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  similar to talk at Boulder USQCD BSM meeting: 
  lattice overview mixed with applications

  revised for SCGT 2012 workshop 

  apologies for incomplete references in a huge field
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Updated combined SM Higgs exclusion 

� ���	������
���
����������������
��-lepton analysis with others as before 
 
 
 
 
 
 
 
 
 

 
� Expected exclusion with this dataset from 110-582 GeV 

� Observed exclusion from 110-122.6 GeV and 129.7-558 GeV 
� 111.7-121.8 GeV and 130.7-523 GeV excluded at 99% CL 

� Region around 126 GeV cannot be excluded 
9th July 2012 34 Richard Hawkings 
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July 4th, 2012:

 independence is lost
 everything changed
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July 4th, 2012:

 independence is lost
 everything changed

brings focus to the next USQCD BSM White Paper
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� Observed exclusion from 110-122.6 GeV and 129.7-558 GeV 
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July 4th, 2012:

 independence is lost
 everything changed

brings focus to the next USQCD BSM White Paper

we can run but cannot hide



Conventional thinking before LHC was turned on:

•  New physics from strongly interacting particles will be found first 
    gluinos, s-quarks, technicolor, ...

•  Higgs is more difficult to find, particularly a light Higgs

•  H→       mode was thought to be very difficult and would take a long time to getγγ
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•   A light Higgs-like state was found first!  (Higgs impostor?)

•   The best signal is the       mode!γγ
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•  New physics from strongly interacting particles will be found first 
    gluinos, s-quarks, technicolor, ...

•  Higgs is more difficult to find, particularly a light Higgs

•  H→       mode was thought to be very difficult and would take a long time to get

mH ~ 126 GeV is compatible with the SM and also 
with the SUSY extensions of the SM

mH ~126 GeV is what you expect from a direct interpretation
of EW precision tests: no fancy conspiracy with new physics 
to fake a light Higgs while the real one is heavy 
(in fact no “conspirators” have been spotted: no new physics)

Strumia

Is it really the Higgs boson?

Spin 0?
Couplings?

The next challenge!

A malicious choice! Wicked choice from Mother Nature: borderline for SUSY and SM (vacuum instability)

γγ

•  So far no new particles (SUSY or other) have been found!

•   A light Higgs-like state was found first!  (Higgs impostor?)

•   The best signal is the       mode!γγ



Is this the Higgs boson?

spin 0?   parity?       (begins to look like 0++)                                

H➞                           (s=0 or 2 in s-wave)

H➞bb and H➞         (favors s=0 in s-wave)

H➞ZZ*➞4 leptons, or WW*➞4 leptons  (will nail down spin)

γγ

ττ
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Is this the Higgs boson?

spin 0?   parity?       (begins to look like 0++)                                

H➞                           (s=0 or 2 in s-wave)

H➞bb and H➞         (favors s=0 in s-wave)

H➞ZZ*➞4 leptons, or WW*➞4 leptons  (will nail down spin)

How do we plan lattice BSM with new Higgs-like particle? 

γγ

ττ

branching ratios?

some      excess and      deficit  (more and more SM-like?)γγ ττ
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Arkani-Hamed ‘12

we should ask: 
isn’t it unlawful to bury alive?

The walking dead was put on the tombstone 
already in 2011 !  

why is SUSY not on the Tombstone? 



   What this talk is not: 

•  not a general review of work from lattice BSM groups

•  will be broad range of talks from lattice groups in the workshop today

•  not a promotion for the sextet model (spoiler alert: sexte model will often discussed)

•  no SUSY       (there is significant lattice N=4 SUSY progress)
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•  not a general review of work from lattice BSM groups

•  will be broad range of talks from lattice groups in the workshop today

•  not a promotion for the sextet model (spoiler alert: sexte model will often discussed)

•  no SUSY       (there is significant lattice N=4 SUSY progress)

    What this talk is: 

   mainly for off-lattice theorists whose help is needed to put together new plans,
   like the USQCD BSM White Paper for the next five years

•  introduction to challenges of lattice methods commonly faced in lattice BSM work

•  lattice specific: cut-off, finite volume, fermion mass

•  navigating in a very large theory space of SCGT: fermion reps and the conformal  
    window tuning, running  coupling, dilaton, χSB, spectrum, etc.

•  is this theory space large enough?  

•  caveat: very large field with large set of difficult problems, inevitably sampled with 
    bias and limited in scope 



Outline
  
how large Theory Space is needed?

the sextet model as a simple example 

light scalar and dilaton mechanism close to CW

chiral condensates and spectroscopy 

running (walking) coupling   

light scalar spectroscopy of 0++ states

Summary and outlook
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Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2

SCGT theory space and conformal window 
color group, flavor, and fermion representation 
(is the Higgs impostor hiding close to CW?)
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   For some: extensions of SCGT theory space (incomplete): 

•  Gauge-Higgs unification  (Hosotani and new Japanese lattice collaboration with Hetrick from USCQD)
    5-dimensional gauge theory with compactification
    3 european groups are doing it:  Knechtli et al., Del Debbio et al, de Forcrand et al.

•   little Higgs (builds on Goldstone modes)   fine-tuned?        
     What is the UV completion?  - lattice work, like symmetry breaking pattern in SU(5)?
     Does it fit into original theory space?  - it could, depending on choice of UV completion

•   Randall-Sundrum,   radion?       holographic Higgs? (talks at workshop)
    no lattice work?

•   Top color  (talks at workshop)   - no lattice work yet

•   Composite gauge theories     - abandoned?
     early work Harari, Fritzsch, others ...

•   This talk remains focused on SCGT theory space
     close to the conformal window 
     keeps our hands full

 BSM white paper strategies?
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energy scales, which could help in building the extended technicolor sector. There are estimates
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theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].
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The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2



            - most projects try to stay close to conformal window  - some parametric tuning?

            - when is close “close enough”?

            - role of walking coupling?

            - separation of two scales to facilitate dilaton mechanism?

            - light scalar with or without dilaton?

            - there are candidate models with limited results

            - very difficult issues on-lattice and off-lattice

            - let us try first the simplest model: Nf=2 sextet fermion rep

         some key issues in SCGT theory space:



Outline
  
how large Theory Space is needed?

the sextet model as a simple example 

light scalar and dilaton mechanism close to CW

chiral condensates and spectroscopy 

running (walking) coupling   

light scalar spectroscopy of 0++ states

Summary and outlook
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walking coupling 
separates two scales

target of lattice BSM

when chiral symmetry breaking 
turns conformal FP into walking

running coupling

QCD-like
far from conformal window

χSB

Λ~TeV
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EW phase transition in sextet model  -  early universe
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Third massive fermion flavor (electroweak singlet) dark matter?

finite temperature 
EW phase transition?

SU(3) gauge theory with sextet fermions

Figure 4: The chiral susceptibility on Nt = 8 and Nt = 12 lattices from [6] and [7] respectively.

to a given Nt = 1/(aT ), � is used to change the temperature and the continuum limit is achieved
via Nt ⇥•. A thermal phase transition corresponds to a critical �c(Nt) coupling for each Nt which
for large Nt scales according to the continuum � -function; in particular �c ⇥ •. A bulk phase
transition on the other hand is characterized by critical �c(Nt) couplings which do not scale and for
large Nt approach a fixed value.

As always with any thermodynamics study finite volume effects needs to be under control and
the quark mass needs to be small enough. Since staggered fermions are used the lattice spacing
also needs to be small enough in order to avoid dangerous taste violation effects especially because
the low energy dynamics is very sensitive to the number of massless flavors.

The critical coupling �c was determined in [5] from the peak of the chiral susceptibility on
Nt = 4 lattices for two values of the quark mass. The location of the peaks appear to be mass
independent and is around �c � 6.3, see left panel of figure 3. The Nt = 6 result at the same two
quark masses also from [5] is shown on the right panel of figure 3. The critical coupling moved
to �c � 6.6. On even finer lattices [6], at Nt = 8, the critical coupling moved further, to around
�c = 6.7 with additional small quark masses added, see left panel of figure 4. Again the quark
mass dependence is quite small. Finally the Nt = 12 lattices are preliminary [7] at the moment but
seem to indicate further increase in �c, see the right panel of figure 4. If indeed �c scales with Nt

correctly the located phase transitions would correspond to a continuum phase transition indicating
chirally broken symmetry at zero temperature.

