New Confinement Phases from Singular SQCD Vacua - SCGT

K. Konishi University of Pisa, INFN Pisa

Friday, December 7, 12

Basic theme :

Conformal invariance (CFT) and confinement

UV CFT -----→ Infrared-fixed point CFT

QCD:

If confinement ~ deformation of an IR f.p. CFT

understanding of the IR degrees of freedom in CFT

is the key to see the working of confinement / XSB

Plan of the Talk

- I. Confinement and XSB in QCD, Lessons from SQCD
 singular SCFT and confinement -
- II. Recent developments

- Argyres-Seiberg, Gaiotto-Seiberg-Tachikawa -

III. Perturbation of singular SCFT and confinement

- New confinement picture -

- Quark confinement vs Chiral Symmetry Breaking .
 - Abelian dual superconductor ? (dynamical Abelianization)

$$\begin{array}{l} SU(3) \rightarrow U(1)^2 \rightarrow \mathbf{1} \\ \langle M \rangle \neq 0 \end{array}$$

$$\begin{array}{l} & \Pi_1(U(1)^2) = \mathbf{Z} \times \mathbf{Z} \end{array}$$

$$\begin{array}{l} & \Pi_1(U(1)^2) = \mathbf{Z} \times \mathbf{Z} \end{array}$$

$$\begin{array}{l} & \text{confinement and XSB both induced by} \\ & SU_L(N_F) \times SU_R(N_F) \rightarrow SU_V(N_F) \end{array}$$

$$\begin{array}{l} & \mathbb{E} \\ & \mathbb{E} \end{array}$$

$$\begin{array}{l} & \text{Accidental SU}(\mathsf{N}_{\mathsf{F}}^2) : \text{too many NG bosons (**)} \end{array}$$

Non-Abelian monopole condensation

 $SU(3) \rightarrow SU(2) \times U(1) \rightarrow \mathbf{1}$

$$\langle M^a \tilde{M}_b \rangle \sim \delta^a_b \Lambda^2$$

 $\Pi_1(SU(2) \times U(1)) = \mathbf{Z}$

Non-Abelian monopole are probably strongly coupled (sign flip of b_0 unlikely)

Friday, December 7, 12

lf

What $\mathcal{N}=2$ SQCD (softly broken) teaches us

Abelian dual superconductivity

SU(2) with N_F = 0, 1,2,3 monopole condensation \Rightarrow confinement & dyn symm. breaking

SU(N) $\mathcal{N} = 2$ SYM : SU(N) \Rightarrow U(1)^{N-1}

Non-Abelian monopole condensation for SQCD

SU(N), N_F quarks SU(N) \Rightarrow SU(r) x U(1) x U(1) x r \leq N_F/2 r vacua are local, IR free theories

• Non Abelian monopoles interacting very strongly

SCFT of higher criticalities, EHIY points

Seiberg, Witten

Effective degrees of freedom in the quantum r vacuum of softly broken N=2 SQCD $(r \le N_f / 2)$

