Thermodynamic Lattice Study for Preconformal Dynamics in Strongly Flavored QCD-Like Theory

Kohtaroh Miura^A, M. Lombardo^A E. Pallante^B, A. Deuzeman^C, and T. Silva^B

Laboratori Nazionali di Frascati - INFN^A Rijksuniversiteit Groningen^B University of Bern^C

Talk at KMI-SCGT, Nagoya Univ. Dec. 04, 2012

Reference

K. Miura, M. P. Lombardo and E. Pallante, Phys. Lett. B 710 (2012) 676.

K. Miura, M. P. Lombardo and E. Pallante, PoS Lattice 2011, arXiv:1111.1098 [hep-lat].

Kohtaroh Miura^A, M. Lombardo^A E. Pallante^B, A. Deuzeman^C, and T. S. Thermodynamic Lattice Study for Preconformal Dynamics in Strongly Flav

Results Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works Emergence of IR-Conformality in Gauge Theory Motivation

- A 🖻 🕨

QCD: Negative Beta-Func.

Kohtaroh Miura^A, M. Lombardo^A E. Pallante^B, A. Deuzeman^C, and T. S. Thermodynamic Lattice Study for Preconformal Dynamics in Strongly Flav

Results Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works Emergence of IR-Conformality in Gauge Theory Motivation

Loss of Asymptotic Freedom at Large N_f

Kohtaroh Miura^A, M. Lombardo^A E. Pallante^B, A. Deuzeman^C, and T. 5 Thermodynamic Lattice Study for Preconformal Dynamics in Strongly Flav

Results Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works Emergence of IR-Conformality in Gauge Theory Motivation

Emergence of Conformality in Perturbation

Results Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works

Four-Loop Example

Emergence of IR-Conformality in Gauge Theory Motivation

-

Results Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works Emergence of IR-Conformality in Gauge Theory Motivation

< ロ > < 同 > < 回 > < 回 >

- The emergence of IRFP Conformality due to the Non-Perturbative Gauge Interaction leads to a new class of a gauge theory different from both QCD and QED. (Lattice Reviews: Pallante, PoS LAT2009; Del Debbio, PoS LAT2010; Neil, PoS Lat2011).
- The IRFP (pre-)conformal dynamics plays an essential role in a technicolor model to implement a mass of standard model particles with avoiding too much FCNC (Review: Yamawaki ('96), Sannino ('06), Chivukula ('12)).
- The FRG method (Braun-Gies '06-11) and the Gauge/Gravity model (Kiritsis et.al.('08 '12), Kajantie et.al. ('09 '12), *c.f.* Panero ('09)) indicates that a cold conformal phase and a hot QGP phase is continuously connected at large N_f. In other words, the vanishing of the thermal chiral transition with increasing N_f indicates the onset of the conformal phase.
- Partly motivated by recent works of Shuryak ('12), the vanishing of the chiral dynamics is also elucidated by introducing the notion of a thermal critical coupling, whose approach to the IRFP coupling indicates the emergence of the conformal phase.

Results Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works Emergence of IR-Conformality in Gauge Theory Motivation

(D) (A) (A) (A)

- The emergence of IRFP Conformality due to the Non-Perturbative Gauge Interaction leads to a new class of a gauge theory different from both QCD and QED. (Lattice Reviews: Pallante, PoS LAT2009; Del Debbio, PoS LAT2010; Neil, PoS Lat2011).
- The IRFP (pre-)conformal dynamics plays an essential role in a technicolor model to implement a mass of standard model particles with avoiding too much FCNC (Review: Yamawaki ('96), Sannino ('06), Chivukula ('12)).
- The FRG method (Braun-Gies '06-11) and the Gauge/Gravity model (Kiritsis et.al.('08 '12), Kajantie et.al. ('09 '12), *c.f.* Panero ('09)) indicates that a cold conformal phase and a hot QGP phase is continuously connected at large N_f. In other words, the vanishing of the thermal chiral transition with increasing N_f indicates the onset of the conformal phase.
- Partly motivated by recent works of Shuryak ('12), the vanishing of the chiral dynamics is also elucidated by introducing the notion of a thermal critical coupling, whose approach to the IRFP coupling indicates the emergence of the conformal phase.

