Réaching the chiral limit in many flavor
™ systems

In collaboration with A. Cheng, G. Petropoulos and 5.‘5 ,_aleﬁ
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This is not what we expected, but we have to deal with it.

Is there room for a composite (strongly coupled) Higgs?



Composite Higgs in strongly coupled systems:

Still an attractive idea:
SU(N,,or 22 ) gauge fields + Ng, ., fermions in some representation

color




Composite Higgs in strongly coupled systems:

Still an attractive idea:
SU(N,,or ) gauge fields + Ng_ ., fermions in some representation

Strongly coupled conformal or
near-conformal systems are the most
interesting




Which model? What representation, N, N; ?
What property? What method?

In Colorado we developed several methods to study conformal and

near-conformal systems:

* Phase diagram at zero and finite temperature
ArXiv:1111:2317,1207.7162

« Dirac eigenmodes & the mass anomalous dimension  ArXiv:1207.7164
« Monte Carlo renormalization group matching ArXiv:1212.xxxx

We tested with N=4, 8 and 12 fundamental fermions with SU(3) gauge
Found some surprising results



Phase diagrams

QCD like

A

confining
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3=6/g?

(arrows: UV to IR)

Conformal
confining
m
buk  IRFP |
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Bulk transition: lattice artifact but a real phase transition
IRFP: its location is scheme dependent, not physically observable



Finite temperature and bulk phase transitions

QCD like Conformal
contlilng b= O / 8/ 16 /32 ; N ﬂ 717? ]
m
//// deconfined { Ik IREP 1
< ® @ > L
B.> o as N> o© Bs 2 By 88 Np > o0

In a conformal system

 finite temperature transitions run into a bulk (T=0) transition
BLuk Separates strong coupling (confining) and weak coupling
(conformal) phases



Phase diagram in 3-m space fo

Intermediate phase bordered by bulk 15t order transitions
The chiral bulk transition fissioned into two
(This has been observed by Deuzeman et al, LHC collab. as well)
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Phase diagram in 3-m space fo

Intermediate phase bordered by bulk 15t order transitions
The chiral bulk transition fissioned into two
(This has been observed by Deuzeman et al, LHC collab. as well)
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A new symmetry breaking pattern

Single-site shift symmetry (S%): x, > x,+U
is exact symmetry of the action but broken in the IM phase
—> plaquette expectation value is “striped”

>




A new symmetry breaking pattern

Order parameters:

Plaquette difference: AP, = (ReTrO, — Re TrO,,)

Link difference: " e
=({au(n)x(n)Uu(n)x(n + p)

—au(n+p)xX(n+p)Uu(n+ p)x(n+ 2p))n,e
+

n,even
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S*b symmetry breaking pattern

— Single-site shift symmetry is exact in the action, S*b phase has to
be bordered by a “real” phase transition

— Exist with 8 & 12 flavors, not with 4

S*b phase
— Could signal a special taste breaking
- Confining (static potential, Polyakov loop)
— Chirally symmetric (meson spectrum, Dirac eigenvalue spectrum)

Such phase does not exist in the continuum limit

Must be pure lattice artifact



S*b symmetry breaking pattern

— Single-site shift symmetry is exact in the action, S*b phase has to
be bordered by a “real” phase transition

— Exist with 8 & 12 flavors, not with 4

S*b phase
— Could signal a special taste breaking
- Confining (static potential, Polyakov loop)
— Chirally symmetric (meson spectrum, Dirac eigenvalue spectrum)

Such phase does not exist in the continuum limit

in gauge-fermion systems

Must be pure lattice artifact within gauge fermion systems
Could become physical with some other interaction



Phase diagram in 3-m space fo

What is the relation between bulk and finite T transitions?
Finite T = 1/(N,a) simulations with N,=8,12,16,20
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Phase diagram in 3-m space fo

Finite T transitions are stuck to the S* phase boundary
No confining phase at weak coupling:
transition from S* b—> chirally symmetric
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Consistent with IR-conformality.



