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Many flavors on the lattice

Other groups w/ SU(3) fund. fermion

o 12 flavors
— Aoki, et al
— Appelquist, et al
— Fodor, et al
— Hasenfratz, et al
— Pallante, et al
e Other number of flavors
— Ttou, et al
— Yamada, et al
— LSD

Our work w/ 8 and 12 flavors

Naive staggered fermion

DBW2 gauge

Low energy hadronic observables
Zero and finite temperature
Across awide range of lattice scales
Small finite volume effects (few
percent)

No consensus on whether the zero temperture continuum phase is conformal or

chirally broken.
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Behavior of mz. vs. m,

8 flavors 12 flavors
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e Mostly linear in our parameter range == Gold stone behavior!?
e Slope, in lattice units, almost doesn't change for different g and Ny
e Bulk transition at 8 = 0.46, more about it later
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Large change of lattice scales at Ny = 12
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¢ Nonzero values at m,; = 0 with linear extrapolations
e Lattice scales change about x10 across the bulk transition
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The 15! order bulk transition & the critical end point
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e Volume independent == finite temperature effect less likely.

e For most channels, the difference in particle masses on the two sides of the
bulk transition become smaller and vanish when quark mass is increased.

e The scalar singlet is found to be special.
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Scalar singlet meson
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e The scalar singlet meson becomes lighter along the 1st order bulk transition
line approaching the 2nd order critical end point.

e Continuum limit of the lattice theory at second order critical point is likely a
free scalar field theory.
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Lattice gauge theory & critical point

e Lattice theory represents the continuum theory only when correlation lengths
diverge.

¢ Only then, the lattice system forgets about the underlying lattice.

e It only happens near some ultraviolet fixed points.

e B — o (g — 0) for standard model QCD.

e The behavior of a continuum theory is only realized in the limit of UV fixed
point on the lattice.

e The huge advantage of doing the standard model QCD:
We know we are close to the continuum limit when our results conform to
experiments.
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The lattice phase diagram

Critical Point

e Continuum approached by going to f — oo, where correlation length diverges.

e Certain correlation length (we found the scalar singlet meson) diverges at the
second order critical point at finite quark mass.

¢ Now we have two fixed points on the lattice that have continuum limit.

e Not easy to tell if we are close to the B — o continumm limit.

e Decreasing quark mass == moving away from finite m, continuum limit.
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What about conformal behavior

e Common finite size scaling hypothesis: LM = f(Lm)

o limj_.oM x mg, valid for all bare input 8

e In the infinite volume limit, with vanishing quark masses, for every bare input
B, there is a continuum limit!
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Question: With L — o and m,; = 0, do we have the same physics at different
bare input B?
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Constant physics by mqy/fr

8 flavors 12 flavors
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Hadronic scale (fr) is decreasing so rapidly that m/f; is increasing!

Warnings:

o Constant my/fr requires increasing m, while increasing B.
e Backward flow of constant m/fr in weaker couplings.
e Misleading conclusions at large m,.
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More ratios using m, as a scale

1/m,

e Dashed lines are simple chirally broken extrapolations:

mz = comg(1 + cmy), my = bo + bymy + bomg, and f;; similar to m,
¢ Had conformal behavior assumed, each ratio be a constant as 1/m, — oo
e Question: Should a specific ratio be a same constant for different 5?
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Assuming conformal, which do we expect with L — o

Different physics
for different 5?

Same physics
for different B?
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Is chiral symmetry breaking viable

1/m,

e Added 8-flavor S = 0.56 to 12-flavor picture

e Very similar behavior between 8-flavor and 12-flavor

¢ Hadronic scale (m,, fr) has much more profound dependence on input quark
mass, my, in 12-flavor than 8-flavor. ChiPT ineligible for sim. points, 8f or | 2f
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ChiPT ineligible for sim. points, 8f or 12f


Universality
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1/m,

e Picked the largest volume for each m,, small finite volume effect

o Weakest couplings we can go are governed by computational resources
o Different lattice action, different lattice artifact, yet similar behavior

e Is each ratio going to a constant as 1/m, — oo?

e Are they showing any chirally broken behavior?
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ill know much more

5., 6
if we can go to smaller

1/m,

input quark masses
e Picked the largest volume for each m,, small finite volume effect

o Weakest couplings we can go are governed by computational resources
o Different lattice action, different lattice artifact, yet similar behavior
e Is each ratio going to a constant as 1/m, — oo?

e Are they showing any chirally broken behavior?
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We will know much more
if we can go to smaller
input quark masses
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Summary

« We have located a lattice artifact, critical point where scalar cor-
relation length diverges, with naive staggered fermions and the
DBW?2 gauge action.

e Much lighter quark masses might be needed to actually differ-
entiate between conformal and chirally broken scenarios.

« How to effectively scale towards the continuum limit within our
current computational resources remains a question for both
scenarios.
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