A priori it is not clear how large Nt needs to be in order to be in the scaling regime. Most
importantly the thin link action suffers from possible large taste violation. Unfortunately, these
effects are not quantified yet. One could in principle reduce them by using smeared actions. In any
case a continuum extrapolation is necessary.
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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glueball with the same quantum number. In dynamical sex-
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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µ⌅, a = 1, 2, ...8. We will assume that the
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mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].
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with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga
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perturbative parts of the composite gauge operator Ga
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
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µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.
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under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
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, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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tet simulations, these two types of state will mix with an ob-
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This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
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is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
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mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.
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ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
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defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
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aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
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µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3
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with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
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scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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Although �(µ) and Ga
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less fermions are in the two-index symmetric representation of
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µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga
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infrared part will be considered in what follows.
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mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].
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with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga
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µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.
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tice methods can explore the implications of the PCDC relation
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)
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is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
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Staggered fermions present an additional complication from
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contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
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as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
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tice methods can explore the implications of the PCDC relation
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grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
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µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get
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⇧e�ipx . (6)
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The lattice implementation of the subtraction procedure will be
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
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µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
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µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
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tensor, �
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
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defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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Although �(µ) and Ga
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scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.

8

0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

 m

 e
ffe

ct
iv

e 
m

as
s 

  M
co

n
f0

m fit range:  0.003 − 0.010

input from volumes  243! 48, 323! 64 

Mcon
f0  = M0 + c1 m      �=3.2  

 f0 meson mass requires missing disconnected part

M0=  0.1555 " 0.0070

c1=  25.3 " 1.3

�2/dof= 1.21

 effective mass  Mcon
f0     from 0++ connected correlator  

Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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Although �(µ) and Ga
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scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
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µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element
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3
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with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get
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⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �
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, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
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particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
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lations can explore the physical properties of the scalar particle.
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the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Predictions for m⌃ close to the conformal window depend on
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Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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sextet fermion mass deformations of spectral properties are not
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critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
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light Higgs-like state could emerge as the pseudo-Goldstone
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important role of fπ
fσ

 in electroweak phenomenology

both scenarios expect light Higgs-like dilaton



It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].

Acknowledgments

This work was supported by the DOE under grant DE-
FG02-90ER40546, by the NSF under grants 0704171 and
0970137, by the EU Framework Programme 7 grant (FP7/2007-
2013)/ERC No 208740, and by the Deutsche Forschungsge-
meinschaft grant SFB-TR 55. The simulations were performed
using USQCD computational resources at Fermilab and JLab.
Further support was provided by the UCSD GPU cluster funded
by DOE ARRA Award ER40546. Some of the simulations used
allocations from the Extreme Science and Engineering Discov-
ery Environment (XSEDE), which is supported by National
Science Foundation grant number OCI-1053575. In addition,
some computational resources were used at the University of
Wuppertal, Germany. We are grateful to Kalman Szabo and
Sandor Katz for their code development building on Wuppertal
gpu technology [99]. KH wishes to thank the Institute for Theo-
retical Physics and the Albert Einstein Center for Fundamental
Physics at Bern University for their support.

9

Partially Conserved Dilatation Current (PCDC)

there are two different expectations on limit of right-hand side ratio when conformal window is approached:

1. dilaton mass parametrically vanishes when CW approached                                          Bai and Appelquist
    
                              where ChiSB is triggered

2. dilaton mass remains finite in the limit as measured in                  units       Yamawaki et al.                

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0
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a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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3
tr UP
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=
⇧

n

cn ·g2n
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2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
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+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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g(µ = Λ) = gc
mσ

fσ
→ 0

mσ

fσ
→ const

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
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µ(0)
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µ(0)
⌥
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|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
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⌃
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µ
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⌥
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|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
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µ⌅Gaµ⌅

⌥
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of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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⇥
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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important role of fπ
fσ

 in electroweak phenomenology

both scenarios expect light Higgs-like dilaton

but how light is light ? (126 GeV would do it)



It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0
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=
⇧2

36
⇧�
⇧

GG⌃lattice (11)
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].

Acknowledgments

This work was supported by the DOE under grant DE-
FG02-90ER40546, by the NSF under grants 0704171 and
0970137, by the EU Framework Programme 7 grant (FP7/2007-
2013)/ERC No 208740, and by the Deutsche Forschungsge-
meinschaft grant SFB-TR 55. The simulations were performed
using USQCD computational resources at Fermilab and JLab.
Further support was provided by the UCSD GPU cluster funded
by DOE ARRA Award ER40546. Some of the simulations used
allocations from the Extreme Science and Engineering Discov-
ery Environment (XSEDE), which is supported by National
Science Foundation grant number OCI-1053575. In addition,
some computational resources were used at the University of
Wuppertal, Germany. We are grateful to Kalman Szabo and
Sandor Katz for their code development building on Wuppertal
gpu technology [99]. KH wishes to thank the Institute for Theo-
retical Physics and the Albert Einstein Center for Fundamental
Physics at Bern University for their support.

9

Partially Conserved Dilatation Current (PCDC)

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
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formal parameter Nc
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critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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gauge-invariant operator of dimension 2 and therefore the or-
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data of the plaquette. The cn expansion coe�cents can be deter-
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of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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Predictions for m⌃ close to the conformal window depend on
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Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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g(µ = Λ) = gc
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trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
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light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
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and the sextet confining force with results on the string tension
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trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,
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Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0
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tr UP⌃
⇥
=
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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of the gluon condensate to f⌃ ratio when the conformal win-
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ish when the conformal limit is reached. The ⇤ scale is defined
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is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
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alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
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the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,
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Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0
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tr UP⌃
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=
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc
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side ratio of Eq. (10) remains finite in the limit and a residual
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It is important to note that there is no guarantee, even with
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alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga
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where b0 is the leading ⇥-function coe�cient. There is no
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the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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non-perturbative lattice gluon condensate?

from current correlators?

from gradient flow of GG composite operator?

there are two different expectations on limit of right-hand side ratio when conformal window is approached:

1. dilaton mass parametrically vanishes when CW approached                                          Bai and Appelquist
    
                              where ChiSB is triggered

2. dilaton mass remains finite in the limit as measured in                  units       Yamawaki et al.                

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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condensate,
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Eq. (7). There are two di↵erent expectations about the limit
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dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
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f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
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formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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one has to deal with the well-known renormalon issues. The
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It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
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sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
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questions. Plans include the determination of the S parameter
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It is easy to derive, like for example in [70], the dilaton ma-
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Eq. (10) is predicted to approach zero in the limit, so that the
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ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
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Eq. (7). There are two di↵erent expectations about the limit
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ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
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critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
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where b0 is the leading ⇥-function coe�cient. There is no
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coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook
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trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0
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tr UP⌃
⇥
=
⇧2

36
⇧�
⇧
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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as the continuum limit is approached in the limit of vanishing
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
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the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

It is easy to derive, like for example in [70], the dilaton ma-
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dow is approached. In one interpretation, the right-hand side of
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is reached [70]. In an alternate interpretation the right-hand
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dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
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mined to high order using stochastic perturbation theory [96].
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of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
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lations can explore the physical properties of the scalar particle.
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gauge-invariant operator of dimension 2 and therefore the or-
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the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0
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tr UP⌃
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=
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⇧�
⇧
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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trix element of the energy-momentum tensor trace using some
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Eq. (10) is predicted to approach zero in the limit, so that the
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f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,
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Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0
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a4 ⇧1 �

1
3

tr UP⌃
⇥
=
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⇧�
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is easy to derive, like for example in [70], the dilaton ma-
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Predictions for m⌃ close to the conformal window depend on
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Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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ish when the conformal limit is reached. The ⇤ scale is defined
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f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
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gauge-invariant operator of dimension 2 and therefore the or-
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the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
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one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
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It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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lations can explore the physical properties of the scalar particle.
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gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga
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quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
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lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is important to note that there is no guarantee, even with
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alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
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gauge-invariant operator of dimension 2 and therefore the or-
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gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Eq. (10) is predicted to approach zero in the limit, so that the
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ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
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the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Eq. (10) is predicted to approach zero in the limit, so that the
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formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc
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is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
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alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.
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coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,
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Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.
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densate can help to understand the consequences of the PCDC
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)
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Eq. (7). There are two di↵erent expectations about the limit
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dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
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⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

It is easy to derive, like for example in [70], the dilaton ma-
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particular definition of the subtraction scheme,
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current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2
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ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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as the continuum limit is approached in the limit of vanishing
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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non-perturbative lattice gluon condensate?

from current correlators?

from gradient flow of GG composite operator?
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Eq. (10) is predicted to approach zero in the limit, so that the
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ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,
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Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
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lations can explore the physical properties of the scalar particle.
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gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].

