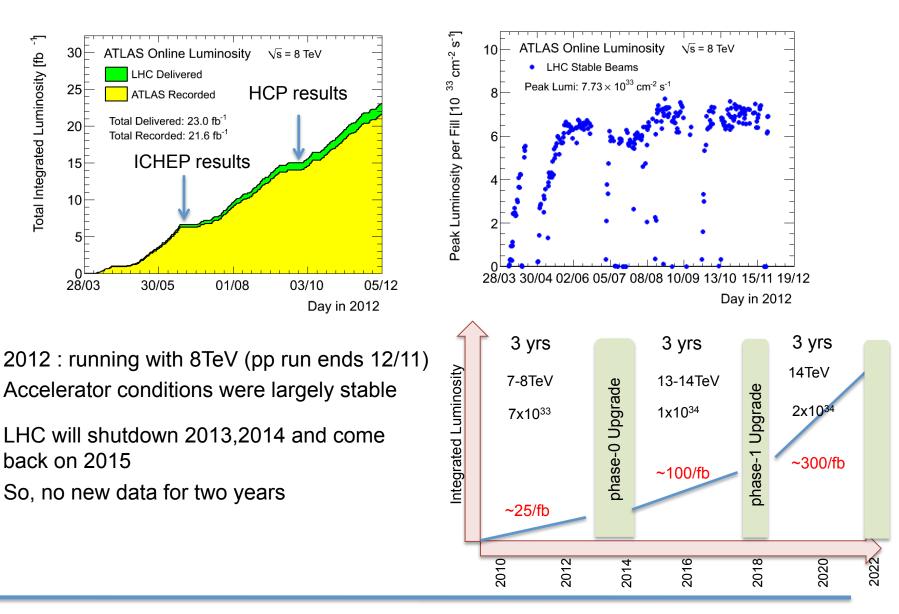
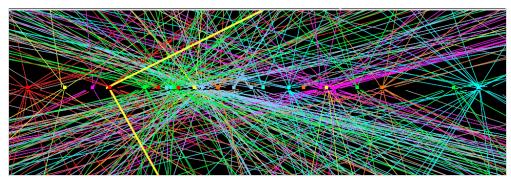

Latest ATLAS results on Higgs and BSM physics

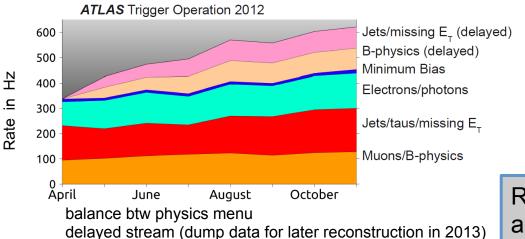
Osamu Jinnouchi (Tokyo Institute of Technology)

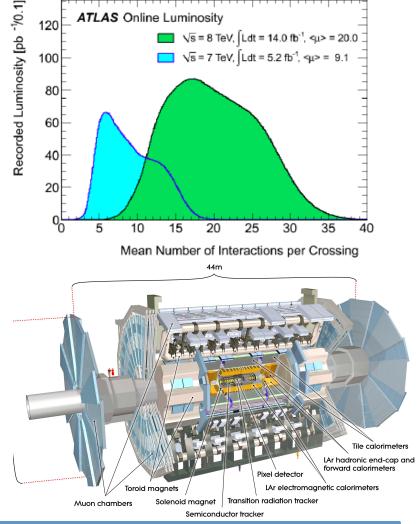

Strong Coupling Gauge Theories in the LHC Perspective (SCGT 12) KMI-GCOE Workshop, Nagoya University 4-7 Dec 2012

Introduction

- ...Homework...
 - If you have a good (brain) memory, you may recall this


LHC status + schedule

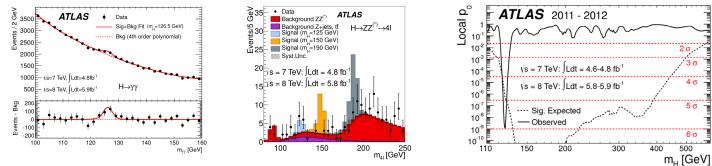



ATLAS status

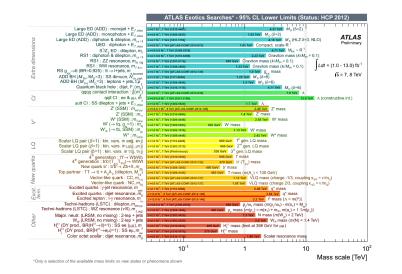
- continuously it is still very efficient
 - > 93% DAQ efficiency
 - > 93% flagged as good data for physics

