2012/12/04 SCGT2012

Conformal Window and Correlation Functions in Lattice Conformal QCD

Y. Iwasaki U.Tsukuba and KEK

In Collaboration with

K.-I. Ishikawa(U. Horoshima) Yu Nakayama(Caltech & IPMU) T. Yoshie(U. Tsukuba)

Plan of Talk

- Briefly review our previous works on the phase structure of the lattice SU(3) QCD. Thereby clarify the reason why we conjecture that the conformal window is $7 \le N_f \le 16$
- Introduce the concept of "conformal theory with IR cutoff".
 - Propose new predictions about the propagator of a meson.
 - We verify that new numerical results satisfy our proposals for Nf=7 and Nf=16.

(to be continued)

Plan of Talk (Cont.)

 Point out and verify that the propagator of a meson at T/Tc >1 shows the characteristics of "conformal theory with IR cutoff".

STAGES and TOOLS

- Lattice gauge theory
 - one-plaqutte gauge action
 - Improved RG action: future plan
 - Wilson fermion action
- Lattice size: Nx=Ny=Nz=N; Nt=r N
- Lattice spacing: a
- PCAC quark mass: m_q
- G(t): propagators of mesons

Strategy for Part 1

- Investigate the phase structure in terms of g_0, m_{q0} for $N_f \leq 16$
- UV fixed point at $g_0 = 0, m_{q0} = 0$
- Find critical Nf for the Banks-Zaks IRFP on the massless line starting from UVFP
- Construct the field theory toward UVFP, taking the limit $a \rightarrow 0$ and $N \rightarrow \infty$ with L = a N constant

Phase Diagram: $N_f \leq 6$

Chiral transition on the massless line starting from the UVFP

The finite temperature phase transition in the quenched QCD transition and the chiral transition move toward larger beta, as N increases.

Phase Diagram: $N_f \leq 6$; N larger

As N increases, the green line becomes longer and in the limit N => infinity only the green part survives.

Phase Diagram: $7 \le N_f \le 16$

Complicated due to lack of chiral symmetry

the massless line from the UVFP hits the bulk transition
 no massless line in the confining phase at strong coupling region

massless quark line only in the deconfining phase

Phase Diagram: $7 \le N_f \le 16$

What found

- There are no green lines (massless line in the confining phase) for $7 \le N_f \le 16$
- Conformal window is $7 \le N_f \le 16$
- Indirect way to conclude this

More direct way

- Identify the IR fixed point
 For small Nf, g* is in strong coupling region
 Only upper limit for g* ?
- Find out characteristics of Conformal theories <= this work

(End of part 1)

Strategy for part 2

- Define a continuous theory by continuum limit of lattice theory, keeping L =finite or infinity
- Introduce the concept "Conformal theories with IR cutoff" in continuous theories
- Then propose Conformal theories on a lattice

Continuum limit

- $a \to 0$ and $N \to \infty$, keeping L = N a constant
- case 1: L=infinity IR cut-off $\Lambda_{IR} = 0$; R^4
- case 2: L=finite IR cut-off $\Lambda_{IR} = 1/L$; T^4
- A huge difference between case1 and case2

Case 1: $\Lambda_{IR} = 0$

No physical quantities with physical dimensions conformal region exists only on the massless line massive region is confining phase

deconfining phase in strong coupling region is conjectured based on numerical simulations

Case 1: Propagators of mesons
When
$$g(\mu) = g^*$$

 $G(t) = c \frac{1}{t^{\alpha}}$ $\alpha = 3 - 2\gamma_H^*$ scale invariant
When $0 < g(\mu) < g^*$
 $G(t) = c \frac{1}{t^{\alpha(t)}}$
 $\alpha(t) = 3$ $t \ll \Lambda_{CFT}$ UV fixed point
 $\alpha(t) = 3 - 2\gamma_H^*$ $t \gg \Lambda_{CFT}$ IR fixed point

 Λ_{CFT} is a scale parameter for the transition region from UV to IR

Case 2: Conformal theories with IR cutoff

Physical quantities: Λ_{CFT} Λ_{IR} m_H

"Conformal theories with IR cutoff" region: see figure

Boundary of the "conformal" region is given by $m_H \leq c \, \Lambda_{IR}$

Case 2: Conformal theories with IR cutoff (Cont.)

$$G(t) = c \, \frac{\exp(-mt)}{t^{\alpha}}$$

 α and m are t-dependent: $\alpha(t) m(t)$ evolve with RG transformation

$$t \ll \Lambda_{CFT}$$
 $\alpha(t) = 3$ $m(t) = 2mq$

$$t \gg \Lambda_{CFT}$$
 $\alpha(t) = 3 - 2\gamma_H^*$ $m(t) = m_H$

Conformal theories on the Lattice

- Note: IR cutoff is inherent in numerical simulations on a lattice: $\Lambda_{IR} = 1/(aN)$
- Primary target of part 2 is to verify the transition of meson propagators from an exponential damping form to a modified Yukawa-type, that is, an exponential form with power correction