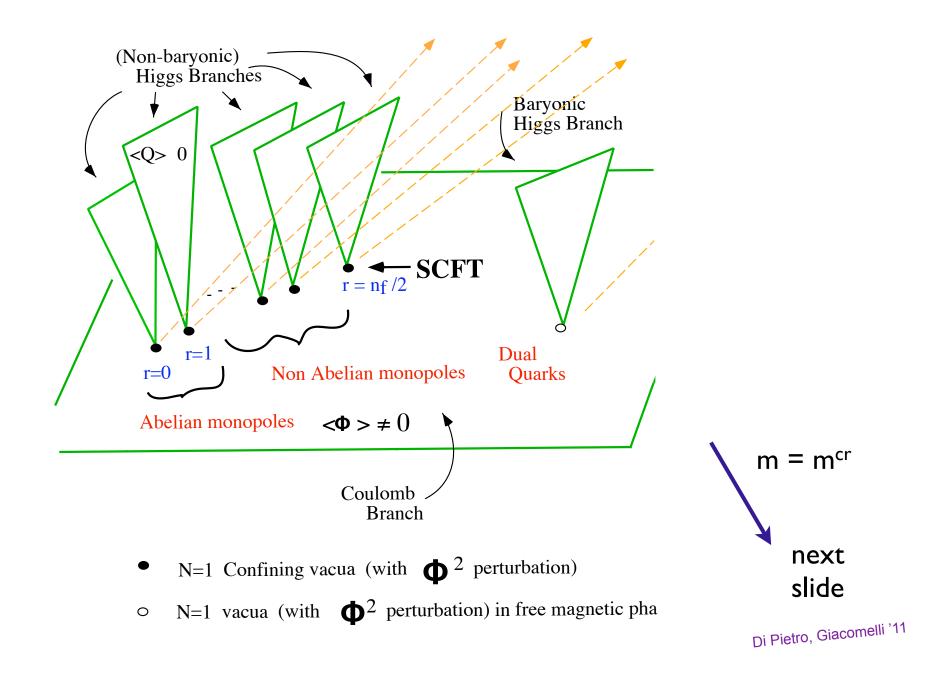
	SU(r)	$U(1)_{0}$	$U(1)_{1}$	•••	$U(1)_{N-r-1}$	$U(1)_B$
$N_F imes \mathcal{M}$	<u>r</u>	1	0	•••	0	0
M_1	<u>1</u>	0	1	•••	0	0
•	•	•	• •	••••	•	:
M_{N-r-1}	<u>1</u>	0	0		1	0

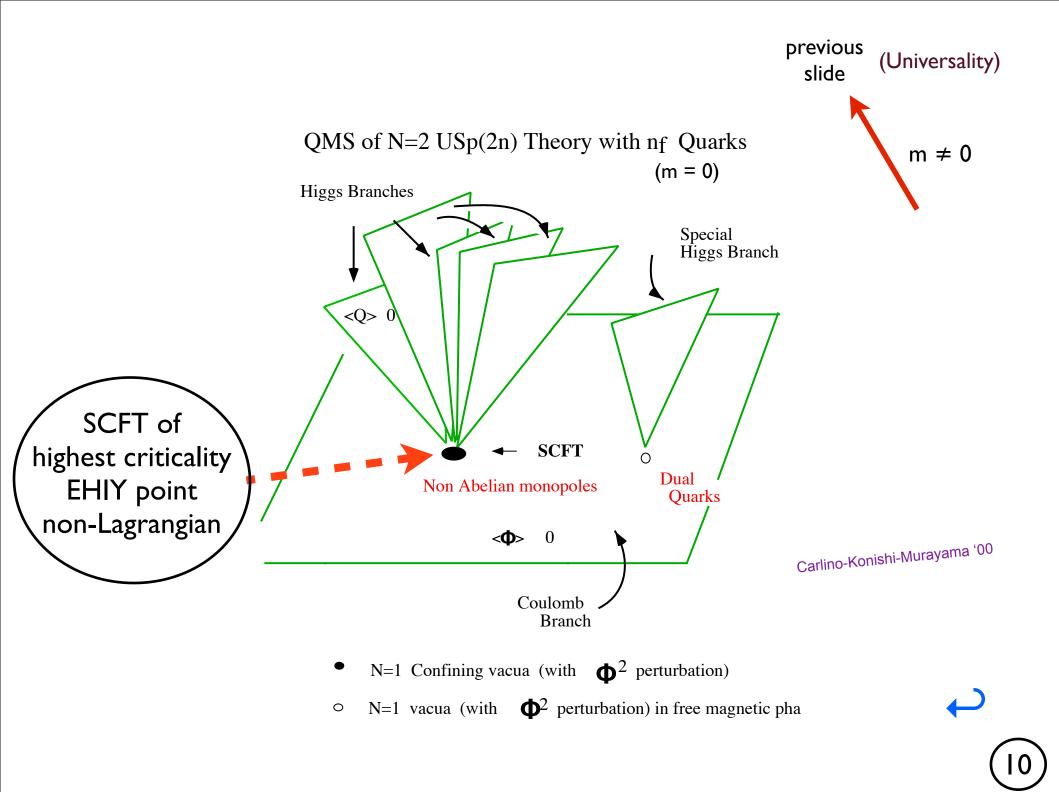
Seiberg-Witten '94 Argyres,Plesser,Seiberg,'96 Hanany-Oz, '96 Carlino-Konishi-Murayama '00