22 multi-interactions on top of $Z \rightarrow$ mumu event

Results shown today are never achieved without supreme works from Accelerator and Detector groups


2012/12/4-7

ATLAS / JINNOU


Disclaimer

Due to the time constrains, I will not go into the followings subjects (assuming these are well known facts ?)

discovery of the Higgs like boson particle

• No hint for SUSY and other BSM searches in "golden channel"

I would skip these, and instead

Outline of this talk

- 1) Latest results on 'Higgs like particle' property measurements
- 2) Searches in SUSY signatures with natural/complex scenarios
- 3) Status of Low scale Technicolor search Although getting disfavored by appearance of a new particle ...
- 4) Physics sensitivities with the coming years

This talk is based on ATLAS results Will refer to CMS when necessary

latest results on the Properties of

"Higgs like particle"

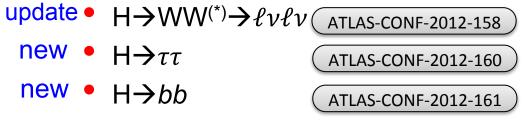
It's Measurement Time !

- Discovery of new neutral, boson is reported in July arXiv:1207.7214, PLB 716(2012) 1
 - combined 5.8 σ : $\gamma\gamma(4.5\sigma)$, ZZ(3.4 σ) and WW(2.8 σ)
 - similar report from CMS

arXiv:1207.7235, PLB 716 (2012) 30

- signal significance is not so important anymore
- Changing gear to the property measurement in order to "identify the particle"
 - electric charge Q=0 (we knew already !)
 - mass ~ 126 GeV
 - Couplings (to the particles)
 - Spin = 0,(1),2,... (1 is disfavored from $\gamma\gamma$ signal, cf. Yang's theorem)
 - P = even or odd (C=+1 as $\gamma\gamma$ decay& C-parity conservation)
- So far, ATLAS released the results on mass and coupling study (CMS has also shown CP study though...)

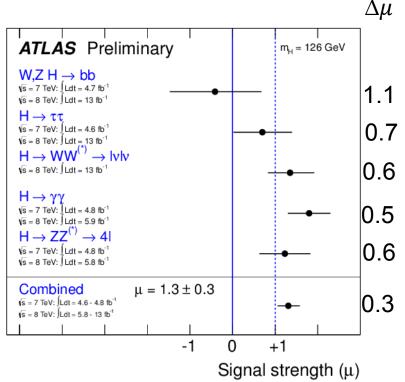
Mass measurement


- Most precise value is obtained with the two highest resolution channels, i.e. γγ & 4 lepton channels
- best-fit value is found to be m = 126.0 ± 0.4 (stat) ± 0.4 (syst) it is consistent within the expt. uncertainty

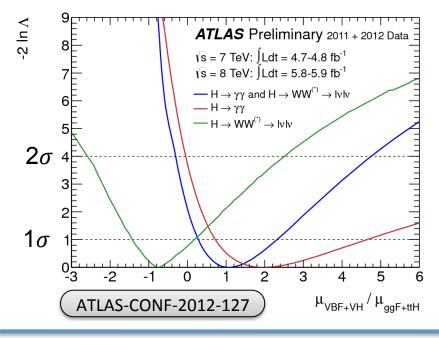
it is already 0.45% precision

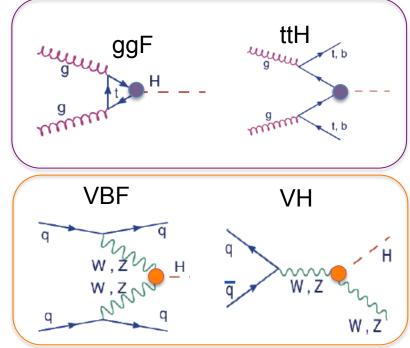
• dominant systematic e/γ energy scale/resolution

Signal strength


 news since July paper (arXiv 1207.7214) results with 8TeV (13fb⁻¹) + 7TeV (5fb⁻¹)

- (updated) overall signal strength
 - $\mu = \sigma / \sigma_{\rm SM} = 1.3 \pm 0.3$
 - $\gamma\gamma$ rate is possibly enhanced
 - $H \rightarrow \gamma \gamma$ occurs via loops, this channel is sensitive to BSM