Phase diagram in 3-m space fo

N~=8 is expected to be chirally broken —

S*b phase ... must be an irrelevant lattice artifact ?
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Finite temperature phase structure — N; =8

N, = 8,12,16 looks OK at m=0.01.
« Weak coupling side shows both confining and deconfined phases

« Consistent with 2-loop PT
0.035
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N, = 8,12,16 looks OK at m=0.01.
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Finite temperature phase structure — N; =8

N, = 8,12,16 looks OK at m=0.01.
« Weak coupling side shows both confining and deconfined phases

« Consistent with 2-loop PT
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Finite temperature phase structure — N; =8

At m=0.005 no confining phase on N,s16
the N, =12-16 looses scaling ??
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Finite temperature phase structure — N; =8

At m=0.005 no confining phase on N,s16
Let’s try N, =20 : looks OK.
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Finite temperature phase structure — N; =8

We can check this in the chiral limit with direct m=0 simulations!
—> lost the confining phase in the chiral limit even on N=20
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Dirac eigenvalue spectrum

Eigenvalues at small A are related to IR physics

In conformal systems the eigenvalue density p scales as  p(A) o< A”

A
The mode number V(1) = Vj Ap(w)da) < VA% is RG invariant
B (Giusti,Luscher)

4
- a is related to the anomalous dimension E =y, = 1+ Y.

(Zwicky,DelDebbio;Patella)



The energy dependence of y,,

Y, depends on the energy scale :
this is manifest as A dependence of the eigenmode scaling

4 | IR — small A region:
_— =]+
P(ﬂ‘l l+o i Vm Y A>0)>7"
| predicts the universal anomalous
dimension at the IRFP

UV —large A =O(1) region:

Governed by the UVFP

(asymptotically free perturbative FP)
Yu(A)—0

In between:

Energy dependent y,,




The energy dependence of y,, :Chirally broken systems

The picture is still valid in the UV and moderate energy range

p(A)

R

IR — small A region:
p(0)#0
predicts the chiral condensate.
Fit gives a=0 - vy, >3, but that is not
physical!

UV —large A =O(1) region:

Governed by the UVFP

(asymptotically free perturbative FP)
Yu(A)—0

In between:

Energy dependent y,,



Volume dependence

The scaling form is valid in V>« only!
— Increase the volume until volume dependence vanishes
— OR combine different volumes & use the finite volume as advantage
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Extracting vy,

e Fit:

* Volume dependence:
- Ignore small A /volume transient

- Look for overall “envelope”
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Extracting vy,

e Fit:

* Volume dependence:
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Anomalous dimension N; =4

We know what to expect:

broken chiral symmetry in IR, asymptotic freedom in UV

2.0llll LI L L L
I I I I

Vm [
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1.0 —
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0.0llll|llll|llll|l

3=6.6, m=0.0025:
Chirally broken - vy, >1



Anomalous dimension N; =4

We know what to expect:
broken chiral symmetry in IR, asymptotic freedom in UV

2.0
y 1 {1 * [=6.6, m=0.0025:
m 1 o Chirally broken = y,, >1
P TTAES T . B=7.0,m=0.0:
[ —— 16%x32 .
I 4
1ol I;I 1 Can we relate the two couplings?
L I}I |
[II dy ]
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gt M 05 p=6.6 A
05— T, T — a(f=6.6)=13a(f=17.0)
- 1 rescale:
_ p=T0 1 A — (s
0.0 1|||I||||I1|||I1|||I1||| : a6'6 '



Anomalous dimension N; =4

We know what to expect:
broken chiral symmetry in IR, asymptotic freedom in UV

2.0
y :II i ° 3=6.6, m=0.0025:
moL . - Chirally broken - vy, >1
Mo oA 71 . B=7.0,m=0.0;
- I —— 16°x32 -
I
1ok Iii[ ] Can we relate the two couplings?
. i3 -
L II]: rIn -
e, ] e
osl- BT a(B=6.6)~13a(f=70)
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Anomalous dimension N; =4

We know what to expect:
broken chiral symmetry in IR, asymptotic freedom in UV

T L T prrg— Combine
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) I — . — Well over a magnitude in energy

- o Agrees with 1-loop PT as well



Anomalous dimension N; =4

We know what to expect:
broken chiral symmetry in IR, asymptotic freedom in UV

o ' ' S 12‘:><2'4 — Combine
it B=6.4, 6.6, 7.0, 7.4
ﬁ: i ;3 | /’L RN (a7.4 I+y,, /l
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001 0z 03 o4 lol.s 06 07 08 09 1 Well over.a magnitude in energy
e Agrees with 1-loop PT as well

Most of these data were obtained on deconfined (small) volumes at m=0!