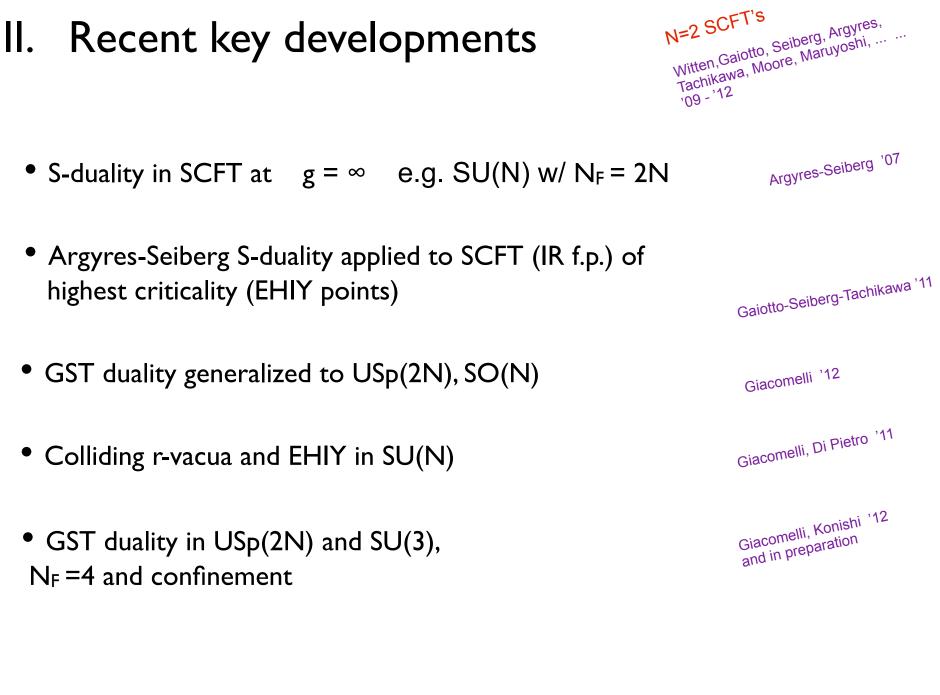
The massless non-Abelian and Abelian monopoles and their charges at the r vacua

- "Colored dyons" do exist !!!
- they carry flavor q.n.
- $\langle q^i \alpha \rangle = v \ \delta^i \alpha \implies U(N_f) \Rightarrow U(r) \times U(N_f r)$

QMS of N=2 SQCD (SU(n) with nf quarks)







Recent key developments **II**.

Argyres-Seiberg's S duality

• SU(3) with N_F = 6 hypermultiplets (Q_i, \tilde{Q}_i 's) at infinite coupling

$$SU(3) w / (6 \cdot \mathbf{3} \oplus \mathbf{\overline{3}}) = SU(2) w / (2 \cdot \mathbf{2} \oplus \mathrm{SCFT}_{E_6})$$

$$\mathbf{g} = \mathbf{\infty} \qquad \mathbf{g} = \mathbf{0} \qquad SU(2) \times SU(6) \subset E_6$$

Flavor symmetry ~ $SU(6) \times U(1)$

• USp(4) with $N_F = 12$ Q's at infinite coupling

 $USp(4) w / 12 \cdot 4 = SU(2) w / SCFT_{E_7}$ $SU(2) \times SO(12) \subset E_7$

Gaiotto-Seiberg-Tachikawa (GST)