ATLAS-CONF-2012-162


• Overall compatibility with SM (μ =1) is 23%

Coupling strength btw production modes

- based on the profiled likelihood fit method parameterization for signal strength in each channel
- m_H is fixed to 126 GeV (from mass meas.)
- use γγ, WW to separate two production modes (H→ZZ→4I is inclusive)
 - ggF & ttH (fermionic couplings)
 - VBF & VH (vector boson couplings)
- total decay width cancelled out with μ ratio

measurements consistent with SM within $1 \sim 2\sigma$

Coupling measurements

- like to measure the couplings to see any deviation from SM
- the parameters **k** represent coupling strength, defined w.r.t. SM
- coupling measurements followed benchmark models LHC Higgs XS WG

arXiv:1209.0040

- proved following (7 symmetries) x (with or without fix of Higgs total width)
- $\kappa = \text{sqrt}(\mu)$: universal scaling of coupling
- κ_V vs. κ_F : Spin vector bosons vs. fermions
- κ_W vs. κ_Z : Custodial symmetry W vs. Z boson
- κ_q vs. κ_ℓ : Fermion flavor quarks vs. leptons
- $\kappa_{\rm u}$ vs. $\kappa_{\rm d}$: Fermion type up vs. down
- κ_{q} vs. κ_{γ} : Effective loop couplings for effects of heavy BSM particles
- *K*_H & BR_{inv} : Allow decays to light invisible BSM particles

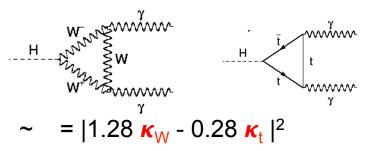
ATLAS-CONF-2012-127

$$\sigma \times BR(ii \to H \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_H}$$

 example

 $\sigma \overset{\mathbf{ggH}}{\mathbf{sggH}} = \kappa_g^2$
 $(\sigma \cdot BR)(gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$

 2012/12/4-7


 $ATLAS/JINNOUCHI$

Vector bosons vs. Fermions

 Suppose common coupling strength for vector bosons and independent strength for fermions

$\pmb{\kappa}_{V}$ vs. $\pmb{\kappa}_{F}$

 Due to interference between W and Top in H→γγ (constructive or destructive) asymmetry of double minima in likelihood ratio

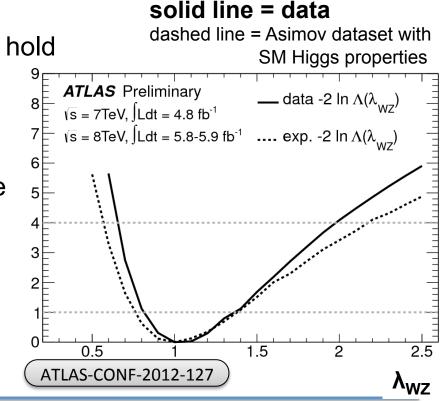


68% CL **κ**_V =[0.9, 1.0] or [1.1, 1.3] **κ**_F=[-1.0, -0.7] or [0.7,1.3]

Fermiophobic Higgs strongly disfavored

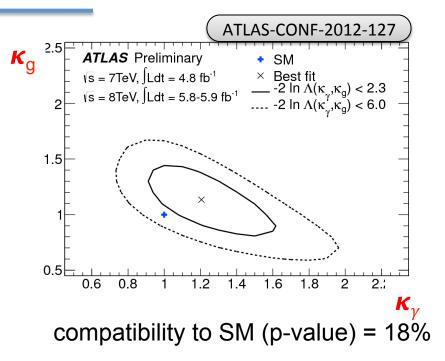
solid line = data

dashed line = Asimov dataset with SM Higgs properties



ATLAS / JINNOUCHI

Custodial symmetry (W vs. Z)


- Suppose the W and Z couplings have different strengths w.r.t. SM
 - K_W=g_W/g_{W,SM}
 - $K_z = g_z/g_{z,SM}$
 - $\lambda_{WZ} = K_W / K_Z = 1.07 + 0.35 0.27$
- Consistent with SM expectation → custodial symmetry hold
- updated H \rightarrow WW results (smaller μ) pull λ_{WZ} down a bit but would not change the message

(these studies are based on ICHEP (July) data)

Loop couplings

- SM processes H→γγ and gg→H occur in one-loop: BSM effects may manifest in such loop diagrams
- effective couplings κ_g, κ_γ includes loop contributions
- other couplings are fixed to 1 (=SM)
- κ_{g} =1.13, κ_{γ} =1.22 (best fit)
- consistent with the Standard Model with current experimental uncertainty

Other studies on property measurements

The other coupling studies:

