type for the vector and axial-vector masses to mass-
deformed conformal fits with fixed �? = 1, a value within
the errors of our global conformal fit. Within the range of
fermion masses considered, we cannot clearly distinguish
this simple linear dependence from the power-law behavior
of the mass-deformed conformal fits based on our current
results. We also show fit results for the pseudoscalar mass;
under either the conformal or chirally broken hypothesis,
this state scales as MP ⇠ m1/2, so only a single fit is
shown.

Discussion We have presented here the first non-
perturbative calculation of the spectrum for an SU(3)
gauge theory with Nf = 10 light fermions in the fun-

(shown for mf>=0.015
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Mass deformation

↵(µ)

µ

↵?

⇤ = a�1M 0

m(µ)

µ

⇤ = a�1

M 0

M 0

m0(⇤)

4) Bound-state masses are set by M, as in QCD-like theory.  
Three major differences here:

- No Goldstones - PS state scales like everything else.
- M is controlled by m:
- Expansion in am, as opposed to                         for χPT

M ⇠ m1/(1+�?)

aM2
⇡/(4⇡F⇡)

2
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