Results Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works Emergence of IR-Conformality in Gauge Theory Motivation

(D) (A) (A) (A)

- The emergence of IRFP Conformality due to the Non-Perturbative Gauge Interaction leads to a new class of a gauge theory different from both QCD and QED. (Lattice Reviews: Pallante, PoS LAT2009; Del Debbio, PoS LAT2010; Neil, PoS Lat2011).
- The IRFP (pre-)conformal dynamics plays an essential role in a technicolor model to implement a mass of standard model particles with avoiding too much FCNC (Review: Yamawaki ('96), Sannino ('06), Chivukula ('12)).
- The FRG method (Braun-Gies '06-11) and the Gauge/Gravity model (Kiritsis et.al.('08 '12), Kajantie et.al. ('09 '12), *c.f.* Panero ('09)) indicates that a cold conformal phase and a hot QGP phase is continuously connected at large N_f . In other words, the vanishing of the thermal chiral transition with increasing N_f indicates the onset of the conformal phase.
- Partly motivated by recent works of Shuryak ('12), the vanishing of the chiral dynamics is also elucidated by introducing the notion of a thermal critical coupling, whose approach to the IRFP coupling indicates the emergence of the conformal phase.

Results Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works Emergence of IR-Conformality in Gauge Theory Motivation

・ロト ・ 同ト ・ ヨト ・ ヨト

- The emergence of IRFP Conformality due to the Non-Perturbative Gauge Interaction leads to a new class of a gauge theory different from both QCD and QED. (Lattice Reviews: Pallante, PoS LAT2009; Del Debbio, PoS LAT2010; Neil, PoS Lat2011).
- The IRFP (pre-)conformal dynamics plays an essential role in a technicolor model to implement a mass of standard model particles with avoiding too much FCNC (Review: Yamawaki ('96), Sannino ('06), Chivukula ('12)).
- The FRG method (Braun-Gies '06-11) and the Gauge/Gravity model (Kiritsis et.al.('08 '12), Kajantie et.al. ('09 '12), *c.f.* Panero ('09)) indicates that a cold conformal phase and a hot QGP phase is continuously connected at large N_f . In other words, the vanishing of the thermal chiral transition with increasing N_f indicates the onset of the conformal phase.
- Partly motivated by recent works of Shuryak ('12), the vanishing of the chiral dynamics is also elucidated by introducing the notion of a thermal critical coupling, whose approach to the IRFP coupling indicates the emergence of the conformal phase.

Results Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works

Table of Contents

Emergence of IR-Conformality in Gauge Theory Motivation

1 Introduction

- Emergence of IR-Conformality in Gauge Theory
- Motivation

2 Results

- Measurements and Lattice Outputs
- N_f^{*} from Vanishing Thermal step scalings
- N_f^* from Thermal Critical Coupling $g_{\mathrm{T}}^{\mathrm{c}}$
- N_f^* from Vanishing Critical Temperature T_c

3 Further Discussion: Two-Loop Asymptotics Scaling Analyses

Summary and Future Works

Table of Contents

Measurements and Lattice Outputs

- $f_{f_{\star}}^{*}$ from Vanishing Thermal step scalings
- $J_{f_{c}}^{*}$ from Thermal Critical Coupling g_{T}^{C}
- $N_{f}^{\bar{l}_{*}}$ from Vanishing Critical Temperature T_{c}

Introduction

- Emergence of IR-Conformality in Gauge Theory
- Motivation

2 Results

- Measurements and Lattice Outputs
- N_f^{*} from Vanishing Thermal step scalings
- N_f^* from Thermal Critical Coupling $g_{\mathrm{T}}^{\mathrm{c}}$
- N_f^* from Vanishing Critical Temperature T_c

3 Further Discussion: Two-Loop Asymptotics Scaling Analyses

Summary and Future Works

Results

Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works

Measurements and Lattice Outputs

- l^{*}_f from Vanishing Thermal step scalings
- I_{e}^{*} from Thermal Critical Coupling g_{e}
- $N_{\mathcal{L}}^{\mathbf{k}_{\mathbf{k}}}$ from Vanishing Critical Temperature T_{C}

Lattice Critical Coupling $\beta_L^{\ c}$

In this example ($N_f = 6$, ma = 0.02, $24^3 \times 8$), we estimate the pseudo critical coupling to be $\beta_L^c = 5.20 \pm 0.05$ from the peak of chiral susceptibility χ_σ and the drastic increase of the susceptibility ratio $R_\pi \equiv \chi_\sigma / \chi_\pi$.

Lattice Critical Coupling $\beta_{\rm T}^{\rm c}$

Measurements and Lattice Outputs

- from Vanishing Thermal step scalings
- from Thermal Critical Coupling g_{T}^{C} from Vanishing Critical Temperature T_{C}

Table: Summary of $\beta_L^{\ c} = 10/(g_L^{\ c})^2$. The entries with * are the update for our previous results (KM,Lombardo,Pallante 2011). The entries with \dagger have been quoted from the previous studies on $N_f = 8$ (Deuzeman, Lombardo, Pallante, 2008). We have used ma = 0.02 for all finite N_f .