 $\begin{array}{l} \kappa_{\rm q} \ {\rm vs.} \ \kappa_{\ell} : \mbox{Fermion flavor} - \mbox{quarks vs. leptons:} \\ {\rm not \ enough \ data \ to \ distinguish \ btw \ \kappa_{\ell}/\kappa_{\rm q} = 1 \ ({\rm SM}) \ {\rm and \ } \kappa_{\ell}/\kappa_{\rm q} = 0 \\ \kappa_{\rm u} \ {\rm vs.} \ \kappa_{\rm d} : \mbox{Fermion type} - \ {\rm up \ vs. \ down:} \\ {\rm not \ enough \ data \ to \ distinguish \ btw \ \kappa_{\rm d}/\kappa_{\rm u} = 1 \ ({\rm SM}) \ {\rm and \ } \kappa_{\rm d}/\kappa_{\rm u} = 0 \\ \kappa_{\rm H} \ \& \ {\rm BR}_{\rm inv} : \ {\rm Allow \ decays \ to \ light \ invisible \ BSM \ particles:} \\ {\rm course \ agreement \ with \ SM} \end{array}$

- Parity measurement
 - CMS showed results on J^P study, based on the angle information in H→ ZZ^(*)→4I
 - CMS result : 0^- excluded at > 97% CL

CMS-PAS HIG-12-045

- ATLAS has not shown yet
- Spin determination
 - require large statistics and good control over systematics
 - no results yet from both experiments

searching for SUPERSYMMETRY

Today's search strategies for SUSY

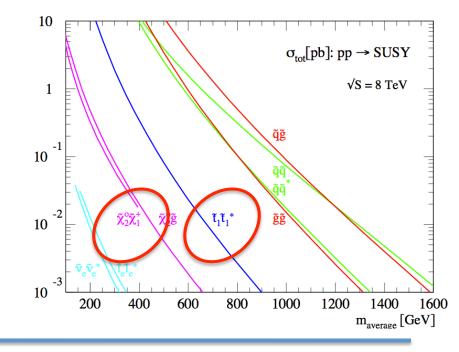
- Despite enthusiastic investigation, SUSY has not been found
- SUSY seems not an easy game; three main directions

[1] (Orthodox) Strong production with R-parity conserving (RPC)

gluino, 1st and 2nd generation squarks productions

+ etc

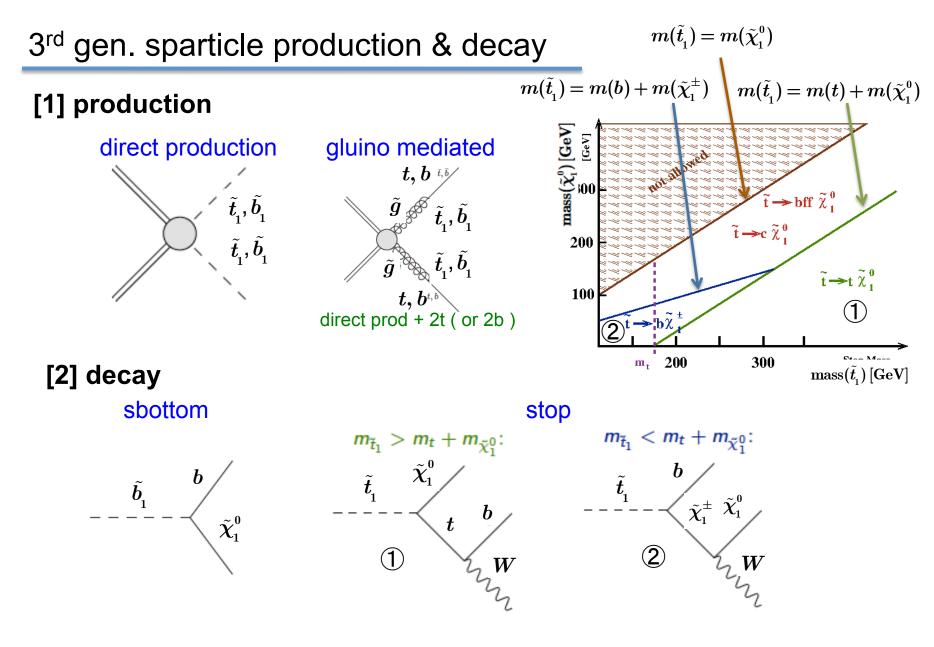
• $m_{sq} \sim m_{gl} > 1.5 \text{TeV} \rightarrow \text{explore even higher mass region}$



- 3rd generation squarks and weak gauginos could be light
- stop, sbottom productions, and direct gaugino productions