Acknowledgments

This work was supported by the DOE under grant DE-
FG02-90ER40546, by the NSF under grants 0704171 and
0970137, by the EU Framework Programme 7 grant (FP7/2007-
2013)/ERC No 208740, and by the Deutsche Forschungsge-
meinschaft grant SFB-TR 55. The simulations were performed
using USQCD computational resources at Fermilab and JLab.
Further support was provided by the UCSD GPU cluster funded
by DOE ARRA Award ER40546. Some of the simulations used
allocations from the Extreme Science and Engineering Discov-
ery Environment (XSEDE), which is supported by National
Science Foundation grant number OCI-1053575. In addition,
some computational resources were used at the University of
Wuppertal, Germany. We are grateful to Kalman Szabo and
Sandor Katz for their code development building on Wuppertal
gpu technology [99]. KH wishes to thank the Institute for Theo-
retical Physics and the Albert Einstein Center for Fundamental
Physics at Bern University for their support.

9

Partially Conserved Dilatation Current (PCDC)

It is easy to derive, like for example in [70], the dilaton ma-
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is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
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of the perturbative series from the high accuracy Monte Carlo
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coe�cients cn are expected to diverge in factorial order and
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of the non-perturbative gluon condensate in the sextet model
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We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
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light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
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gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
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It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook
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breaking in the limit of vanishing fermion mass. In contrast,
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onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
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ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
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tet lattice simulations was outlined to resolve these important
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formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].

Acknowledgments

This work was supported by the DOE under grant DE-
FG02-90ER40546, by the NSF under grants 0704171 and
0970137, by the EU Framework Programme 7 grant (FP7/2007-
2013)/ERC No 208740, and by the Deutsche Forschungsge-
meinschaft grant SFB-TR 55. The simulations were performed
using USQCD computational resources at Fermilab and JLab.
Further support was provided by the UCSD GPU cluster funded
by DOE ARRA Award ER40546. Some of the simulations used
allocations from the Extreme Science and Engineering Discov-
ery Environment (XSEDE), which is supported by National
Science Foundation grant number OCI-1053575. In addition,
some computational resources were used at the University of
Wuppertal, Germany. We are grateful to Kalman Szabo and
Sandor Katz for their code development building on Wuppertal
gpu technology [99]. KH wishes to thank the Institute for Theo-
retical Physics and the Albert Einstein Center for Fundamental
Physics at Bern University for their support.

9

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
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relation. Power divergences are severe in the calculation of the
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coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
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theory on the lattice [97].
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of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
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important role of fπ
fσ

 in electroweak phenomenology

both scenarios expect light Higgs-like dilaton
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- better lattice methods?

but how light is light ? (126 GeV would do it)

 
Are the SCGT models tunable for parametrically 
light dilaton state close to the CW?

- is Nf continuously tunable ?

- fermion mass term ?

- four-fermion operators ?
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Grinstein et al., Sannino et al., ...



mass tuning, like partially gauged (conformal) Technicolor?
Sannino, Dietrich, Luty, ...
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mass-dependent beta-function of sextet model
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- position of IRFP inside CW not tunable with m
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There are SCGT models close to CW: 
hunt for light 0++ scalar state ?

fine-tuning issues will depend on spectroscopy 
findings and EW corrections



BSM lattice tools to hunt for light 0++ scalar:

• establish chiSB or phase with chiral symmetry

• spectroscopy, confining force, with control of m     0 limit

• running coupling (walking?)

• light scalar? disconnected diagrams?

• control of cutoff, finite volume, and fermion mass limits
  - hard problems, studies remain limited
  - hard even in lattice QCD where we know the answers!
  - and we only have a fraction of lattice QCD resources



Outline
  
how large Theory Space is needed?

the sextet model as a simple example 

light scalar and dilaton mechanism close to CW

chiral condensates and spectroscopy 

running (walking) coupling   

light scalar spectroscopy of 0++ states

Summary and outlook



chiral symmetry breaking at m≠0 
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chiral condensate and its subtracted form

two independent determinations of the chiral condensate 
(partially cancelled UV divergences in subtracted form)
consistently non-vanishing in chiral limit 
all sextet results are treated as inf volume (only m=0.003 is truly extrapolated)
relying on  L·Mπ > 5 (less than one percent L correction)
spectral mode number density analysis more powerful 
(Giusti and Luscher, Boulder group, Patella ...)

Nf=2 SU(3) sextet chiral condensate
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Fig. 3. Dependence of the renormalized mode number on MR at mR ! 26 MeV and

L ! 2.5 fm. The curve shown is based on a representative ensemble of 71 gauge-field

configurations and required the lowest 80 eigenvalues of Dm

†Dm to be calculated for

each of these fields. Statistical errors are slightly larger than the jitter of the curve.

At the very low end of the spectrum, the curve shown in fig. 3 however clearly
deviates from its expected form in the continuum theory (shaded area in fig. 3) [5]. A
plausible explanation of the observed deviation is that chiral symmetry is not exactly
preserved in the Wilson theory and that the fine structure of the spectrum of the
Dirac operator near the threshold at MR = mR is consequently not protected from
perturbing lattice effects [21]. The deviation must in any case be a lattice artefact,
since the renormalized mode number is bound to converge to its continuum value
as the lattice spacing is decreased (cf. sect. 3).

In the following, we focus on the linear regime in fig. 3, where the mode number
is not expected to be particularly sensitive to discretisation errors. Moreover, since
the effort required for the numerical calculation of the low eigenvalues of Dm

†Dm is
not small, the mode number was normally computed using the method described in
sect. 5 and we shall, from now on, only discuss results obtained in this way.

6.2 Volume-dependence of the mode number

In the large-volume regime of the theory, ν(M,mq)/V is expected to be independent
of the lattice size up to exponentially small corrections (cf. sect. 4). The lattices we

14

0.01 0.1 1

[ (aΩ)
2
 - (am)

2
 ]

1/2

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

a
-4

 [
ν
(Ω

) 
- 

ν
0
]

64x24
3
 am

0
=-1.15

Figure 3. Mode number per unit volume for the set S1 (am0 = �1.15 on a 64 ⇥ 243 lattice): lattice

data and fit result in log-log scale. The reference fit is S1:F4 in table 6. The parameters in the axis labels

have been chosen to be a�4�̄0 = 1.31 ⇥ 10�5 and am = 0.0826 (best-fit results). The black points are the

data computed by numerical simulations. The red line is the best fit to eq. (3.8), while the orange band

corresponds to the 1⇥ region. The blue dashed lines delimit the data used for the fit.

4.3 Set S2: finite-volume e�ects

As analyzed in [22], meson masses computed on the set S1 (am0 = �1.15 on 64⇥ 243) are identical
to the ones computed on the set S2 (am0 = �1.15 on 64 ⇥ 323), within the statistical errors that
are of the order of 0.5%. It is reasonable to expect that finite-volume e⇥ects are under control
also for the mode number. However this is explicitly checked by computing the mode number per
unit volume using the projector method for few values of a�. The agreement is always within
1� as shown in table 4. Since larger finite-volume e⇥ects are expected for lower eigenvalues, we
can conclude that the finite-volume e⇥ects for the set S1 are always negligible with respect to the
statistical errors for a� ⇤ 0.086.

4.4 Set S3: lighter mass

The set S3 (am0 = �1.18 on 64⇥243) is used to check the stability of the ⇥̄⇥ anomalous dimension
while going closer to the chiral limit. For this set no detailed investigation of finite-volume e⇥ects
is available. However the isotriplet pseudoscalar meson is expected to be about 10% lighter than
in infinite volume (see analysis in [22]). Similarly one has to expect sizable finite-volume e⇥ects
also for the spectral density at low eigenvalues, while for larger eigenvalues the finite volume-e⇥ects
become smaller. I will work under the assumption that the finite-volume e⇥ects are comparable in
the two sets S1 and S3 at fixed eigenvalue. Therefore the analysis is restricted to the safe range
a� ⇤ 0.086.
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the lattice spacing. The Banks–Casher relation consequently cannot be expected to
hold exactly and the detailed properties of the low quark modes could be significantly
different from those in the continuum theory. On the other hand, as long as only
renormalizable quantities are considered, their values in the continuum limit must
in principle be computable using the Wilson theory.

The spectral density of the (hermitian) Dirac operator, and thus the average num-
ber of quark modes in a given range of eigenvalues, are known to be renormalizable
[5]. In the present paper, we first give a second proof of this important fact (sect. 3).
We then discuss the chiral perturbation expansion of the mode numbers and show, in
sect. 5, that their calculation in lattice QCD requires only a modest computational
effort. Taken together, these results allow the chiral condensate to be computed in
the Wilson theory in a straightforward manner (sect. 6). Spectral projectors however
have a wider range of applicability and provide interesting opportunities to explore
the chiral regime of QCD, some of which are briefly mentioned in sect. 7.

2. Preliminaries

For simplicity we focus on QCD with a doublet of mass-degenerate quarks, but the
theoretical discussion is more generally valid and extends to the case of real-world
QCD. The quarks will be referred to as the up and down quarks, the associated
Goldstone bosons as the pions and the SU(2) flavour symmetry as the isospin sym-
metry. We consider both the continuum and the Wilson lattice theory in order to
make it clear in which way the mode number computed on the lattice is related to
the one defined in the continuum theory.