$N_f \setminus N_t$	4	6	8	12
0	7.35 ± 0.05	$7.97^*\pm0.07$	8.26 ± 0.06	—
4	5.65 ± 0.05	$6.00^{\ast}\pm0.05$	6.15 ± 0.15	_
6	$4.675^{*}\pm 0.05$	$5.025^*\pm0.05$	$5.20^{\ast}\pm0.05$	$5.55^*\pm0.1$
8	_	$4.1125^\dagger\pm0.0125$	$\textbf{4.275} \pm \textbf{0.05}$	$4.34^\dagger\pm0.04$

Thermal Step Scaling

The chiral transition temperature should be unique at fixed N_f :

$$T_{c} = \left[N_{t} a(g_{\mathrm{L}}^{\mathrm{c}})\right]^{-1} = \left[N_{t}' a(g_{\mathrm{L}}^{\mathrm{c}'})\right]^{-1}, \qquad (1)$$

Measurements and Lattice Outputs N_{c}^{*} from Vanishing Thermal step scalings

from Vanishing Critical Temperature T_c

The set $\{g_L^c\}$ satisfying this equation gives a non-perturbative running coupling constructed by using the lattice measurements. Then, the vanishing (smaller) step-scaling

$$\Delta g_{\rm L}^{\rm c} = g_{\rm L}^{\rm c} - g_{\rm L}^{\rm c\prime} , \qquad (2)$$

at large N_f indicates a vanishing (slow) running coupling, or equivalently, (pre-)conformal dynamics.

Measurements and Lattice Outputs $N_{f_*}^*$ from Vanishing Thermal step scalings

 $N_c^{f_*}$ from Vanishing Critical Temperature T_c

Thermal step scalings in MY Diagram

Figure: $T_c = [N_t a(g_L^c)]^{-1} = [N'_t a(g_L^{c'})]^{-1}$ should holds at each N_f .

- By using $N_f = 6, 8$ data, $N_t = 6$ and 12 lines get into the intersection at $N_f^* \sim 11.1 \pm 1.6$.
- We also observe the stronger fermion screenings at larger N_f (c.f. Kogut et al. ('85)).

Measurements and Lattice Outputs N_{f}^{*} from Vanishing Thermal step scalings N_{*}^{*} from Thermal Critical Coupling σ_{*}^{C}

 $V_{c}^{t_{*}}$ from Vanishing Critical Temperature T_{c}

Thermal step scalings in MY Diagram

Figure: $T_c = [N_t a(g_L^c)]^{-1} = [N'_t a(g_L^{c'})]^{-1}$ should holds at each N_f .

• By using $N_f = 6,8$ data, $N_t = 6$ and 12 lines get into the intersection at $N_f^* \sim 11.1 \pm 1.6$.

 We also observe the stronger fermion screenings at larger N_f (c.f. Kogut et al. ('85)).

Measurements and Lattice Outputs N_{f}^* from Vanishing Thermal step scalings N_{f}^* from Thermal Critical Coupling g_{rec}^{-C}

 $V_{\mathcal{L}}^{k}$ from Vanishing Critical Temperature $T_{\mathcal{L}}$

Thermal step scalings in MY Diagram

Figure: $T_c = [N_t a(g_L^c)]^{-1} = [N'_t a(g_L^{c'})]^{-1}$ should holds at each N_f .

- By using $N_f = 6,8$ data, $N_t = 6$ and 12 lines get into the intersection at $N_f^* \sim 11.1 \pm 1.6$.
- We also observe the stronger fermion screenings at larger N_f (*c.f.* Kogut et al. ('85)).

Thermal Critical Coupling $g_{\rm T}^{\ \rm c}$

• We consider the renormalization flow from T_c to $a^{-1}(g_{\rm L}^{\ c} = \sqrt{10/\beta_{\rm L}^{\ c}})$ with the two-loop approximation:

$$\log\left[\frac{T_c}{a^{-1}(g_c)}\right] = \int_{g_{\rm L}^{\rm c}}^{g_{\rm T}^{\rm c}} \frac{dg}{B_{2L}(g)} , \quad T_c = \left[N_t \ a(g_{\rm L}^{\rm c})\right]^{-1} . \tag{3}$$

Measurements and Lattice Outputs N_{ℓ}^{*} from Vanishing Thermal step scalings N_{ℓ}^{*} from Thermal Critical Coupling g_{Γ}^{*C} N_{ℓ}^{*} from Vanishing Critical Temperature T_{c}

• The coupling $g_{\rm T}^{\ \rm c}$ gives a typical interaction strength at the scale $\mu = T_c$.