[3] R-parity violating scenarios, or long-lived SUSY particles

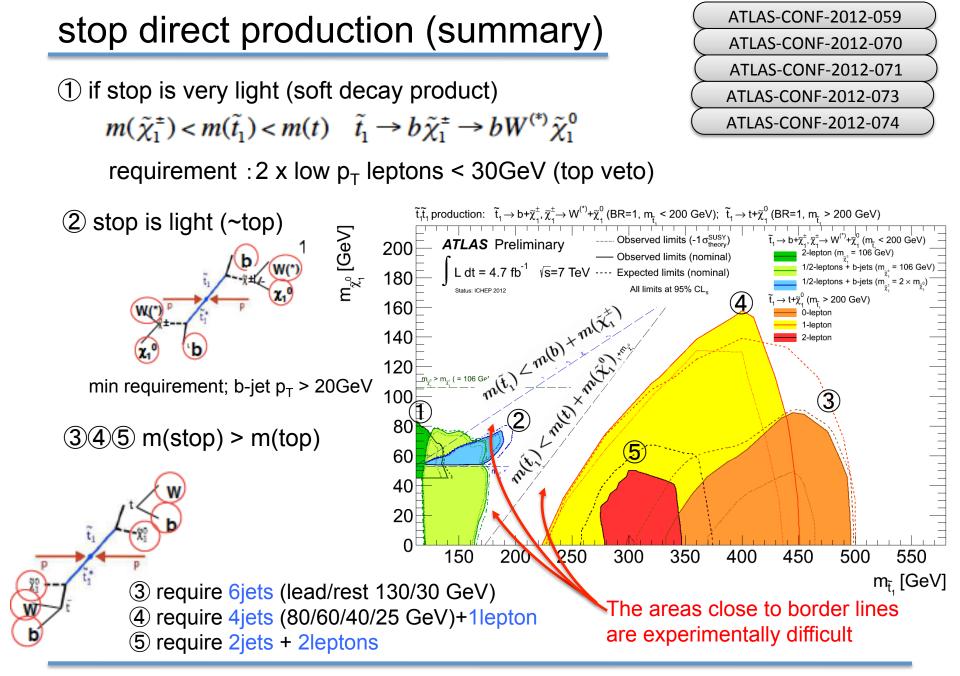
arXiv:1210.7451


arXiv:1210.2852


+ etc

ATLAS-CONF-2012-103 ATLAS-CONF-2012-104

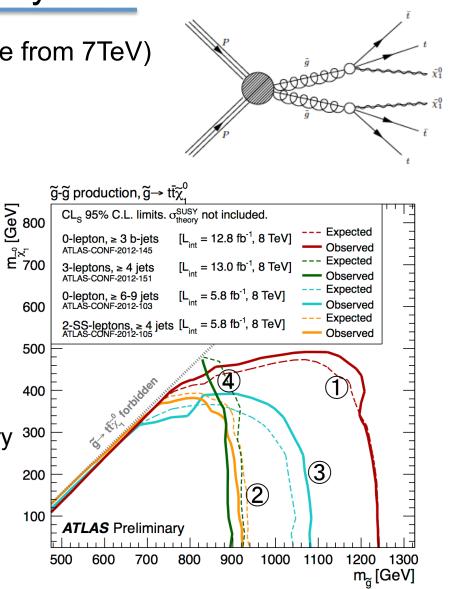
ATLAS-CONF-2012-109



complex categorization needed

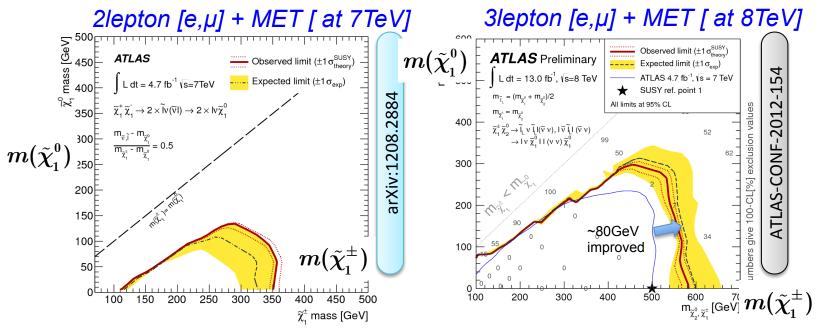
2012/12/4-7

ATLAS / JINNOUCHI

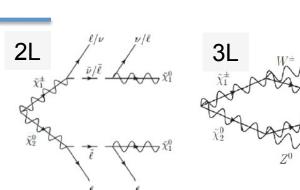

Gluino mediated stop decay

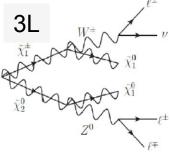
new 8TeV results (significant update from 7TeV)

- having 4 tops in final state
 - need to effectively veto ttbar
 - ① 0-lepton + 3b-jets



- 3-lepton channel complementary ³ ay near border line
- m(gluino) < 1240GeV m(neutralino) < 500GeV