• Apply the basic idea of Argyres-Seiberg duality to the IR f.p. SCFT

• SU(N) with N_F = 2n :

$$y^{2} = (x^{N} + u_{1}x^{N-1} + u_{2}x^{N-2} + \dots + u_{N})^{2} - \Lambda^{2N-2n} \prod_{i=1}^{2n} (x + m_{i})$$
At u = m=0, $y^{2} \sim x^{N+n}$ (EHIY point)
relatively non-local
massless monopoles and dyons
• Straightforward treatment of fluctuations around u=m=0, gives

- Straightforward treatment of fluctuations around u=m=0, gives an incorrect scaling laws for the masses
- * To get the correct scale-invariant fluctuations, introduce two different scalings:

Friday, December 7, 12

• U(1)^{N-n-1} gauge multiplets

В

• SU(2) gauge multiplet (infrared free) coupled to the SU(2) flavor symmetry of the two SCFT's A & B

- The A sector: the SCFT entering in the Argyres-Seiberg dual of SU(n), N_F = 2 n, having $SU(2) \times SU(2n)$ flavor symmetry
- The B sector: the maximally singular SCFT of the SU(N-n+1) theory with two flavors

where

- A: 3 free <u>2</u>'s (n=2); E₆ of Minahan-Nemescahnsky (n=3), etc.
- B: the maximally singular SCFT of SU(2), $N_F = 2$ (Seinberg-Witten) for N=3, n=2, etc.
- Analogous results for USp(2N), SO(N)

 $b_0 = \frac{N-n}{N-n+2}$

SU(2) Α

Giacomelli '12

Gaiotto-Seiberg-Tachikawa '11

III. GST duals and confinement

USp(2N) theory w/ $N_F = 2n$

• Two Tchebyshev* vacua ($\varphi_1 = \varphi_2 = ... = 0$; $\varphi_n^2 = \pm \Lambda^2$; φ_m det'd by Tch. polynom.)

 $xy^{2} \sim \left[x^{n}(x-\phi_{n}^{2})\right]^{2} - 4\Lambda^{4}x^{2n} = x^{2n}(x-\phi_{n}^{2}-2\Lambda^{2})(x-\phi_{n}^{2}+2\Lambda^{2}).$

y² ~ x²ⁿ singular SCFT (EHIY point); strongly interacting, relatively non-local monopoles and dyons

• A strategy: resolve the vacuum by adding small $m_i \neq 0$ and determining the vacuum moduli (u_i 's or ϕ_i 's) requiring the SW curve to factorize in maximally Abelian factors (double factors) (i.e., Vacua in confinement phase surviving N=I, $\mu \Phi^2$ perturbation)

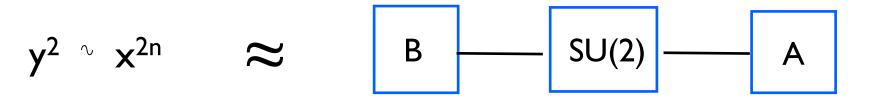
 $\binom{N_f}{0} + \binom{N_f}{2} + \dots \binom{N_f}{N_f} = 2^{N_f - 1}$ $\binom{N_f}{1} + \binom{N_f}{3} + \dots \binom{N_f}{N_f - 1} = 2^{N_f - 1}$

even r vacua, from one of the Tcheb. vacua

odd r vacua, from one of the Tcheb. vacua

GST dual for the Tchebyshev point of USp(2N) (also SO(N))

Giacomelli '12



- U(1)^{N-n} gauge multiplets
- The A sector: a (in general) non-Lagrangian SCFT having SU(2)xSO(4n) flavor symmetry
- The B sector: a free doublet (coupled to U(1) gauge boson)

For $N_F = 2n = 4$, A sector ~ 4 free doublets

But this allows a direct description of IR physics !!