Thermal Critical Coupling $g_{\rm T}^{\ \rm c}$

• We consider the renormalization flow from T_c to $a^{-1}(g_{\rm L}^{\ c} = \sqrt{10/\beta_{\rm L}^{\ c}})$ with the two-loop approximation:

$$\log\left[\frac{T_c}{a^{-1}(g_c)}\right] = \int_{g_{\rm L}^{\rm c}}^{g_{\rm T}^{\rm c}} \frac{dg}{B_{2L}(g)} , \quad T_c = \left[N_t \ a(g_{\rm L}^{\rm c})\right]^{-1} . \tag{3}$$

Measurements and Lattice Outputs M_{ℓ}^* from Vanishing Thermal step scalings M_{ℓ}^* from Thermal Critical Coupling g_T^{-C} M_{ℓ}^* from Vanishing Critical Temperature T_C

• The coupling $g_T^{\ c}$ gives a typical interaction strength at the scale $\mu = T_c$.

Measurements and Lattice Outputs V_{ℓ}^* from Vanishing Thermal step scalings V_{ℓ}^* from Thermal Critical Coupling g_T^{C} V_{ℓ}^* from Vanishing Critical Temperature T_C

$g_{\mathrm{T}}^{\ \mathrm{c}}$ VS $g_{c,\mathrm{SD}}$ and $g_{\mathrm{IRFP},4\mathrm{I}}$

• Thermal critical coupling $g_{\rm T}^{\rm c}$ meets the zero temperature critical couplings estimated by the two-loop Schwinger Dyson equation (Appelquist et al, ('99)) or the IRFP coupling in the four-loop beta-function (Ryttov-Shrock ('12)) around $N_f^* \sim 12.5 \pm 0.7$.

• Larger N_f gives more strongly interacting QGP! (c.f. Shuryak et al. ('12)).

Measurements and Lattice Outputs V_r^* from Vanishing Thermal step scalings V_r^* from Thermal Critical Coupling g_T^{cc} V_r^* from Vanishing Critical Temperature T_c

$g_{\mathrm{T}}^{\ \mathrm{c}}$ VS $g_{c,\mathrm{SD}}$ and $g_{\mathrm{IRFP},4\mathrm{I}}$

• Thermal critical coupling $g_{\rm T}^{\rm c}$ meets the zero temperature critical couplings estimated by the two-loop Schwinger Dyson equation (Appelquist et al, ('99)) or the IRFP coupling in the four-loop beta-function (Ryttov-Shrock ('12)) around $N_f^* \sim 12.5 \pm 0.7$.

• Larger N_f gives more strongly interacting QGP! (c.f. Shuryak et al. ('12)).

Measurements and Lattice Outputs

- I^{*} from Vanishing Thermal step scalings
- $V_{\mathcal{L}}^{*}$ from Thermal Critical Coupling g_{rr}
- N_{f}^{*} from Vanishing Critical Temperature T_{c}

UV Reference Scale *M*

• Consider the two-loop renormalization flow which connects the scale T_c and some other scale M

$$og\left[\frac{T_c}{M(g_{\rm L}^{\rm ref})}\right] = \int_{\exists g_{\rm L}^{\rm ref}}^{g_{\rm T}^{\rm c}} \frac{dg}{B_{2L}(g)} .$$
(4)

• We extract the reference coupling $g_{\rm L}^{\rm ref}$ from $u_0 \sim 0.8$ line with N_f independently, which results in $a^{-1}(g_{\rm L}^{\rm c}) \gtrsim M(g_{\rm L}^{\rm ref}) \gg T_c$ for all N_f .

Kohtaroh Miura^A, M. Lombardo^A E. Pallante^B, A. Deuzeman^C, and T. S. Thermodynamic Lattice Study for Preconformal Dynamics in Strongly Flav

Measurements and Lattice Outputs

- I^{*} from Vanishing Thermal step scalings
- V_{ϵ}^{*} from Thermal Critical Coupling g_{rr}
- N_{f}^{*} from Vanishing Critical Temperature T_{c}

UV Reference Scale *M*

• Consider the two-loop renormalization flow which connects the scale T_c and some other scale M

$$\log\left[\frac{T_c}{M(g_{\rm L}^{\rm ref})}\right] = \int_{\exists g_{\rm L}^{\rm ref}}^{g_{\rm T}^{\rm c}} \frac{dg}{B_{2L}(g)} . \tag{4}$$

• We extract the reference coupling $g_{\rm L}^{\rm ref}$ from $u_0 \sim 0.8$ line with N_f independently, which results in $a^{-1}(g_{\rm L}^{\rm c}) \gtrsim M(g_{\rm L}^{\rm ref}) \gg T_c$ for all N_f .