2.1 Spectral density and mode number in the continuum theory

In a space-time box of volume V with periodic or antiperiodic boundary conditions,
the euclidean massless Dirac operator D in presence of a given gauge field has purely
imaginary eigenvalues iλ1, iλ2, . . ., which may be ordered so that those with the
lower magnitude come first. The associated average spectral density is given by

ρ(λ,m) =
1

V

∞
∑

k=1

〈δ(λ − λk)〉 (2.1)

where the bracket 〈. . .〉 denotes the QCD expectation value and m the current-quark

2

mass. Note that the isospin degeneracy is not included in the mode counting, i.e. the
Dirac operator is diagonalized in the subspace of, say, the up-quark fields.

The Banks–Casher relation [1]

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π
(2.2)

provides a link between the chiral condensate

Σ = − lim
m→0

lim
V →∞

〈ūu〉 (2.3)

(where u is the up-quark field) and the spectral density. In particular, if chiral sym-
metry is spontaneously broken by a non-zero value of the condensate, the density of
the quark modes in infinite volume does not vanish at the origin. A non-zero density
conversely implies that the symmetry is broken, i.e. the Banks–Casher relation can
be read in either direction.

Instead of the spectral density, the average number ν(M,m) of eigenmodes of the
massive hermitian operator D†D + m2 with eigenvalues α ≤ M2 turns out to be a
more convenient quantity to consider. Evidently, since

ν(M,m) = V

∫ Λ

−Λ
dλρ(λ,m), Λ =

√

M2 − m2, (2.4)

the mode number ultimately carries the same information as the spectral density.

2.2 O(a)-improved lattice QCD

The lattice theory is set up as usual on a hyper-cubic lattice with spacing a, time-like
extent T and spatial size L. Periodic boundary conditions are imposed on all fields
and in all directions, the only exception being the quark fields which are taken to
be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression

SF = a4
∑

x

{

ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)

for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac
operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free
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where it is understood that the bare masses are expressed through the renormalized
ones. The factors 1 + bPP amq in eq. (3.6) are required for the cancellation of the
O(amq) terms alluded to above which derive from the short-distance singularities of
the density-chain correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0,
one quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.
Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the
renormalized twisted mass µR, the expressions one obtains must be O(a)-improved.
As it turns out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
1 + bP amq

1 + bPP amq
=

1

Zµ(1 + bµamq)
(3.10)

up to terms of order a2m2
q.

Returning to the integral representation (3.2), we now note that the renormaliza-
tion factor {Zµ(1 + bµamq)}−2k needed to renormalize the spectral sum on the left
of the equation is cancelled on the right if we substitute

MR = Zµ(1 + bµamq)M (3.11)

and renormalize µ. We are thus led to conclude that

νR(MR,mR) = ν(M,mq) (3.12)

is a renormalized and O(a)-improved quantity. In other words, the mode number is
a renormalization-group invariant.
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Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.

Since QCD describes a very large collection of phenomena at high energies extremely well, there
must thus be another way to include this symmetry in the real world. This was found by Goldstone [28]
and is often called the Nambu-Goldstone mode, while a direct realization is referred to as the Wigner
or Wigner-Eckart mode. Nambu’s papers for this are Ref. [29].

Let us first describe this mode for a simpler model. A complex scalar field with Lagrangian

L = ∂µφ∗∂µφ − V (φ) . (22)

We first look at a potential of the type shown in Fig. 1 with a standard form of the type

V (φ) = µ2φ∗φ + λ (φ∗φ)2 . (23)

We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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Figure 3: The potential V (φ) for a spontaneously broken symmetry in the presence of a
small explicit symmetry breaking term. The arrow indicates now the only possible choice of
vacuum.

The linear term in η can be removed by a small additional shift. This happened because the lowest

energy state is slightly shifted compared to the value v =
√

−µ2/λ. But more importantly, when we
expand the exponentials, we now find that the π(x)-field has gotten a small mass, small compared to
the mass of the η-field, and no longer has only derivative interactions. The π mass

m2
π ≈

2
√

2β

v
. (33)

is small and can be expanded in the small symmetry breaking parameter β. The particle corresponding
to it, is now called a pseudo-Goldstone boson. As long as the explicit symmetry breaking is small, we
can still use Goldstone’s theorem as a first approximation and then add the corrections systematically.
This is precisely what we do in ChPT when the light quark masses are explicitly included.

2.5 Spontaneous symmetry breaking in QCD

We already argued in Sect. 2.3 that the chiral symmetry of QCD cannot be realized in nature since
the predicted parity doublets do not occur. We thus expect the chiral symmetry to be realized in the
Nambu-Goldstone mode. What theoretical evidence do we have directly for this?

Most of the remainder of this paper is about the Goldstone bosons from the spontaneous chiral
symmetry breakdown and their properties. In this way, all those properties are strong indications that
the picture described below is correct. However let us first give the full theoretical arguments.

• It has been proven that the chiral symmetry is spontaneously broken in the limit of a large number
of colours and assuming confinement [31].

• The vector symmetries remain unbroken in a vectorlike symmetry as QCD [32].

• Assuming confinement, the anomalies in the effective low-energy theory must match those for the
underlying QCD theory. For two flavours, this can be done but not for three or more flavours.
We thus need spontaneous symmetry breaking in order to have a correct anomaly matching for
three or more flavours [33].

We thus believe that the flavour symmetry SU(nF )× SU(nF ) is spontaneously broken down to the
diagonal subgroup SU(nF )V = SU(nF )L+R also for the realistic case of three flavours. There are eight
broken generators and we thus expect eight Goldstone boson degrees of freedom. If we look at the
hadron spectrum there are eight natural candidates for this. The three pions, π0, π±, four kaons, K±,

11

mq = 0
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tilted condensate

Not to misidentify rotator gaps
as evidence of chirally symmetric 
phase !

sextet simulations are in the p-regime   β=3.2 and β=3.25



crossover to asymptotic finite volume behavior :

(a) (b) (c)

Figure 11: Pictures illustrating various physical situations in finite volume. (a) Hadrons in a
large volume, (b) a qq̄ meson in a box of size L ! 2 fm, and (c) quarks in the femto-universe.

7 QCD in finite volume and the femto-universe

In quantum field theory the physical information is encoded in the correlation func-
tions of local operators and these are hence the primary quantities to consider. From
statistical mechanics one knows, however, that certain properties of the system can
often be determined more easily by studying its behaviour in finite volume. The
calculation of critical exponents is a classical case where such finite-size techniques
are being applied.

The questions one would like to answer in QCD are not the same as in statistical
mechanics, but the general idea to probe the system through a finite volume proves
to be fruitful here too. In this section our aim mainly is to provide a qualitative
understanding of what happens when the volume is decreased. Unless stated oth-
erwise, periodic boundary conditions are assumed and the lattice spacing is taken
to be much smaller than the relevant physical scales so that lattice effects can be
ignored.

7.1 Physical situation from large to small volumes

Let us first consider the case where the spatial extent L of the lattice is significantly
greater than the typical size of the hadrons (box (a) in fig. 11). Single hadrons are
practically unaffected by the finite volume under these conditions except that their
momenta must be integer multiples of 2π/L. For multi-particle states the situation
is a bit more complicated, because the particles cannot get very far away from
each other. Two-particle energy eigenstates, for example, really describe stationary
scattering processes. If there are no resonances the corresponding energy values
differ from the spectrum calculated for non-interacting particles by small amounts
proportional to 1/L3 [60–63].
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To see the significance of (3)  and (4) let us consider 
a typical example a lattice of a size of 1 2 fm In thts 
case the m i n i m u m  non-zero m o m e n t u m  2n /L  ts of  
the order of 1 GeV Although it may be debated which 
form should be taken for the form factor, 1 GeV is a 
relanvely large momen tum and the form factor should 
gave a rather strong suppression Therefore in the re- 
gime where the size L ts of the order of 1 fm one could 
expect the n = 0 contribution to be the dominant  term 
in the summat ion  in (3) In  this intermediate regime 
one then expects a finite-size correction to the mass 
of hadrons proportional to 1/L 3 As we saw in fig 1 
the hadron mass data fit the 1 /Z  3 c u r v e  remarkably 
well 

One may add that a 1/L 3 correction is also ex- 
pected for many-parttcle states, on a rather small box 
a hadron is not very different from a two- or three- 
particle (quark)  state (on large boxes the quarks feel 
the effect of the confining force and the 1/L 3 behav- 
lour is not expected) 

