Reaching the chiral limit in many flavor systems

Anna Hasenfratz University of Colorado

> SCGT12, Nagoya Dec 4 2012

In collaboration with A. Cheng, G. Petropoulos and D. Schaich ArXiv:1111:2317,1207.7162,1207.7164

4th of July Independence Day Fireworks

4th of July Fireworks, 2012

4th of July Fireworks, 2012

Discovery of a Higgs-like state at 125GeV

Discovery of a Higgs-like state at 125GeV

This is not what we expected, but we have to deal with it.

Is there room for a composite (strongly coupled) Higgs?

Composite Higgs in strongly coupled systems:

Still an attractive idea:

 $SU(N_{color} \ge 2)$ gauge fields + N_{flavor} fermions in some representation

 $\mathsf{N}_{\mathsf{color}}$

Composite Higgs in strongly coupled systems:

Still an attractive idea:

 $SU(N_{color})$ gauge fields + N_{flavor} fermions in some representation

Which model? What representation, N_c, N_f? What property? What method?

In Colorado we developed several methods to study conformal and near-conformal systems:

Phase diagram at zero and finite temperature

ArXiv:1111:2317,1207.7162

- Dirac eigenmodes & the mass anomalous dimension ArXiv:1207.7164
- Monte Carlo renormalization group matching ArXiv:1212.xxxx

We tested with N=4, 8 and 12 fundamental fermions with SU(3) gauge Found some surprising results

Bulk transition: lattice artifact but a real phase transition IRFP: its location is scheme dependent, not physically observable

Finite temperature and bulk phase transitions

In a conformal system

- finite temperature transitions run into a bulk (T=0) transition
- β_{bulk} separates strong coupling (confining) and weak coupling (conformal) phases

Phase diagram in β -m space for $(N_f=12)$

Intermediate phase bordered by **bulk** 1st order transitions The chiral bulk transition fissioned into two (This has been observed by Deuzeman et al, LHC collab. as well)

Phase diagram in β -m space for $(N_f=12)$

Intermediate phase bordered by **bulk** 1st order transitions The chiral bulk transition fissioned into two (This has been observed by Deuzeman et al, LHC collab. as well)

A new symmetry breaking pattern

Single-site shift symmetry (S⁴): $x_{\mu} \rightarrow x_{\mu} + \mu$

is exact symmetry of the action but broken in the IM phase

→ plaquette expectation value is "striped"

A new symmetry breaking pattern

Order parameters: Plaquette difference: Link difference:

$\Delta P_{\mu} = \langle \operatorname{Re} \operatorname{Tr} \Box_{n} - \operatorname{Re} \operatorname{Tr} \Box_{n+\mu} \rangle_{n_{\mu} \operatorname{even}}$ $\Delta L_{\mu} = \langle \alpha_{\mu}(n) \overline{\chi}(n) U_{\mu}(n) \chi(n+\mu)$ $- \alpha_{\mu}(n+\mu) \overline{\chi}(n+\mu) U_{\mu}(n+\mu) \chi(n+2\mu) \rangle_{n_{\mu} \operatorname{ev}}$

n+2µ

n+µ

n

 β = 2.6 IM phase β =2.7 weak coupling phase

S⁴b symmetry breaking pattern

- Single-site shift symmetry is exact in the action, S⁴b phase has to be bordered by a "real" phase transition
- Exist with 8 & 12 flavors, not with 4
- S⁴b phase
 - Could signal a special taste breaking
 - Confining (static potential, Polyakov loop)
 - Chirally symmetric (meson spectrum, Dirac eigenvalue spectrum)

Such phase does not exist in the continuum limit

Must be pure lattice artifact

S⁴b symmetry breaking pattern

- Single-site shift symmetry is exact in the action, S⁴b phase has to be bordered by a "real" phase transition
- Exist with 8 & 12 flavors, not with 4

S⁴b phase

- Could signal a special taste breaking
- Confining (static potential, Polyakov loop)
- Chirally symmetric (meson spectrum, Dirac eigenvalue spectrum)

Such phase does not exist in the continuum limit

in gauge-fermion systems

Must be pure lattice artifact **within gauge fermion systems** Could become physical with some other interaction

Phase diagram in β -m space for N_f =12

What is the relation between bulk and finite T transitions? Finite T = $1/(N_ta)$ simulations with N_t =8,12,16,20

Phase diagram in β -m space for $(N_f=12)$

Finite T transitions are stuck to the S⁴ phase boundary No confining phase at weak coupling:

transition from S⁴ b \rightarrow chirally symmetric

Phase diagram in β -m space for N_f =8

 N_f =8 is expected to be chirally broken – S^4b phase ... must be an irrelevant lattice artifact ?

N_t = 8,12,16 looks OK at m≥0.01.

- Weak coupling side shows both confining and deconfined phases
- Consistent with 2-loop PT

N_t = 8,12,16 looks OK at m≥0.01.

- Weak coupling side shows both confining and deconfined phases
- Consistent with 2-loop PT

N_t = 8,12,16 looks OK at m≥0.01.

- Weak coupling side shows both confining and deconfined phases
- Consistent with 2-loop PT

At m=0.005 no confining phase on $N_t \le 16$ the $N_t = 12-16$ looses scaling ??

At m=0.005 no confining phase on $N_t \le 16$ Let's try $N_t = 20$: looks OK.

We can check this in the chiral limit with direct m=0 simulations!