For
$$USp(2N)$$
, $N_f = 4$

the GST dual is (both the A and B sectors are free doublets) : Giacomelli, Konishi '12

$$1 - SU(2) - 4$$
.
U(1)

the effects of m_i and $\mu \Phi^2$ perturbation can be studied from the superpotential:

$$\sqrt{2} Q_0 (A_D + m_0) \tilde{Q}^0 + \sqrt{2} Q_0 \phi \tilde{Q}^0 + \sum_{i=1}^4 \sqrt{2} Q_i \phi \tilde{Q}^i + \mu A_D \Lambda + \mu \operatorname{Tr} \phi^2 + \sum_{i=1}^4 m_i Q_i \tilde{Q}^i \, .$$

cfr. UV Lagrangian:

$$W = \mu \operatorname{Tr} \Phi^2 + \frac{1}{\sqrt{2}} Q_a^i \Phi_b^a Q_c^i J^{bc} + \frac{m_{ij}}{2} Q_a^i Q_b^j J^{ab}$$
$$m = -i\sigma_2 \otimes \operatorname{diag}(m_1, m_2, \dots, m_{n_f}).$$

Correct flavor symmetry for all {m}

- $m_i = m : SU(4) \times U(1);$
- $m_i = 0$: SO(8); etc.,

$$\sqrt{2} Q_0 \tilde{Q}_0 + \mu \Lambda = 0;$$

$$(\sqrt{2} \phi + A_D + m_0) \tilde{Q}_0 = Q_0 (\sqrt{2} \phi + A_D + m_0) = 0;$$

$$\sqrt{2} \left[\frac{1}{2} \sum_{i=1}^4 Q_i^a \tilde{Q}_b^i - \frac{1}{4} \delta_b^a Q_i \tilde{Q}^i + \frac{1}{2} Q_0^a \tilde{Q}_b^0 - \frac{1}{4} \delta_b^a Q_0 \tilde{Q}^0 \right] + \mu \phi_b^a = 0;$$

$$(\sqrt{2} \phi + m_i) \tilde{Q}^i = Q_i (\sqrt{2} \phi + m_i) = 0, \quad \forall i.$$
Solutions
$$Q_0 = \tilde{Q}_0 = \left(\frac{2^{-1/4} \sqrt{-\mu \Lambda}}{0} \right)$$
four solutions
$$a = -\frac{m_i}{\sqrt{2}}, \qquad Q_i = \tilde{Q}_i = \left(\frac{f_i}{0} \right); \qquad Q_j = \tilde{Q}_j = 0, \quad j \neq i.$$
four more
solutions
$$a = +\frac{m_i}{\sqrt{2}}, \qquad Q_i = \tilde{Q}_i = \left(\frac{0}{g_i} \right); \qquad Q_j = \tilde{Q}_j = 0, \quad j \neq i.$$
They are 4 + 4, r=l vacua ! (p. -2)
$$f_i^2 = \frac{\mu \Lambda - 4a}{\sqrt{2}} = \mu(\frac{\Lambda}{\sqrt{2}} + 2m_i).$$

But where are the even r-vacua (r=0,2) ???

Answer: in the second Tchebyshev vacuum:

$$\sqrt{2} Q_0 (A_D + m_0) \tilde{Q}^0 + \sqrt{2} Q_0 \phi \tilde{Q}^0 + \sum_{i=1}^4 \sqrt{2} Q_i \phi \tilde{Q}^i + \mu A_D \Lambda + \mu \operatorname{Tr} \phi^2 + \sum_{i=1}^4 \tilde{m}_i Q_i \tilde{Q}^i$$

with

Flavor symmetry OK in all cases:

m_i	\tilde{m}_i	Symmetry in UV	Symmetry in IR
$m_i = 0$	$ ilde{m}_i = 0$	SO(8)	SO(8)
$m_i = m \neq 0$	$\tilde{m}_4, \tilde{m}_1 = \tilde{m}_2 = \tilde{m}_3 = 0$	$U(1) \times SU(4)$	$U(1) \times SO(6)$
$m_1 = m_2, m_3, m_4, \text{ generic}$	$\tilde{m}_2 = -\tilde{m}_3, \tilde{m}_4, \tilde{m}_1 \text{ generic}$	$U(1) \times U(1) \times U(2)$	$U(1) \times U(1) \times U(2)$
$m_1 = m_2, m_3 = m_4, m_1 \neq m_3$	$\tilde{m}_2 = \tilde{m}_3 = 0, \ \tilde{m}_4, \ \tilde{m}_1, \ \text{generic}$	$SU(2) \times U(1) \times SU(2) \times U(1)$	$SO(4) \times U(1) \times U(1)$