Direct gaugino production

- Candidate of the naturalness scenarios
- look for evts w/ low jet activity +multi leptons
- Backgrounds
 - 2L: tt, Z+jets, WW
 - 3L: W+Z/ γ^*
 - estimations based on MC (normalized to Data)

interpret in simplified model: squarks, gluino very heavy, m(N2)=m(C1) excluded m(C1) < 380 GeV (in the presence of light sleptons)

current status of the **EXOTICs**

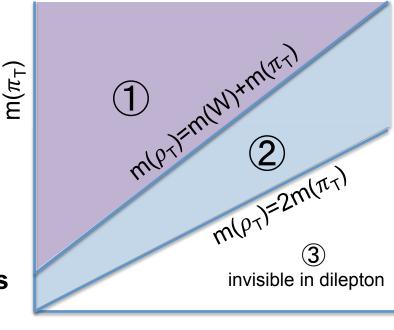
There are too many channels ... review here only results connected to LSTC

SGCT scenarios at LHC

- Look for di-lepton and di-boson resonances (typical clean LHC signal)
- Low Scale TechniColor (LSTC)
 - ρ_{TC} , ω_{TC} , \mathbf{a}_{TC} states (400~800GeV)
 - some published papers consider the LSTC models in resonance search for setting the limit
 - the others do not based on specific models but e.g. just SSM then the spectrum or model indep. XS limits are important
 - (1) Vector states ρ_{TC} , ω_{TC} decaying into di-leptons

(2) narrow resonance decaying into di-bosons WZ, $Z\gamma$, $W\gamma$

• High energy WW scatters


- still important even if we confirm the SM Higgs boson
- require a large luminosity \rightarrow for the future upgrades

LSTC search in ATLAS

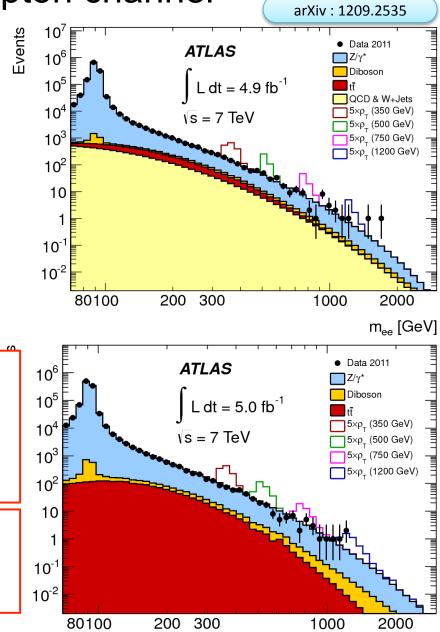
- QCD-like spectrum with scale $O(\Lambda_{TC})$
 - *A*_{TC} ~ 100GeV
 - technipions: π_{T}
 - technimesons: ρ_{T} , ω_{T} , a_{T}
- Walking coupling suppresses the
 V → n π_T decay (region ③)
 then narrow resonances expected
- ATLAS look for narrow resonances
 - $\rho_T^0 \rightarrow \ell \ell$
 - $\rho_{T}^{\pm} \rightarrow W^{\pm}Z$
- Previous limits from Tevatron
 - CDF: looked for $\rho_T \rightarrow W \pi_T$, (region 2) best limit M(ρ_T)<250 GeV
 - D0 : looked for $\rho_T \rightarrow WZ$, (region 1) best limit M(ρ_T)<400 GeV