 \rightarrow lost the confining phase in the chiral limit even on N_t=20

Dirac eigenvalue spectrum

Eigenvalues at small λ are related to IR physics

In conformal systems the eigenvalue density ρ scales as $\rho(\lambda) \propto \lambda^{\alpha}$

The mode number $v(\lambda) = V \int_{-\lambda}^{\lambda} \rho(\omega) d\omega \propto V \lambda^{\alpha+1}$ is RG invariant (Giusti,Luscher)

 $\boldsymbol{\rightarrow} \alpha$ is related to the anomalous dimension

$$\frac{4}{1+\alpha} = y_m = 1 + \gamma_m$$

(Zwicky,DelDebbio;Patella)

The energy dependence of γ_m

 γ_m depends on the energy scale : this is manifest as λ dependence of the eigenmode scaling

IR – small λ region:

 $\gamma_m(\lambda \to 0) \to \gamma^*$

predicts the universal anomalous dimension at the IRFP

UV – large λ =O(1) region: Governed by the UVFP (asymptotically free perturbative FP) $\gamma_m(\lambda) \rightarrow 0$

In between: Energy dependent γ_m

The energy dependence of γ_m :Chirally broken systems

The picture is still valid in the UV and moderate energy range

Volume dependence

The scaling form is valid in $V \rightarrow \infty$ only!

- Increase the volume until volume dependence vanishes
- **OR** combine different volumes & use the finite volume as advantage

Extracting γ_m

- Fit: $\log(v(\lambda))=c+(\alpha+1)\log(\lambda)$
- Volume dependence:
 - Ignore small λ /volume transient
 - Look for overall "envelope"

Extracting γ_m

- Fit: $\log(v(\lambda))=c+(\alpha+1)\log(\lambda)$
- Volume dependence:
 - Ignore small λ /volume transient
 - Look for overall "envelope"

We know what to expect:

We know what to expect:

We know what to expect:

We know what to expect:

We know what to expect:

broken chiral symmetry in IR, asymptotic freedom in UV

Most of these data were obtained on deconfined (small) volumes at m=0!

Every test we have done in /near the chiral limit suggests IR conformality but the system is still controversial

β=3.0, 4.0, 5.0, 6.0

- There is no sign of asymptotic freedom behavior for β<6.0,
 γ_m grows towards UV
- Not possible to rescale different β's

Looks as if there were an IRFP around β =5.0

Every test we have done in /near the chiral limit suggests IR conformality but the system is still controversial

β=3.0, 4.0, 5.0, 6.0

- There is no sign of asymptotic freedom behavior for β <6.0, γ_m grows towards UV
- Not possible to rescale different β's

Looks as if there were an IRFP around β =5.0

Extrapolate to $\lambda = 0$: $\gamma_m(\lambda \to 0) \to \gamma^* \approx 0.30(3)$

The mode number

A few lessons on γ_m and the mode number

- Volume dependence is important, especially deep in the weak coupling
- γ_m depends on λ , a constant fit will not work
- γ_m shows strong β dependence : $\lambda \rightarrow 0$ extrapolation is tricky

The finite temperature structure shows strange behavior. Eigenmodes are also closer to 12 than 4 flavors:

No asymptotic free scaling No rescaleability of different couplings When $\gamma_m \sim 2$ in the UV, the S⁴b phase develops

If N_f=8 is not conformal, it must be slowly walking.

Conclusion & summary

Even after the 4th of July fireworks, strongly coupled systems are worth investigating:

- Lattice regularized models can show unexpected phases : S⁴b phase
- Finite temperature studies are reliable to study the phase structure only in the chiral limit (or very small bare mass)
- Dirac eigenmodes predict the energy dependent anomalous dimension but careful control of finite volume and $\lambda \rightarrow 0$ extrapolation is needed

SU(3) gauge + fundamental fermions:

- N_f=12 system looks conformal
- N_f=8 system is unexpected: if not conformal, it must be slowly walking

EXTRA SLIDES

The finite temperature phase structure of $N_f=12$

were among the first BSM studies :

–Finite T transition with $N_f \ge 4$ flavors is expected to be first order

- First results were as expected (2008) (Deuzeman, Lombardo, Pallante)
- Second generation studies found 2 first order transitions

(both Deuzeman et al and LHC)

The phase structure of $N_f=12$

2 jumps in the fermion condensate on T=0 lattices (at finite T as well)

These are bulk transitions, present at T=0 and independent of the volume.

Dirac eigenvalue spectrum

Much less is known about chirally symmetric systems:

- $\rho(0) = 0$ suggests the scaling form $\rho(\lambda) \propto \lambda^{\alpha}$ λ_0 is a "soft edge", in conformal systems $\lambda_0 = 0$
- The exponent α is related to the mass anomalous dimension

(Luscher&Giusti,Zwicky& DelDebbio)

The mode number

$$v(\lambda) = V \int_{-\lambda}^{\lambda} \rho(\omega) d\omega \propto V \lambda^{1+\alpha} = (L \lambda^{(1+\alpha)/4})^4$$

is RG invariant \rightarrow

$$\frac{1+\alpha}{4} = y_m = 1 + \gamma_m$$

Extracting γ_m

- Configurations: 20-50 independent, $12^3x24 \rightarrow 32^3x64$ volumes
- mass: 0.0025 → 0
 no observable mass effect (but m=0.01 would be too large!)
- Calculate eigenmodes: ~1000 per configuration
 Different volumes cover different λ range

- Volume dependence: The scaling form is valid in V→∞ only!
 Increase the volume until volume dependence vanishes
 - Combine different volumes & use the finite volume as advantage