Size Dependence of Critical mass

When the lattice size is increased

$$N_2 = s N_1$$

The critical mass is decreased

$$m_q^{critical}(\beta, N_2) = 1/s \, m_q^{critical}(\beta, N_1)$$

If we keep the quark mass in the region

$$m_q^{critical}(\beta,N_2) \leq m_q \leq m_q^{critical}(\beta,N_1)$$
 Yukawa-type disappears

Have to carefully choose the parameters to find the "Conformal region"

Numerical Simulations

- Algorithm: Blocked HMC for 2N and RHMC for 1 : Nf=2N + 1
- Computers:
 U. Tsukuba: CCS HAPACS;
 KEK: HITAC 16000
- Nf=7, 16 and (Nf=2, 6)
- Lattice size: $8^3 \times 32, 16^3 \times 64, 24^3 \times 96$
- Statistics: 1,000 +1000 trajectories

Parameters of Simulations

Masses are preliminary !

Nf7							
K	0.1400	0.1446	0.1452	0.1459	0.1472		
mq	0.22	0.084	0.062	0.045	0.006		
mH(96)	0.66	0.33	0.33	0.20			
mH(64)	0.68	0.46	0.42	0.41	0.41		
mH(32)	0.74		0.74	0.74			
Nf16							
K	0.125	0.126	0.127	0.13	0.1315	0.13322	
mq	0.25	0.22	0.19	0.1	0.055	0.003	
mH(96)				0.30	0.27	0.32	
mH(64)	0.54	0.54	0.49	0.43	0.38	0.38	
mH(32)							

From now on, let me show you examples of Yukawa-type propagators for Nf=7 at beta=6.0 and Nf=16 at beta=11.5 detailed analyses will come later

Nf7: mq=0.045: example of Yukawa-type

Nf=7: mq=0.22; example of exp!!-damp

Nf=7: mq=0.045 Yukawa-type fit[15:31]

Nf16: mq=0.055; example of Yukawa-type

Nf16: mq=0.055: Yukawa-type fit[15:31]

Beta=11.5, K=0.1315, Nf=16, 16³x64, PS-channel 0.51 loc(t)-loc(0)0.5 fit[15:31] 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.42 0.41 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 0

More example :Nf=7; mq=0.084

More Nf=7; mq=0.062

More Nf=7; mq=0.0006

Now Nf=16; mq=0.1

More NF=16; mq=0.003

Verified the existence of "Conformal theories with IR cutoff" for Nf=7 and 16

 $m_H \leq c \Lambda_{IR}$ $\Lambda_{IR} = 1/(N^3 imes N_t)^{1/4}$

 $c \sim 11.0$ Nf=7 for all lattice sizes at beta=6.0 $c \sim 12.4$ Nf=16 for all lattice sizes at beta=11.5

Achieved the first target in part 2

Second primary target in part 2

- What kind of theory is defined ?
- $\alpha(t)$ and m(t) reflect the dynamics
- Investigate t-dependence of $\alpha(t)$ and m(t)

$m(t), \alpha(t)$: Nf=7; mq=0.084

$m(t), \alpha(t)$: Nf7; mq=0.062

$m(t), \alpha(t): Nf7; mq=0.045$

m(*t*), *α*(*t*) : Nf7; mq=0.0006

$m(t), \alpha(t)$: Nf16; mq=0.084; N=16

$m(t), \alpha(t); Nf16; mq=0.062; N=16$

$m(t), \alpha(t): Nf16; mq=0.0006; N=16$

Beta=11.5, K=0.13322, Nf=16, 16³x64, PS-channel (loc(t)-loc(0)) Beta=11.5, K=0.13322, Nf=16, 16³x64, V-channel (loc(t)-loc

$m(t), \alpha(t)$: Nf16; mq=0.084; N24

m(*t*), *α*(*t*) : Nf16; mq=0.062; N24

$m(t), \alpha(t)$: Nf16; mq=0.0006; N24

Observation of the results

- Finite size effects are severe $m_H = 0.2 \sim 0.4 \quad {\rm for} \quad m_q \sim 0.0$
- Clear difference between Nf=7 and Nf=16
- Nf 7: plateau at t= 15 ~ 31 (16^3x64)
- Nf16: shoulder at t= 12 ~ 24 (both sizes)
- Compare the results with some models

t-dependence of $\alpha(t)$

- In general, in the continuum limit $lpha(t)=3-2\gamma^*$ for $t\gg \Lambda_{CFT}$
- In the above derivation, assumed $m_H t \ll 1$
- In simulation results