CDF PRL 104 (2010) 111802

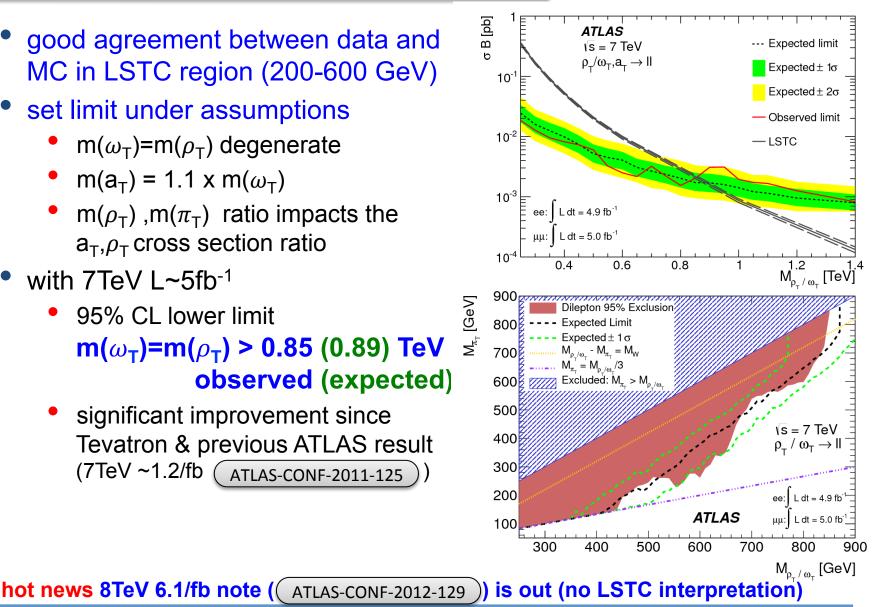
D0 PRL 104 (2010) 061801

 $m(\rho_T)$

Resonance search in di-lepton channel


- The primary focus of the analysis lies in high mass tail (>1TeV)
- Limits can be reinterpreted in terms of LSTC
 - smaller signals at lower mass
- Backgrounds
 - main: Drell-Yan
 - di-boson, W+jets, top-pair
 - QCD data driven method estimation

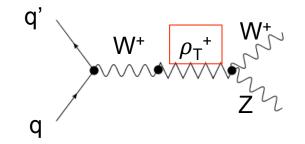
 E_T >25GeV ID cuts on track, EM shower Isolation E_T <7GeV in Δ R<0.2 correction for pileup and leakage from electron cluster


Muons

 p_T >25GeV combined track : ID + Muon spectrometer isolation : track sum p_T (ΔR <0.3) < 0.05 p_T

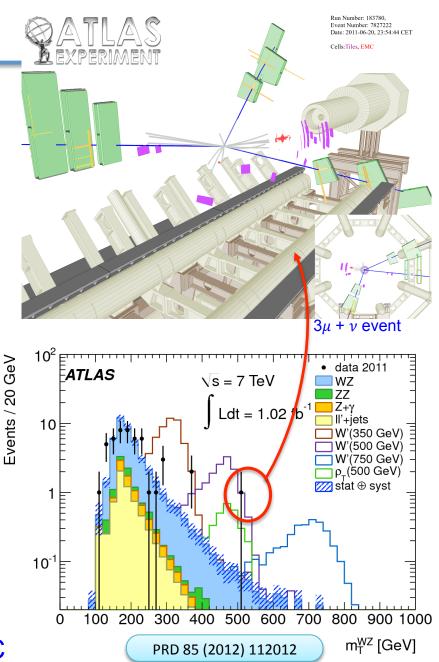
Resonance search in di-lepton channel

- good agreement between data and MC in LSTC region (200-600 GeV)
- set limit under assumptions
 - $m(\omega_T)=m(\rho_T)$ degenerate
 - $m(a_{T}) = 1.1 \text{ x } m(\omega_{T})$
 - $m(\rho_T)$, $m(\pi_T)$ ratio impacts the a_{T}, ρ_{T} cross section ratio
- with 7TeV L~5fb⁻¹
 - 95% CL lower limit $m(\omega_{T})=m(\rho_{T}) > 0.85 (0.89) \text{ TeV}$ observed (expected)
 - significant improvement since **Tevatron & previous ATLAS result** (7TeV ~1.2/fb (ATLAS-CONF-2011-125

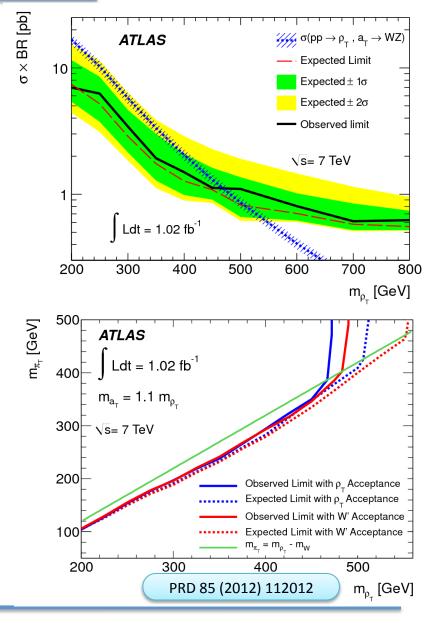

ATLAS / JINNOUCHI

VV final state resonance search

- In many possible BSM scenarios, new heavy particles decays into a pair of vector bosons, are important
- Final states are categorized by decay modes i.e. number of leptons
- In ATLAS, various searches carried out
 - ZZ → ℓℓℓℓ (7TeV 1/fb __arXiv:1203.0718)
 - WZ $\rightarrow \ell \nu \ell \ell$ (7TeV 1/fb PRD 85 (2012) 112012
 - WW $\rightarrow \ell \nu \ell \nu$ (7TeV 5/fb arXiv: 1208.2880
 - $Z + W/Z \rightarrow \ell \ell q q (8 \text{TeV } 7/\text{fb} (ATLAS-CONF-2012-150})$