Anomalous dimension N; =12

Every test we have done in /near the chiral limit suggests IR
conformality but the system is still controversial

3=3.0, 4.0, 5.0,6.0

1‘2 T T T T T 3 Y" .
Ny=12 . 1632
1} s 18° %36 v - . . .
24 X 48 | « There is no sign of asymptotic
o8 L o250 | freedom behavior for <6.0,
L Br = 4.0
- B = 3.0 Y, grows towards UV
WA * Not possible to rescale different 3's
0.2 _. %_;‘1', T =
00 0.1 0.2 0.3 0.4 01.5. 0.6 0.7 0.8 09

Looks as if there were an IRFP around 3=5.0



Anomalous dimension N; =12

Every test we have done in /near the chiral limit suggests IR
conformality but the system is still controversial

o 3=3.0,4.0,5.0,6.0

Ny=12 s 16" x 32
' g | « There is no sign of asymptotic
freedom behavior for 3<6.0,
Y, grows towards UV

1 * Not possible to rescale different 3's

Looks as if there were an IRFP around 3=5.0

Extrapolate to A=0: 7, (A—=0)—7y =0.30(3)



The mode number

A few lessons on y,, and the mode number
* Volume dependence is important, especially deep in the weak coupling
* V., depends on A, a constant fit will not work
* Y, shows strong 8 dependence : A = 0 extrapolation is tricky

123 %24 |

163 %32 |

243 x 48 —
Br=174
Br =10
/‘;I = (D()
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Perturbative «oveeverees 1

1.2

T T T T T T 1" XY,4 T
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1+ 183 % 36 m—
0.8+
Ym.61
0.4}
0.2
0 1 1 1 1 - 1 : 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8



Anomalous dimension, N; =8

The finite temperature structure shows strange behavior.
Eigenmodes are also closer to 12 than 4 flavors:

1.2
T ﬂ_/b"’—’_-—’—_’- H H
| \cngj_t_ww_ | No asymptotic free scaling
g No rescaleability of different
o .
T e 1 couplings

cod | Wheny,~2inthe UV, the
P e S*b phase develops

16° x 32
0.4 24° x 48—
Br =54
Br =50
0.2 Br =43
Br =47

Br = 4.65
(I 1

0 0.1 0.2 0.3 1 0.4 0.5 0.6 0.7

If N;=8 is not conformal, it must be slowly walking.



Conclusion & summary

Even after the 4t of July fireworks, strongly coupled systems are worth
iInvestigating:
— Lattice regularized models can show unexpected phases : S*b phase

- Finite temperature studies are reliable to study the phase structure only
in the chiral limit (or very small bare mass)

- Dirac eigenmodes predict the energy dependent anomalous dimension
but careful control of finite volume and A -0 extrapolation is needed

SU(3) gauge + fundamental fermions:
- N=12 system looks conformal
- N~=8 system is unexpected: if not conformal, it must be slowly walking



EXTRA SLIDES



The finite temperature phase structure of N~=12

were among the first BSM studies :
—Finite T transition with N; 24 flavors is expected to be first order
— First results were as expected (2008) (Deuzeman, Lombardo, Pallante)
— Second generation studies found 2 first order transitions

in the chiral condensate (both Deuzeman et al and LHC)
N. dependence of PBP transitions (am = 0.025)
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The phase structure of N=12

2 jumps in the fermion condensate on T=0 lattices (at finite T as well)

0.5 T ; : T T = 31
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These are bulk transitions, present at T=0 and independent of the volume.



Dirac eigenvalue spectrum

Much less is known about chirally symmetric systems:

« p(0)=0 suggests the scaling form P(A) o< A°
A, is a “soft edge”, in conformal systems 4, =0

 The exponent a is related to the mass anomalous dimension
( Luscher&Giusti,Zwicky& DelDebbio)
The mode number

v(),) — Vjip(a))da) o V;Ll+oc _ (L),(HOC)M )4

is RG invariant 2

1+ o

—— =y =1+
A Ym Vi



Extracting vy,

« Configurations: 20-50 independent, 123x24 - 323x64 volumes

« mass: 0.0025 >0
no observable mass effect (but m=0.01 would be too large!)

« Calculate eigenmodes: ~1000 per configuration
Different volumes cover different A range

0.08 T T T T I I I I I I I I I I | I I

N=12 $=5.0 m=0.0025 /4 + Volume dependence:

006 L B The scaling form is valid in V>« only!
—— 16%32 i - Increase the volume until volume
—— 18°x36 .
24848 ’ dependence vanishes

< 0.04 —
QU L

] - Combine different volumes & use
the finite volume as advantage
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