Let us illustrate the size effect predicted by ( 3 ), (4) 
by an example appropriate to the numerical  data in 
fig 1 the case of p-meson exchange ( m = 0  77 GeV 
in (4 ) )  for latttce of size up to 20 and an inverse lat- 
tice spacing a - ~ = 2 GeV For the form factor we take 

1 
F(k )  = 1 + 1 09 (k /GeV)  2 '  (5a)  

or 

F(k )  = exia [ - 3 (k /GeV)2  ] (5b)  

In th"e case (5a)  the form factor is chosen such that 
F ( k )  / (k 2 .~ m 2 ) IS very stmtlar to the nucleon elec- 
tromagnetic form factor The case (5b) ts rather ex- 
treme the hadron is extremely soft as a consequence 
of the exponential  decay o f F ( k )  for large momenta  
(the~shape o f F ( k )  itself is similar to the nucleon form 
factor) 

The result for the self-energy 8E for the case (5a) 
is shown (apart from an overall mult iphcattve con- 
stant)  in fig 2a as a functton of the lattice size L One 
sees that the 1/L 3 behavlour  holds up to L ~ 8 In the 
region L >  6, on the other hand, the data are well fit- 
ted by the usual one-particle exchange potential  
exp ( - m L ) / L  (see fig 2b) In fig 3a we show the 
~ffect of p exchange for the case (5b) Here the 1/L 3 
behavlour holds up to L g  16, and the data are not 
fitted so well by e x p ( - m L ) / L  in the region 
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Fig 2 (a) Dependence of self-energy on lattsce size L due to p 
exchange computed with the form factor eq (5a) displaying a 
power-law behavlour at small L (b) Plot of same data as in (a) 
fitted with the Yukawa potentxal exp ( -mL) /L  for a point par- 
ncle (sohd curve) 

6 < L < 20 (fig 3b) This exercise shows that the size 
where the 1/L 3 c o r r e c t i o n  disappears and the expo- 
nenttal correction sets in depends upon the behav- 
tour of the form factor although it would seem nat- 
ural to suppose that the 1/L 3 correction to the masses 
(or masses squared) disappears for sizes L larger than 
about 1 fm, it is easy to think of models in which this 
does not hold and consequently it is possible that the 
asymptotic regtme for an exponenttal finite lattice 
correction starts only for large lattices (e g 1 5-2 fm) 

The argument above produces a power law by tak- 
ing into account modifications of the propagation of 
virtual particles around the latttce through a finite 
extension of hadron wave functions For small lat- 
tices the power law may also be understood In the 
following non-relativistic picture Let us suppose that 
quarks are bound  by some confining potential and let 
ro be the length scale characterlslng the decrease of 
the wave function ~/(r) for large r One may mimic 
the finite-size effect for the wave function by squeez- 
ing the characteristic length ro as r'oocL A steeper 
variat ion of the squeezed wave function then leads to 
an increase of the kinetic energy of the ground state 
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Figure 11: Pictures illustrating various physical situations in finite volume. (a) Hadrons in a
large volume, (b) a qq̄ meson in a box of size L ! 2 fm, and (c) quarks in the femto-universe.

7 QCD in finite volume and the femto-universe

In quantum field theory the physical information is encoded in the correlation func-
tions of local operators and these are hence the primary quantities to consider. From
statistical mechanics one knows, however, that certain properties of the system can
often be determined more easily by studying its behaviour in finite volume. The
calculation of critical exponents is a classical case where such finite-size techniques
are being applied.

The questions one would like to answer in QCD are not the same as in statistical
mechanics, but the general idea to probe the system through a finite volume proves
to be fruitful here too. In this section our aim mainly is to provide a qualitative
understanding of what happens when the volume is decreased. Unless stated oth-
erwise, periodic boundary conditions are assumed and the lattice spacing is taken
to be much smaller than the relevant physical scales so that lattice effects can be
ignored.

7.1 Physical situation from large to small volumes

Let us first consider the case where the spatial extent L of the lattice is significantly
greater than the typical size of the hadrons (box (a) in fig. 11). Single hadrons are
practically unaffected by the finite volume under these conditions except that their
momenta must be integer multiples of 2π/L. For multi-particle states the situation
is a bit more complicated, because the particles cannot get very far away from
each other. Two-particle energy eigenstates, for example, really describe stationary
scattering processes. If there are no resonances the corresponding energy values
differ from the spectrum calculated for non-interacting particles by small amounts
proportional to 1/L3 [60–63].
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sextet simulations confining force at finite m?  (LHC group)

Confining force with fundamental and sextet fermions Kieran Holland
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Figure 1: (left) The effective mass V (r, t) and the fitted potential V (r) for the Nf = 12 fundamental model at r = 5
on a 483 ⇥ 96 volume at fermion mass ma = 0.01. The quality of the correlated fit is ⇥2/Ndof = 2.0. (right) Volume
dependence of the potential V (r) with lattice volumes 483 ⇥96 and 403 ⇥80 at mass ma = 0.01.

We extract the potential V (r) from measurements of the Wilson loops W (r, t). To improve
the signal, we use a combination of HYP-smearing of the time-like links, which reduces the self-
energy of the fermion-antifermion operator, and various levels of 3-dimensional APE-smearing of
the space-like links, to create a set of operators from which a correlator matrix can be built as input
to solve a generalized eigenvalue equation [9]. Here we will only show results for one element
from the diagonal of the correlation matrix. From the Wilson loops, we extract the effective mass
V (r, t) =� lnW (r, t +1)/W (r, t), which at sufficiently large times can be fitted to a constant V (r),
including the covariance matrix for the correlated data. We use the double (nested) jackknife
method for the error analysis: for every outer jackknife sample of Wilson loops, we have an inner
jackknife loop to determine the covariance matrix for the effective masses, which is included in the
fit [10]. We bin the data set until we typically have a total of between 10 and 20 bins. In Figure 1
we show a typical result for the fitting of the effective mass and the determination of V (r).

2.2 N f = 12 fundamental

We first discuss the results for the Nf = 12 fundamental model. At the lightest fermion masses
ma= 0.01 and 0.015, we have simulations on both 483⇥96 and 403⇥80 lattice volumes. As shown
in Figure 1, the potential has no visible volume dependence at the smallest mass, hence 403 ⇥ 80
is already sufficient to reach the infinite-volume limit at the heavier masses 0.02 and 0.025. This
gives the potential V (r) in infinite volume at four separate fermion masses. For each mass, we
parametrize the potential in some form, then study the mass-dependence of the parameters. A
standard parametrization of the potential is

V (r) =V0 �
�
r
+⇤r, (2.1)

where one includes both Coulomb-like behavior at short distance and string-like behavior at larger
separation. Because this is a dynamical fermion simulation, at sufficiently large separation the
string can break and there is no asymptotic string tension. An alternative parametrization is to
exclude the short-distance data and fit the potential to the form

V (r) =V0 +⇤r (2.2)
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Figure 5: Fits of the string tension for Nf = 2 sextet theory: (left) from V (r) fits including �/r and (right) from linear
V (r) fits without �/r. In the right plot, the fitted conformal exponent 1/(1+ ⇥) is consistent with zero, hence the curve
is omitted.

mass-dependence of ⇤1/2, using both linear and conformal power-like m1/(1+⇥) forms. As before,
we consider both parametrizations of V (r). We see in fact very little mass dependence. With
or without the Coulomb term when extracting ⇤ , the fitted conformal exponents are respectively
1/(1+ ⇥) = 0.04(4) and 0.00(6), giving unacceptable values of the anomalous dimension ⇥ . (A
negative value for the exponent would be unphysical and simply reflects statistical fluctuations.)
Linear extrapolations give a clear non-zero value for the string tension in the chiral limit. This
suggests that the sextet theory appears to be non-conformal, which is consistent with our analysis
of the mass spectrum.

2.4 Force

In fitting the potential V (r), correlation between data at different r was not taken into account,
given the instability of the covariance matrix without very large statistics. This can be partially
cured by extracting the force F(r) directly from the Wilson loops W (r, t). We construct an effective
force F(r⇥, t) = V (r+1, t)�V (r, t), which is fitted at sufficiently large time t to a constant. In the
fit, the covariance matrix includes correlation of the data both in r and in t. The naive definition
of the force location is r⇥ = r+ 1/2, which we improve by taking into account the propagator for
the improved action. For example, in our action r = 4 corresponds to r⇥ = 4.45787, at larger r the
deviation from half-integer quickly vanishes. If a given theory is conformal, at large r the force
should have a pure 1/r2 behavior, such that the renormalized coupling �qq(r) = r2F(r)/CF flows
to an infrared fixed point with increasing r. Alternatively, linear behavior in the potential V (r) at
intermediate separation corresponds to a constant force F(r).