so far these analyses showed null results

LSTC interpretation is performed in WZ channel

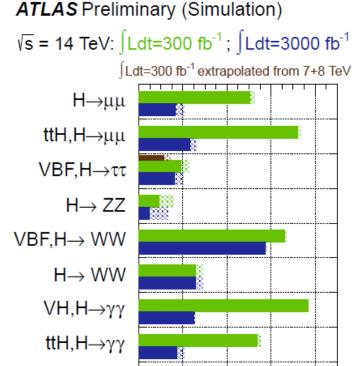

Resonant WZ production

- Search in the final state with 3charged leptons + MET
- Electrons
 - E_T>25GeV, track and calo shape quality selection
 - isolation (<4GeV in ∆R=0.3)
- Muons
 - pT>25GeV, track quality cut
 - isolation (track pT sum
 < 0.1pT in ∆R=0.2)
- Event selection
 - two opposite sign, same flavor leptons (|M_{II}-M_Z|<20GeV)
 - 3rd lepton & MET > 25GeV
 - M_T(W)>15GeV (QCD veto)
- Background
 - dominant WZ : estimated by MC

Resonant WZ production cont'd

- 48 candidates observed with SM prediction 45.0±1.0(stat)^{+4.6}-5.2(sys)
- dominant systematic sources are theoretical uncert. and luminosity
- no significant excess observed
 → set limit on σ x Br assuming m(a_T) = 1.1 x m(ω_T) acceptance calc. with unpol W/Z
- m(ρ_T) > 467 (506) GeV for observed (expected) limit (blue solid/dashed lines)
- N.B. limit slightly changed by using W' acceptance (polarized case : red lines)

prospects for Sensitivities for data in coming years


Higgs properties measurements

2011-2012

- Current efforts with 2011-2012 data are targeting Moriond-2013
- (see ATLAS-PHYS-PUB-2012-001 & -004 for detail)
- data 2011-2012 would allow the spin & parity measurement

After upgrade

- for the data after shutdown, we envisage
 - until 2021: 14 TeV ~400/fb
 - after 2022 (for 10 years): 14 TeV ~3000/fb
- overview of the expected precision on signal strength is on right figure
- the expected precision on independent coupling strength (300/fb):
 κ_V=3%, κ_F=9%

88.

VBF, $H \rightarrow \gamma \gamma$

 $H \rightarrow \gamma \gamma (+j)$

 $H \rightarrow \gamma \gamma$

0 0.2 0.4 0.6 0.8

Dilepton resonances in high energy end

- higher the integrated luminosity \rightarrow better reach in high energy
- new Z' resonances in SSM, RS-graviton states
- Separate issues for "extremely" high energy region
 - saturation of readout electronics for EM calorimeter (max energy per cell < ~3TeV)
 - muon momentum resolution deterioration (10% @ 1TeV)
 - thus different sensitivity between ee and mm

Current limit				
Current limit	$Z'_{SSM} \rightarrow \ell \ell$	√s =7TeV, 4.9/fb	2.21 TeV arXiv : 1209.	2535
	$Z'_{SSM} \rightarrow \ell \ell$	√s =8TeV, 6.1/fb	2.49 TeV ATLAS-CON	F-2012-129
Prospects	model	300/fb	3000/fb	
	Z′ _{SSM} → ee	6.5 TeV	7.8 TeV	
	$Z'_{SSM} \rightarrow \mu\mu$	6.4 TeV	7.6 TeV	
	\sqrt{s} = 14TeV sensitivity (expected limit) for Sequential SM			

considered only DY background

Summary

- Higgs like particle
 - no question about its existence anymore
 - various measurements started
 - signal strength measurements agree with SM with current experimental uncertainties
 - some of the coupling measurements have sensitivity and favor SM, the others still have no sensitivities
- SUSY
 - no hint of event excess yet
 - search strategies evolved from simple golden channels to various natural scenarios to explore undetected regions
- LSTC
 - ATLAS has set severe constrains to the model
 - $m(\rho_T) < 0.85$ TeV excluded for $\rho_T \rightarrow \ell \ell$ channel
 - $m(\rho_T) < 0.47$ TeV excluded for $\rho_T \rightarrow WZ \rightarrow 3\ell + MET$ channel

STAY TUNED

ATLAS "Higgs" party Aug.29, 2012