Large-Nc gauge theory and Chiral Random matrix theory

Masanori Hanada 花田政範 Hana Da Masa Nori

(KEK Theory Center \rightarrow YITP, Kyoto U.) April 2013~

M.H., J.-W. Lee and N. Yamada, 1212.****[hep-lat]

7 Dec 2012 @Nagoya U.

* To establish the method, we numerically study Nf=0 case, for which we know the answer.

 $m_q N$: fixed, $N \rightarrow \infty$

Large-Nc vs chi-RMT

- In QCD, thermodynamic limit is $V \rightarrow \infty$.
- In the SU(Nc) case, it is $V \rightarrow \infty$ and/or $Nc \rightarrow \infty$.

So, when we compare it with chi-RMT,

$$m_q V \times (Nc)^{\alpha}$$
 : fixed.

Σ~(Nc)^α (α > 0)

Let us call it as 'chi-RMT limit.'

The large-Nc 't Hooft limit and chi-RMT limit are different!

't Hooft limit (planar limit) : m_q , V : fix, Nc $\rightarrow \infty$

chi-RMT limit : $m_q V \times (Nc)^{\alpha}$ fixed, $Nc \rightarrow \infty$

The Eguchi-Kawai equivalence does not hold in the chi-RMT limit!

($\approx m_q=0$ should be regarded as the chi-RMT limit.)

The large-Nc 't Hooft limit and chi-RMT limit are different!

$$f(m, V, N_c) = \sum_{g=0}^{\infty} \frac{f_g(m, V)}{N_c^{2g}}$$

't Hooft counting holds when this coefficient is Nc-independent

Large-Nc vs chi-RMT

This argument might be too naive for the Eguchi-Kawai model, because the chiral perturbation might not be applicable to 2^4 lattice straightforwardly.

Still, however:

- For sufficiently large lattice, there is no problem. There, the eigenvalue distribution depends only on mV×(Nc) $^{\alpha}$.
- If there is no phase transition (center symmetry breaking), the same expression should hold even at small V.

Numerical results (Nf=0)

- •2^4 plaquette action + heavy Dirac adjoint fermion \rightarrow unbroken center symmetry
- Probe massless overlap fermion in the adjoint representation
- Low-lying Dirac eigenvalues scales as $I/Nc \rightarrow \alpha = I$ (Naive expectation from the 't Hooft counting is $\alpha = 2$)
- Chiral symmetry must be broken.
 Can we detect it by comparing the simulation data with the chi-RMT prediction?

 $\delta\lambda_{k} = < \text{Im}[\lambda_{k} - \lambda_{k-1}] > , \quad \delta\lambda_{1} = <\lambda_{1} >$

perfect agreement with chi-RMT!

Conclusion & Outlook

- Chiral symmetry breaking at large-Nc can be detected by comparing small-size lattice and chi-RMT.
- 2^4, SU(8) (or SU(16)) is good enough.
- Simulaton of Nf=2 theory is ongoing.
- Be careful about the difference between the 't Hooft limit and chi-RMT limit when you use them.
- Twisted boundary condition (\rightarrow M. Okawa's talk)

Thanks!

-

(An

GR.

6

2008 Dragons Online Club Dragons