In Figure 6 we show the force as extracted from the largest volume at the lightest mass for both
the Nf = 2 sextet and Nf = 12 fundamental theories (we find similar behavior at larger mass). As
the separation r⇥ increases, the force appears to flow to a constant, consistent with the independently
determined value of ⇤ from the potential V (r). We compare with perturbation theory, starting the
RG flow of �qq from its directly measured value at r⇥ = 3.42522. The perturbative prediction of
a quickly decreasing force is not supported by the data, and the renormalized coupling continues

6

1
1+ γ

= 0.04(4)



Outline
  
how large Theory Space is needed?

the sextet model as a simple example 

light scalar and dilaton mechanism close to CW

chiral condensates and spectroscopy 

running (walking) coupling   

light scalar spectroscopy of 0++ states

Summary and outlook



running coupling at m=0



running coupling at m=0

Schrodinger functional



running coupling at m=0

Schrodinger functional

New gradient flow coupling



χSB

DeGrand et al. find: Nf=2 sextet beta function may have an IRFP zero, or walks? 
good work and difficult model

chiral symmetry breaking is not inconsistent with the results ➜ walking?SU(3) gauge theory with sextet fermions

15 20 25 30 35
u = K/g2 (44)

-2

-1

0

1

2

B
(u

,2
)

0.2 0.4 0.6

u = 1/g2 (44, 64, or 84)

-0.04

-0.02

0

0.02

0.04

B(
u,

2)

thin links 4->8
fat links 6->12
fat links 8->16
2 loops

Figure 1: The step scaling function calculated in [2] (left) with thin links indicating an infrared fixed point.
Using fat links for the fermion action (right) the fixed point disappears [3]. See the text for more details.

The calculatation of the running coupling in the Schroedinger functional scheme using Wilson
fermions was started in [2] for the Nf = 2 sextet model. Using an unimproved (think link) Wilson
action a zero of the step scaling function was measured at one lattice spacing corresponding to
44 � 84, see left panel of figure 1. Two more lattice spacings corresponding to 64 � 124 and
84� 164 were then added [3] using an improved (fat link) Wilson action, see right panel of figure
1. The fixed point disappeared with a possible interpretation that the rougher lattice spacing result
was an artifact. The gauge action was the same in the two calculations. However changing not only
the fermion action but the gauge action as well to use fat links resulted in a step scaling function
with a zero for the lattice spacing corresponding to 64� 124, see figure 2. A possible interpretation
is that the absence of the zero previously was the artifact after all [4].

Changing the action and/or the lattice spacing led to results so far which show that discretiza-
tion effects are still there. Clearly a careful continuum extrapolation is necessary with a given
action in order to decide which finite lattice spacing result is the one prevailing all the way to the
continuum. A good check of the procedure would be the reproduction of the 2-loop � -function for
small renormalized coupling, carefully extrapolated to the continuum.

As a cross-check it would be helpful if the running coupling would be calculated in a different
non-perturbatively well-defined scheme. Reproducing the 2-loop � -function for small coupling is
always a good test for any scheme. For larger coupling two schemes can disagree on the value of
the coupling but if a fixed point exist for one scheme a fixed point should exist for the other scheme
too.

2.2 Thermodynamics

Another way of addressing the infrared behavior of the model is studying it at finite tempera-
ture. If chiral symmetry is broken at T = 0 one expects a chiral symmetry restoration temperature
Tc. If the model is conformal in the infrared then as far as chiral symmetry is concerned there
is no phase transition at all for T > 0. Lattice investigations of thermodynamical properties are
complicated by the fact that the lattice system at finite lattice spacing typically has a rich phase

4
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Figure 2: The step scaling function from [4] using fat links for the fermion action only (blue) and fat links
for both the fermion and gauge actions (black). The fixed point is visible again; see the text for more details.

Figure 3: The chiral susceptibility on Nt = 4 and Nt = 6 lattices from [5].

structure with various types of phase transitions and phase boundaries most of which however hap-
pens to be regularization specific and as such an artifact with no consequence to the continuum.
Bulk phase transitions are an example. A careful continuum extrapolation of the findings is hence
again essential.

The thermodynamic study of the Nf = 2 sextet model was initiated in [5]. Using unimproved
rooted staggered fermions in the fixed�Nt approach the Polyakov loop and the chiral condensate
was measured at various quark masses. In the fixed�Nt approach one lattice spacing corresponds

5

(DeGrand et al.)

IRFP re-appearing or walking? 

(DeGrand et al.)

Some independent method using a different running coupling scheme?



32

finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],

⇤E(t)⌅ = 3

4⇤t2
�(q)

�
1 + k1�(q) +O(�2)

⇥
, q =

1⇧
8t
, k1 = 1.0978 + 0.0075⇥Nf .
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

32

finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e
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3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

t is the gradient flow time  
Running coupling definition (range is (8t)1/2) :
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

t is the gradient flow time  
Running coupling definition (range is (8t)1/2) :
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],

⇤E(t)⌅ = 3

4⇤t2
�(q)

�
1 + k1�(q) +O(�2)

⇥
, q =

1⇧
8t
, k1 = 1.0978 + 0.0075⇥Nf .

0 1 2 3 4 5 6 7 8
x 10−3

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

 a2/L2

 g
2 (s

L,
 a

2 /L
2 ) 

s=1.5   �(u) step function at fixed u and fixed L in physical units 

 

 

�(g2(L), a2/L2) = g2(sL,a2/L2) = c0 + c1� a
2/L2

u = 1.9

�(u) = c0 =2.0893 ! 0.01
c1 =22.36 ! 1.6

�2/dof= 0.432c0
2 loop
1 loop

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

g2(L)

 ( 
g2 (s

L)
 −

 g
2 (L

) )
/lo

g(
s2 ) 

 

 
step function from Wilson flow
1 loop
2 loop

Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
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representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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Running coupling definition (range is (8t)1/2) :
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

LHC group
Running coupling definition from gauge field gradient flow
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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how large Theory Space is needed?

the sextet model as a simple example 

light scalar and dilaton mechanism close to CW

chiral condensates and spectroscopy 

running (walking) coupling   

light scalar spectroscopy of 0++ states

Summary and outlook
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ππ, 0++ glueball, f0 scalar coupled! 

0++ glueball can have low mass!
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 effective mass  Mcon
f0     from 0++ connected correlator  

β=3.2

Nf=2 SU(3) sextet chiral fits: f0 state with 0++ quantum numbers:

M(f0)/F ~ 6
without disconnected diagram:

annihilation diagram with good signal/noise: demanding project 
CMU group demonstrated that it can be done!
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staggered fermions with rooting presents added complications   (Bernard et al.)

Higgs impostor in coupled channels?

ππ, 0++ glueball, f0 scalar coupled! 

0++ glueball can have low mass!

x x
x x



light scalar?  (Higgs impostor?)

first step is to solve the mixing of the 0++ scalar 
state with 0++ glueball state and with two-pion state

first finding of Nf=12 low mass glueball from KMI group is 
promising
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Introduction

! Goals
! Main Goal: Obtain Low-lying Hadron Spectrum predicted by QCD
! Other Goals: Extract Hadron Decay Widths, Phase Shifts of Hadron Scatterings, etc.

! Challenges
! Contaminations of Excited Energy Eigenstate
! Energy Eigenstates mix with Multi-Hadron Operators, leading to the need of Diagrams with

Same-Time Quark-Lines (Quark Propagators connecting the same time-slice). For example, for I = 1
Meson Sector, Most Energy Levels are Above Multi-Hadron Thresholds(shaded regions):
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Figure: Preliminary I = 1 Single-Meson Spectrum on 243 × 128 Nf = 2 + 1 mπ = 0.3911(14)GeV Anisotropic
Clover Ensemble(170 configs)

! Isoscalars require Same-Time Quark-Lines as well.
! Computations of Same-Time Quark-Lines require HUGE computational resources, mainly in Dirac

Matrix Inversions.
! Solution: Stochastic LapH(Laplacian-Heaviside) Algorithm

Methodology–Field Smearing

! Field Smearing Suppresses contribution from High-lying Excited Energy States
! Gauge Field: Stout Smearing[Morningstar & Peardon 2004]
! Quark Field: LapH Smearing[Morningstar et al 2011]

! LapH Smearing Operator S:

S ≡ Θ


σ2
S + ∆̃



 ≈ VSV
†
S,

σ2
S ≈ 0.33: smearing cutoff parameter

∆̃ : 3-Dimensional Gauge-Covariant Laplacian operator
VS: Column of ∆̃ Eigenvectors

! Lowest Nv Laplacian Eigenmodes vi(c, x) span the LapH Subspace, projecting away high-lying
excited energy states (c : color index)

! Bonus: Scalar Glueball Operator GS ≡ Tr(∆̃) obtained automatically after Diagonalization of ∆̃
! Works well in Small Lattices
! Problems:

! Nv(∝ Number of Dirac Matrix Inversions) Scales Linearly with Lattice Spatial Volumes
! Inversion needed per Time-Slice

⇒ Computationally Expensive for Diagrams with Same-Time Quark-Lines
! Solution: Go Stochastic!