 $m_H t \ge 1$ $m_H = 0.3 \sim 0.4, t = 30 \sim 45$

- To estimate $\alpha(t)$ in this case, we need a model

Some models

- a free Wilson quark and an anti-quark
- meson unparticle model*

$$\langle O(p)O(-p)
angle = rac{1}{(p^2+m^2)^{2-\Delta}} \qquad \qquad O(p)$$
 : meson operator

fermion unparticle model*

$$\langle \psi(p)\bar{\psi}(-p)\rangle = (p^{\mu}\gamma_{\mu} + m)\frac{1}{(p^2 + m^2)^{\frac{5}{2} - \Delta_f}}$$

*: motivated by the soft-wall model in AdS/CFT correspondence

Model calculations

In case $m_H t \gg 1$, for $t \gg \Lambda_{CFT}$

Free case:
$$\alpha(t) = 3/2$$

Meson unparticle case:

$$\alpha(t) = 2 - \gamma^*$$

Fermion unparticle case:

$$\alpha(t) = 3/2 - \gamma^*$$

Interpretation of Results

- Nf=7 is close to the meson unparticle model plateau at $t = 16 \sim 24$ $2 - \gamma^* \sim 0.8$ $\gamma^* \sim 1.2$
- Nf=16 is close to the fermion unparticle model shoulder at $t=20\sim24$

$$1.5 - \gamma^* = \alpha$$

$$1.5 - \gamma^* \sim 1.5$$

consistent with 2-loop results:

$$\gamma^* \sim 0.025$$

(End of part 2)

Strategy for Part 3

- Note that QCD at high temperature is the theory with IR cutoff
- Apply a similar idea of Part 2 to this case
- Derive physical implications

Running Coupling Constant at T

Define a running coupling constant $g(\mu; T)$ on the line $m_q = 0$ by any method such as Wilson method cf: Kaczmarek(2004) et. al $V(r,T) = c \alpha(r,T)/r$

In UV region, the theory is asymptotic free, therefore perturbative RG is applicable the coupling constant is universal $g^2(\mu;T) = g^2(\mu;T=0) + cg^4(\mu;T=0)$

Running Coupling Constant at T (Cont.)

- In IR region, the running constant g(μ,T) may be quite different from g(μ,T = 0) since the IR cutoff is finite; 1/T
- When T/Tc >1, $g(\mu,T)$ cannot be arbitrarily large, since the quark is not confined

Beta function for T > Tc

β(*g*) **♦** As far as $T < T_c$, $T \gtrsim T_C$ the beta-function is negative all through gWhen $T > T_c$, but $T \sim T_c$ $g(\mu;T)$ the beta function changes the sign from negative to positive at large gβ(*g*) **♦** $T > T_C$ When T increases further, $g(\mu;T)$ it will change the sign at medium strong g $\beta(g)$ $T >> T_c$ When $T \gg T_c$ it will change the sign at small g $g(\mu;T)$

Nf=2; T~ 2 Tc

T~100Tc

T ~ 10^5Tc

Similarity betweenlarge Nf with Λ_{IR} and small Nf at T/Tc >1

Nf16; with Λ_{IR}

Nf2; T= 100Tc

Similarity between large Nf with Λ_{IR} and small Nf at T/Tc >1

Nf7; with Λ_{IR}

Nf2; T = 2 Tc

Long standing important issues

- Free energy of quark-gluon plasma state does not reach that of the Stefan-Boltzman idea gas state even at T/Tc=100
- Wave function of "meson" just above Tc can be obtained, although quarks are deconfined
- The order of chiral phase transition in Nf=2 case: 1st or 2nd ? : UA(1) symmetry ?

Pisarski and Wilczek(1984), iwasaki et. al(1997); S. Aoki et. al(2012)

Solutions

- quarks and gluons are not free particles
 When T ~ Tc, meson unparticles
 When T >> Tc, fermion unparticles
- meson unparticles are similar to meson particles in some aspects
- G(t) is not analytic in terms of mq and mH

(End of part 3)

Conclusions

- "Conformal Theories with IR cutoff" are satisfactorily verified in the cases of Nf=7 and Nf=16
- The assertion that the Conformal Window is $7 \le N_f \le 16$, is thereby strengthened
- "Conformal Theories with IR cutoff" are also verified in the case of T/Tc >1 in Nf=2 and Nf=6
- IR cutoff is inherent with simulations on a lattice and QCD at high temperatures

Conclusions (Cont.)

- "Nf=7" and "T~Tc" are similar to each other, and are consistent with meson unparticle model
- "Nf=16" and "T>>Tc" are similar to each other, and are consistent with fermion unparticle model
- Physics implications should be deepened
- A lot of things should be done