 Introduction
 Measurements and Lattice Outputs

 Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works
 $M_{f_c}^{saurements}$ from Vanishing Thermal step scalings $M_{f_c}^{s}$ from Vanishing Critical Coupling $g_{\tau_1}^{-1}$ $M_{f_c}^{s}$ from Vanishing Critical Temperature τ_c
 T_c/M , with a UV scale M: Preliminary (c.f. Miura et.al. ('12))

 $\frac{T_c}{M(g_{\rm L}^{\rm ref})} = \exp\left[\int_{g_{\rm L}^{\rm ref}}^{g_{\rm T}^{\rm c}} \frac{dg}{B_{2L}(g)}\right] \sim \mathcal{K}(N_f^* - N_f)^{-(2b_0^2/b_1)(N_f^*)} .(\text{c.f. Braun-Gies,'11})$ (5)

 $N_f^* = 10.4 \pm 1.2$ for $u_0 = 0.79 - 0.81$.

 Introduction
 Measurements and Lattice Outputs

 Further Discussion: Two-Loop Asymptotics Scaling Analyses Summary and Future Works
 $M_{f_c}^{saurements}$ from Vanishing Thermal step scalings $M_{f_c}^{s}$ from Vanishing Critical Coupling $g_{\tau_1}^{-1}$ $M_{f_c}^{s}$ from Vanishing Critical Temperature τ_c
 T_c/M , with a UV scale M: Preliminary (c.f. Miura et.al. ('12))

 $\frac{T_c}{M(g_{\rm L}^{\rm ref})} = \exp\left[\int_{g_{\rm L}^{\rm ref}}^{g_{\rm T}^{\rm c}} \frac{dg}{B_{2L}(g)}\right] \sim \mathcal{K}(N_f^* - N_f)^{-(2b_0^2/b_1)(N_f^*)} .(\text{c.f. Braun-Gies,'11})$ (5)

 $N_f^* = 10.4 \pm 1.2$ for $u_0 = 0.79 - 0.81$.

- Aeasurements and Lattice Outputs J_{ϵ}^{*} from Vanishing Thermal step scalings
- $V_{\mathcal{L}}^{k}$ from Thermal Critical Coupling g_{d}
- N_{f}^{*} from Vanishing Critical Temperature T_{c}

u_0 dependences of N_f^* Preliminary (c.f. Miura et.al. ('12))

Table of Contents

Introduction

- Emergence of IR-Conformality in Gauge Theory
- Motivation

2 Results

- Measurements and Lattice Outputs
- N^{*}_f from Vanishing Thermal step scalings
- N_f^* from Thermal Critical Coupling g_T^{c}
- N_f^* from Vanishing Critical Temperature T_c

3 Further Discussion: Two-Loop Asymptotics Scaling Analyses

Summary and Future Works

Two-Loop Asymptotic Scaling at $N_f = 6$

 $T_c/\Lambda_{\rm E}$ is almost N_t independent!! (*c.f.* Gupta ('06)).

Two-Loop Asymptotic Scaling at $N_f = 8$

- It is difficult to make three data being consistent.
- ma = 0.02 effects? Far from continuum limit? Or something interesting?

Table of Contents

Introduction

- Emergence of IR-Conformality in Gauge Theory
- Motivation

2 Results

- Measurements and Lattice Outputs
- N^{*}_f from Vanishing Thermal step scalings
- N_f^* from Thermal Critical Coupling g_T^{c}
- N_f^* from Vanishing Critical Temperature T_c

3 Further Discussion: Two-Loop Asymptotics Scaling Analyses

Summary and Future Works

Summary

Thermodynamic Lattice Study for QCD-like Theory with IRFP Conformality (ma = 0.02)

1	11.1 ± 1.6	(the vanishing thermal scaling of $eta_{ m L}{}^{ m c}$) $,$	
$N_f^* \sim \langle$	12.5 ± 0.7	(the approach of ${g_{ m T}}^{ m c}$ to $g_{c,{ m SD}}$ and $g_{{ m IRFP},{ m 4l}})$,	(6)
	10.4 ± 1.2	(the vanishing of T_c/M for $u_0=0.79-0.81)$.	

Future Works

- Thermodynamic and chiral limits, in particular at $N_f = 8$.
- To set a scale a^{-1} and complete $T N_f$ Phase Diagram: The potential measurement is on progress.
- Critical behavior near the IR-Fixed Pt.
- Gauge/Gravity Duality as a theoretical guide.

Thank you for your attention!