Methodology–Stochastic LapH Algorithm[Morningstar et al 2011]

! Important Observation:
Gauge Noise Limits Signal Variance ⇒ Exact Quark Propagators are Wasteful

! Stochastic Estimation: Use an evenly random Z4 noise vector ρiα(x4) in LapH Subspace
! Variance can be greatly reduced by applying onto the ρ with Dilution Projectors P, defined in Time,

LapH Subspace and Spin, of the following types:

P[d ]
mn

∣

∣

∣

∣

∣

∣Iq
= δm,nδd ,m mod q, d =0, 1, · · · , q − 2, q − 1 (Interlace-q)

P[d ]
mn

∣

∣

∣

∣

∣

∣Bq
= δm,nδd ,mq/N, d =0, 1, · · · , q − 2, q − 1 (Block-q).

! Number of Inversions Depends on Dilution Schemes ONLY
! Time Dilution ⇒ Efficient Computation of Same-Time Quark-Lines
! LapH Eigenvector Dilution ⇒ Mild/No Scaling with Lattice Spatial Volumes

! Flexible due to Factorization of Correlation Functions
! Hadron Operators are Formed before Wick-Contraction ⇒ Reusable for Different Correlation Functions

Preliminary Results–Isoscalars(Light-Quark Contributions Only)

! I = 0 Mesons on 243 × 128 Nf = 2 + 1 mπ = 0.2439(20)GeV Anisotropic Clover Ensemble
(198 configs; Time Dilution: I16, LapH Dilution: I8, Spin Dilution: Full)

! Legends:
! fwd : Diagrams without Same-Time Quark-Lines
! smt : Diagrams with Same-Time Quark-Lines Only
! total : Full Correlator
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! PseudoScalar JPG = 0−+ Channel
! Topological Charge is small ⇒ VEV is ignored

! Scalar JPG = 0++ Channel (VEV subtracted)
! Expected to mix with I = 0 Two-pion operators⇒ no fits on masses

Preliminary Results–ππ-ππ Scatterings

! ππ-ππ System on 243 × 128 Nf = 2 + 1 mπ = 0.2439(20)GeV Anisotropic Clover Ensemble
(584 configs; Time Dilution: I16, LapH Dilution: I8, Spin Dilution: Full)

! Legends:
! fwd : Diagrams without Same-Time Quark-Lines
! smt : Diagrams with Same-Time Quark-Lines Only
! box : Diagrams with Both Types of Quark-Lines
! total : Full Correlator
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! I = 2 Scattering: Repulsive
! I = 1, JPG = 1−− Channel

! P-Wave of Pions with Minimal Relative
Momenta

! Expected to Mix with ρ Mesons
! I = 0, JPG = 0++ Channel

! S-Wave of At-Rest Pions
! Attractive, Expected to Mix with f0(or σ) and

possibly Scalar Glueballs(GS)

5 10 15 20 25
tmin/at

0.06

0.08

0.1

0.12

a t m
fit

I=2
I=0

tmax=35 at

Non-Interacting Pions

Preliminary Results–Particle(s) mixing in JPG = 1−− Channel

! Lowest Energy Levels: ρ mixed with I = 1 P-Wave of ππ with Minimal Relative Momenta
! Examined on 243 × 128 Nf = 2 + 1 mπ = 0.2439(20)GeV Anisotropic Clover Ensemble

(584 configs; Time Dilution: I16, LapH Dilution: I8, Spin Dilution: Full)
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! After Diagonalization
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Preliminary Results–Particle(s) Mixing in JPG = 0++ Channel

! Lowest Energy Levels: Mixture of f0(or σ), GS and I = 0 S-Wave of ππ at rest
! Examined on 163 × 128 Nf = 2 + 1 mπ = 0.3911(14)GeV Anisotropic Clover Ensemble

(99 configs; Time Dilution: Full, LapH Dilution: Full, Spin Dilution: Full; Two f0 Operators f A
0 and f B
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Conclusions & Future Works

! Stochastic LapH algorithm has enabled a variety of studies involving Same-Time Quark-Lines on
Realistic Lattices

! Mixing of Multi-Hadron Operators Are Required to extract Excited States
! Hadron Spectra with Multi-Hadron Mixing will be worked out
! Phase Shifts in Scatterings and Decay Widths of Resonances will be extracted
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Introduction

! Goals
! Main Goal: Obtain Low-lying Hadron Spectrum predicted by QCD
! Other Goals: Extract Hadron Decay Widths, Phase Shifts of Hadron Scatterings, etc.

! Challenges
! Contaminations of Excited Energy Eigenstate
! Energy Eigenstates mix with Multi-Hadron Operators, leading to the need of Diagrams with

Same-Time Quark-Lines (Quark Propagators connecting the same time-slice). For example, for I = 1
Meson Sector, Most Energy Levels are Above Multi-Hadron Thresholds(shaded regions):

+
1gA +

2gA +
gE +

1gT +
2gT +

1uA +
2uA +

uE +
1uT +

2uT -
1gA -

2gA -
gE -

1gT -
2gT -

1uA -
2uA -

uE -
1uT -

2uT

1b

ρ
0a

π

nu
cl

eo
n

m
/m

0

0.5

1

1.5

2

2.5

3

3.5  * 
m

ta

0

0.2

0.4

0.6

Figure: Preliminary I = 1 Single-Meson Spectrum on 243 × 128 Nf = 2 + 1 mπ = 0.3911(14)GeV Anisotropic
Clover Ensemble(170 configs)

! Isoscalars require Same-Time Quark-Lines as well.
! Computations of Same-Time Quark-Lines require HUGE computational resources, mainly in Dirac

Matrix Inversions.
! Solution: Stochastic LapH(Laplacian-Heaviside) Algorithm

Methodology–Field Smearing

! Field Smearing Suppresses contribution from High-lying Excited Energy States
! Gauge Field: Stout Smearing[Morningstar & Peardon 2004]
! Quark Field: LapH Smearing[Morningstar et al 2011]

! LapH Smearing Operator S:

S ≡ Θ


σ2
S + ∆̃



 ≈ VSV
†
S,

σ2
S ≈ 0.33: smearing cutoff parameter

∆̃ : 3-Dimensional Gauge-Covariant Laplacian operator
VS: Column of ∆̃ Eigenvectors

! Lowest Nv Laplacian Eigenmodes vi(c, x) span the LapH Subspace, projecting away high-lying
excited energy states (c : color index)

! Bonus: Scalar Glueball Operator GS ≡ Tr(∆̃) obtained automatically after Diagonalization of ∆̃
! Works well in Small Lattices
! Problems:

! Nv(∝ Number of Dirac Matrix Inversions) Scales Linearly with Lattice Spatial Volumes
! Inversion needed per Time-Slice

⇒ Computationally Expensive for Diagrams with Same-Time Quark-Lines
! Solution: Go Stochastic!

Methodology–Stochastic LapH Algorithm[Morningstar et al 2011]

! Important Observation:
Gauge Noise Limits Signal Variance ⇒ Exact Quark Propagators are Wasteful

! Stochastic Estimation: Use an evenly random Z4 noise vector ρiα(x4) in LapH Subspace
! Variance can be greatly reduced by applying onto the ρ with Dilution Projectors P, defined in Time,

LapH Subspace and Spin, of the following types:

P[d ]
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= δm,nδd ,mq/N, d =0, 1, · · · , q − 2, q − 1 (Block-q).