Solutions similar to the previous case but: I + I + 6 in the $m_i \rightarrow m$

To recapitulate:

- Mass perturbation of the EHIY (SCFT) singularity : the resolution of the Tchebyshev vacua into the sum of the r-vacua: (local Lagrangian theories with SU(r)xU(1)^{N-r} gauge symmetry)
 - Correct identification of the N=I vacua surviving $\mu \Phi^2$ perturbation
 - But physics was unclear (strongly-coupled monopoles and dyons) in $m \rightarrow 0$ limit
- But we have now checked that the singular EHIY (SCFT) theory is correctly described by GST duals after $\mu \Phi^2$ perturbation.

G

• The limit $m \rightarrow 0$ can be taken smoothly in the GST description (cfr. the usual monopole picture)

Physics of USp(2N), $N_F = 4$ theory at m=0

$$\sqrt{2} Q_0 (A_D + m_0) \tilde{Q}^0 + \sqrt{2} Q_0 \phi \tilde{Q}^0 + \sum_{i=1}^4 \sqrt{2} Q_i \phi \tilde{Q}^i + \mu A_D \Lambda + \mu \operatorname{Tr} \phi^2 .$$

$$Q_0 = \tilde{Q}_0 = \begin{pmatrix} 2^{-1/4}\sqrt{-\mu\Lambda} \\ 0 \end{pmatrix} \qquad (Q_1)^1 = (\tilde{Q}^1)_1 = 2^{-1/4}\sqrt{\mu\Lambda} , \qquad Q_i = \tilde{Q}_i = 0, \quad i = 2, 3, 4.$$

$$\phi = 0, \quad A_D = 0 \; .$$

→ XSB

$$SO(8) \to U(1) \times SO(6) = U(1) \times SU(4) = U(4),$$
 OK with results at
 $\mu, m \gg \Lambda$

→ Confinement

UV: $\Pi_1(USp(2N)) = \mathbf{1}$

IR: $\mathcal{L}_{GST} = SU(2) \times U(1), \quad \Pi_1(SU(2) \times U(1)) = \mathbf{Z}$

Higgsed at low energies; the vortex = the unique (N=n) confining string Cfr. Abelianization implies $U(I)^N$ low energy theory final multiplication of the meson spectrum of the meson spectrum of the meson spectrum of the meson spectrum the spectrum of the meson spectrum of the meso

Conclusion

- Analysis of the colliding r vacua of SU(N) (at $m \rightarrow m^{cr} \sim \Lambda$) similar (SU(3) or SU(4) w/N_F =4, worked out)
 - Giacomelli, Konishi in preparation
- Cases with general N_F (the A sector is non Lagrangian SCFT) to understand

Gaiotto-Seiberg-Tachikawa duals of singular, IRFP SCFT allows to describe (confining) systems whose players are infinitely-strongly coupled monopoles and dyons
 SCGT -

→ New confinement phase in SQCD

QCD ?

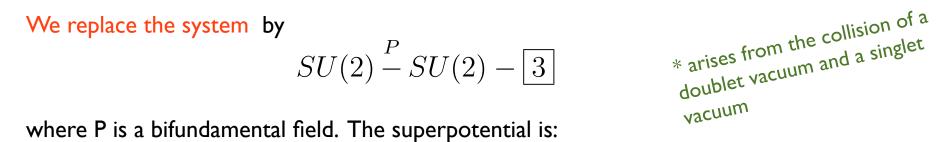
The End

<u>Colliding r vacua</u> of SU(3), N_F =4 theory

The GST dual is now:

$$D_3 - SU(2) - \boxed{3}$$

where D₃ is the most singular SCFT of the $\mathcal{N} = 2$ SU(2), N_F = 2, theory, and 3 is three free doublets of SU(2). D₃ is a nonlocal theory,^{*} it not easy to analyze.