! Number of Inversions Depends on Dilution Schemes ONLY
! Time Dilution ⇒ Efficient Computation of Same-Time Quark-Lines
! LapH Eigenvector Dilution ⇒ Mild/No Scaling with Lattice Spatial Volumes

! Flexible due to Factorization of Correlation Functions
! Hadron Operators are Formed before Wick-Contraction ⇒ Reusable for Different Correlation Functions

Preliminary Results–Isoscalars(Light-Quark Contributions Only)

! I = 0 Mesons on 243 × 128 Nf = 2 + 1 mπ = 0.2439(20)GeV Anisotropic Clover Ensemble
(198 configs; Time Dilution: I16, LapH Dilution: I8, Spin Dilution: Full)

! Legends:
! fwd : Diagrams without Same-Time Quark-Lines
! smt : Diagrams with Same-Time Quark-Lines Only
! total : Full Correlator
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! PseudoScalar JPG = 0−+ Channel
! Topological Charge is small ⇒ VEV is ignored

! Scalar JPG = 0++ Channel (VEV subtracted)
! Expected to mix with I = 0 Two-pion operators⇒ no fits on masses

Preliminary Results–ππ-ππ Scatterings

! ππ-ππ System on 243 × 128 Nf = 2 + 1 mπ = 0.2439(20)GeV Anisotropic Clover Ensemble
(584 configs; Time Dilution: I16, LapH Dilution: I8, Spin Dilution: Full)

! Legends:
! fwd : Diagrams without Same-Time Quark-Lines
! smt : Diagrams with Same-Time Quark-Lines Only
! box : Diagrams with Both Types of Quark-Lines
! total : Full Correlator
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! I = 2 Scattering: Repulsive
! I = 1, JPG = 1−− Channel

! P-Wave of Pions with Minimal Relative
Momenta

! Expected to Mix with ρ Mesons
! I = 0, JPG = 0++ Channel

! S-Wave of At-Rest Pions
! Attractive, Expected to Mix with f0(or σ) and

possibly Scalar Glueballs(GS)
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Preliminary Results–Particle(s) mixing in JPG = 1−− Channel

! Lowest Energy Levels: ρ mixed with I = 1 P-Wave of ππ with Minimal Relative Momenta
! Examined on 243 × 128 Nf = 2 + 1 mπ = 0.2439(20)GeV Anisotropic Clover Ensemble

(584 configs; Time Dilution: I16, LapH Dilution: I8, Spin Dilution: Full)
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Preliminary Results–Particle(s) Mixing in JPG = 0++ Channel

! Lowest Energy Levels: Mixture of f0(or σ), GS and I = 0 S-Wave of ππ at rest
! Examined on 163 × 128 Nf = 2 + 1 mπ = 0.3911(14)GeV Anisotropic Clover Ensemble

(99 configs; Time Dilution: Full, LapH Dilution: Full, Spin Dilution: Full; Two f0 Operators f A
0 and f B
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Conclusions & Future Works

! Stochastic LapH algorithm has enabled a variety of studies involving Same-Time Quark-Lines on
Realistic Lattices

! Mixing of Multi-Hadron Operators Are Required to extract Excited States
! Hadron Spectra with Multi-Hadron Mixing will be worked out
! Phase Shifts in Scatterings and Decay Widths of Resonances will be extracted
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Introduction

! Goals
! Main Goal: Obtain Low-lying Hadron Spectrum predicted by QCD
! Other Goals: Extract Hadron Decay Widths, Phase Shifts of Hadron Scatterings, etc.

! Challenges
! Contaminations of Excited Energy Eigenstate
! Energy Eigenstates mix with Multi-Hadron Operators, leading to the need of Diagrams with

Same-Time Quark-Lines (Quark Propagators connecting the same time-slice). For example, for I = 1
Meson Sector, Most Energy Levels are Above Multi-Hadron Thresholds(shaded regions):
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Figure: Preliminary I = 1 Single-Meson Spectrum on 243 × 128 Nf = 2 + 1 mπ = 0.3911(14)GeV Anisotropic
Clover Ensemble(170 configs)

! Isoscalars require Same-Time Quark-Lines as well.
! Computations of Same-Time Quark-Lines require HUGE computational resources, mainly in Dirac

Matrix Inversions.
! Solution: Stochastic LapH(Laplacian-Heaviside) Algorithm

Methodology–Field Smearing

! Field Smearing Suppresses contribution from High-lying Excited Energy States
! Gauge Field: Stout Smearing[Morningstar & Peardon 2004]
! Quark Field: LapH Smearing[Morningstar et al 2011]

! LapH Smearing Operator S:

S ≡ Θ
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S + ∆̃



 ≈ VSV
†
S,

σ2
S ≈ 0.33: smearing cutoff parameter

∆̃ : 3-Dimensional Gauge-Covariant Laplacian operator
VS: Column of ∆̃ Eigenvectors

! Lowest Nv Laplacian Eigenmodes vi(c, x) span the LapH Subspace, projecting away high-lying
excited energy states (c : color index)

! Bonus: Scalar Glueball Operator GS ≡ Tr(∆̃) obtained automatically after Diagonalization of ∆̃
! Works well in Small Lattices
! Problems:

! Nv(∝ Number of Dirac Matrix Inversions) Scales Linearly with Lattice Spatial Volumes
! Inversion needed per Time-Slice

⇒ Computationally Expensive for Diagrams with Same-Time Quark-Lines
! Solution: Go Stochastic!

Methodology–Stochastic LapH Algorithm[Morningstar et al 2011]

! Important Observation:
Gauge Noise Limits Signal Variance ⇒ Exact Quark Propagators are Wasteful

! Stochastic Estimation: Use an evenly random Z4 noise vector ρiα(x4) in LapH Subspace
! Variance can be greatly reduced by applying onto the ρ with Dilution Projectors P, defined in Time,

LapH Subspace and Spin, of the following types:
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! Number of Inversions Depends on Dilution Schemes ONLY
! Time Dilution ⇒ Efficient Computation of Same-Time Quark-Lines
! LapH Eigenvector Dilution ⇒ Mild/No Scaling with Lattice Spatial Volumes

! Flexible due to Factorization of Correlation Functions
! Hadron Operators are Formed before Wick-Contraction ⇒ Reusable for Different Correlation Functions

Preliminary Results–Isoscalars(Light-Quark Contributions Only)

! I = 0 Mesons on 243 × 128 Nf = 2 + 1 mπ = 0.2439(20)GeV Anisotropic Clover Ensemble
(198 configs; Time Dilution: I16, LapH Dilution: I8, Spin Dilution: Full)

! Legends:
! fwd : Diagrams without Same-Time Quark-Lines
! smt : Diagrams with Same-Time Quark-Lines Only
! total : Full Correlator
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! PseudoScalar JPG = 0−+ Channel
! Topological Charge is small ⇒ VEV is ignored

! Scalar JPG = 0++ Channel (VEV subtracted)
! Expected to mix with I = 0 Two-pion operators⇒ no fits on masses

Preliminary Results–ππ-ππ Scatterings

! ππ-ππ System on 243 × 128 Nf = 2 + 1 mπ = 0.2439(20)GeV Anisotropic Clover Ensemble
(584 configs; Time Dilution: I16, LapH Dilution: I8, Spin Dilution: Full)

! Legends:
! fwd : Diagrams without Same-Time Quark-Lines
! smt : Diagrams with Same-Time Quark-Lines Only
! box : Diagrams with Both Types of Quark-Lines
! total : Full Correlator
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! I = 2 Scattering: Repulsive
! I = 1, JPG = 1−− Channel

! P-Wave of Pions with Minimal Relative
Momenta

! Expected to Mix with ρ Mesons
! I = 0, JPG = 0++ Channel

! S-Wave of At-Rest Pions
! Attractive, Expected to Mix with f0(or σ) and

possibly Scalar Glueballs(GS)
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Preliminary Results–Particle(s) mixing in JPG = 1−− Channel

! Lowest Energy Levels: ρ mixed with I = 1 P-Wave of ππ with Minimal Relative Momenta
! Examined on 243 × 128 Nf = 2 + 1 mπ = 0.2439(20)GeV Anisotropic Clover Ensemble

(584 configs; Time Dilution: I16, LapH Dilution: I8, Spin Dilution: Full)

0 10 20 30
t/at

0

0.2

0.4

0.6

0.8

1

C
(t)

ρ - ρ

0 10 20 30
t/at

0

0.01

0.02

C
(t)

ππ - ρ

! After Diagonalization
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Preliminary Results–Particle(s) Mixing in JPG = 0++ Channel

! Lowest Energy Levels: Mixture of f0(or σ), GS and I = 0 S-Wave of ππ at rest
! Examined on 163 × 128 Nf = 2 + 1 mπ = 0.3911(14)GeV Anisotropic Clover Ensemble

(99 configs; Time Dilution: Full, LapH Dilution: Full, Spin Dilution: Full; Two f0 Operators f A
0 and f B

0 )
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! After Diagonalization
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Conclusions & Future Works

! Stochastic LapH algorithm has enabled a variety of studies involving Same-Time Quark-Lines on
Realistic Lattices

! Mixing of Multi-Hadron Operators Are Required to extract Excited States
! Hadron Spectra with Multi-Hadron Mixing will be worked out
! Phase Shifts in Scatterings and Decay Widths of Resonances will be extracted
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                          Summary and Outlook

• Lattice community has developed powerful tools to study BSM theories 

• The most interesting models are the hardest to calculate

• Sextet model close to CW?  remains Higgs impostor candidate - unresolved issues 

• Close to conformal window large fluctuations in finite volume make the 
  the identification of conformal and chiSB phases difficult

• new algorithmic developments have major impact:
  fermion matrix inversion, improved disconnected correlators, ...

• Scalar spectrum from disconnected correlators is high lattice BSM priority

• Lattice BSM community is “theory aware” but more off-lattice input can help

χSB
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