$$\sum_{i=1}^{3} \sqrt{2}Q_i \Phi \tilde{Q}^i + \sum_{i=1}^{3} \tilde{m}_i Q_i \tilde{Q}^i + \mu \Phi^2 + \sqrt{2}P \Phi \tilde{P} + \sqrt{2}\tilde{P}\chi P + \mu \chi^2 + m' \tilde{P}P,$$

The first SU(2) is AF: its dynamics is not affected by the second SU(2). But to exract the D₃ point, need to keep $m' \simeq \pm \Lambda'$, but not exactly equal. The system Abelianizes \rightarrow

Doublet vacuum (of the new, strong SU(2) N_F =2 theory)

$$\begin{split} \sum_{i=1}^{3} \sqrt{2}Q_{i}\Phi\tilde{Q}^{i} + \sum_{i=1}^{3} \tilde{m}_{i}Q_{i}\tilde{Q}^{i} + \mu\Phi^{2} + \sqrt{2}M\Phi\tilde{M} + \sqrt{2}\tilde{M}A_{\chi}M + \mu A_{\chi}\Lambda', \\ \text{with m} & \\ \tilde{m}_{1} = \frac{1}{4}(m_{1} + m_{2} - m_{3} - m_{4}); & \rightarrow \text{ correct symmetry} \\ \tilde{m}_{2} = \frac{1}{4}(m_{1} - m_{2} + m_{3} - m_{4}); & \text{ for all } m_{i}: \end{split}$$

 $\tilde{m}_3 = \frac{1}{4}(m_1 - m_2 - m_3 + m_4)$, \rightarrow six solutions (r=2 vacua)

SU(3), N_F =4 theory has r=0,1,2 vacua: where are the r=0,1 vacua? Answer:

Singlet vacuum (of the new, strong SU(2) N_F =2 theory)

$$\sum_{i=1}^{3} \sqrt{2}Q_i \Phi \tilde{Q}^i + \sum_{i=1}^{3} \tilde{m}_i Q_i \tilde{Q}^i + \mu \Phi^2 + \sqrt{2}\tilde{N}AN + \mu A\Lambda' + m' \tilde{N}N.$$

AF: becomes strongly coupled. $\rightarrow 4 + 1$ vacua of

SW SU(2) N_F =3 theory! \rightarrow r=1 (4) and r=0 (1) vacua

Vacuum structure OK

* Remarks

• N=2 SCFT's in UV flow into N=1 SCFT, upon N=1, $\mu \Phi^2$ perturbation (27/32)

Tachikawa, Wecht '09

- Some of them survive and brought into confinement phase; r-vacua, (r=0,1,2,...) upon N=1, $\mu \Phi^2$ perturbation
- Not all singular N=2 SCFT's survives N=1, μΦ² perturbation (e.g., Aygyres-Douglas point in pure SU(3))
- N=2 IRFP SCFT's can survive and brought into confinement phase; e.g., Colliding r-vacua of SU(N) theories, m=0, USp(2N) theory (Tchebyshev vacua); m=0, SO(N) theory
- They are strongly interacting, nonlocal theory of monopoles and dyons, in confinement phase: interesting system to understand!!

r-vacua

$$y^{2} = \prod_{a}^{N} (x - \phi_{a})^{2} - \Lambda^{2N-2n} \prod_{i=1}^{2n} (x + m_{i})$$

$$\phi_{a} = (-m_{1}, -m_{2}, \dots, -m_{r}, \phi_{r+1}, \dots)$$

$$m_{i} \to m,$$

$$y^{2} = (x + m)^{2r} \prod_{b=1}^{N-r} (x - \alpha_{b})^{2} (x - \gamma)(x - \delta)$$

This describes $SU(r) \times U(1)^{N-r}$ theory

₽