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2012: a first glimpse of Higgs
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Is Technicolor dead?
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Motivations

4

“Strong EW symmetry breaking is very appealing. I believe 
news of its demise are premature, driven mostly by our 
frustration with our inability to calculate. What we do know 
is that it is not a scaled up version of QCD. These 
comments apply equally to all alternatives to TC. So the 
strategy for progress is to (i) search and discover, (ii) study 
in detail and (iii) build a model and learn about strong 
dynamics. In that order!”

[Grinstein 11]

•Calculate on the lattice

•What are we searching for?

•Results and perspectives
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Hierarchies and scaling dimensions
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Linearized RG flow in a neighbourhood of a fixed point 

Associated IR scale:

g(µ) =

�
µ

ΛUV

�∆−D

g(ΛUV)µ
d

dµ
g = (∆−D) g +O(g2)

ΛIR ∼ g1/(D−∆)
0 ΛUV

�
D −∆ = O(1) g0 must be tuned

D −∆ � 1 natural hierarchy

Stable hierarchy related to weakly relevant operators. [Strassler 03, Sannino 04,Luty&Okui 04]

YM theory at the GFP is a limiting case:

ΛIR ∼ ΛUV exp{− 1

β0g2
}

Global-singlet relevant operators (GSRO) require fine-tuning.
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Flavor sector
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In the SM:

LY = y
u
HL̄uR + y

d
H

†
L̄dR dimension = 1+3 = 4

In DEWSB: scalar is composite  [Dimopoulos et al 79, Eichten et al 1980]

dimension = 3+3 = 6

Tension with suppressing FCNC

f

Λ2
UV

q̄qq̄q dimension = 6

LY =
y

Λ2
UV

Q̄Q q̄q

dim(H†
H) � 2
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Walking TC
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Alleviate the problem due to the large dimension of the composite scalar

Theory at the EW scale is near a non-trivial fixed point

Scaling dimension of the fermion bilinear is smaller

Small dimension allows a better description of the flavor sector, BUT

dim(H) � 1 =⇒ dim(H†
H) � 2

At a strongly coupled IRFP we could have: 

dim(H) small, but dim(H†
H) > 2 dim(H)

dim(Q̄Q) = 3− γ [Holdom,Yamawaki,Appelquist,Eichten,Lane]

[Sannino 04, Luty 04, Rattazzi et al 08]
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Phase diagram of SU(N) gauge theories
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Use lattice tools to search for IRFPs in 4D SU(N) gauge theories

Fund

2A

2S
Adj

Ladder

Catterall, Sannino

Del Debbio, Patella,Pica

Catterall, Giedt, Sannino, Schneible

Iwasaki et al.

Appelquist, Fleming, Neil

Deuzeman, Lombardo, Pallante 

!

!

γ = 1 γ = 2

Shamir, Svetitsky, DeGrand

Non-SUSY Phase Diagram Bound

Ryttov and F.S. 07All Orders Beta Function

[Yamawaki, Appelquist, Miransky, Schrock, Nunez, Piai, Hong, Braun, Gies] 
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Lattice tools
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 Scaling of the spectrum

• dependence on the fermion mass

• finite-size scaling

• eigenvalue spectrum 

 RG flows 

• Schroedinger functional

• Monte Carlo Renormalization Group
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Mass-deformed CFT on the lattice
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• The identification of a CFT by numerical simulations is a difficult task

• No massive spectrum; power-law behaviour of correlators at large distances

• Numerical simulations are performed at finite fermion mass, and/or in a finite-volume 
box; both the mass and the finite volume break scale invariance in the IR

• Consider a CGT deformed by a mass term/finite volume

• Determine the scaling of physical observables

O ∼ mηO + higher order in m+ terms analytic in m

MH ∝ µm
1

1+γ∗
[LDD, Zwicky 10]
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Conformal spectrum

• Different qualitative behaviours in the chiral limit
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QCD-like conformal

mPS

Λhad

mPS

ΛYM

no GB bosons

ChPT at low energies
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Spectrum for SU(2) + 2 adjoint fermions

• Overall picture
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[LDD et al 09]
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Spectrum for SU(2) + 2 adjoint fermions

13

1.00

1.02

1.04

1.06

1.08
M

V/M
PS

16x83

24x123

32x163

64x243

0.0 0.4 0.8 1.2 1.6 2.0 2.4
MPS

4
5
6
7
8
9

10

M
PS

/σ
1/

2

largest volume

[LDD et al 11]

Finite volume effects

Qualitative evidence for a conformal spectrum 
Need large lattices and small masses to extract the scaling exponent
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Larger volumes - heavier mass

15

infty 1632 24 1248
L

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

M

TM 1
TM γ

0
γ
5
γk

TM γ
5
γk

TM γ
0
γk

TM γk
TM γ

0
γ
5

TM γ
5

GB T++

GB E++

GB A++

σt
1/2

σs
1/2

σ
1/2

Monday, 3 December 2012



Larger volumes - lighter mass
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Larger volumes - twist
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Dirac Eigenvalues
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can be isolated via a twice-subtracted spectral representation:

〈q̄q〉 = −2m

∫ µ

0

dλ
ρ(λ)

m2 + λ2
− 2m5

∫ ∞

µ

dλ

λ4

ρ(λ)

m2 + λ2
+ γ1m+ γ2m

3 . (25)

The subtraction constants γ1 and γ2 contain the UV-divergences. Their respective be-

haviours are γ1 ∼ Λ2
UV, and γ2 ∼ log [Λ2

UV], and their actual values depend on two physical
renormalization conditions used to define the finite condensate on the LHS of Eq. (24).
We shall investigate the limiting behaviour when m → 0. The second integral and the

subtraction terms in Eq. (25) vanish in the chiral limit (m → 0). Therefore only the
first integral, sensitive to the IR region, can result in a non-analytic term and has to be

investigated further. A simple change of variable yields:

〈q̄q〉 = −2

∫ µ/m

0

dx
ρ(mx)

1 + x2
+A(m) , (26)

where A(m) stands for an analytic function of m. From Eq. (26), following the same
arguments used in QCD, one can readily obtain:

〈q̄q〉 m→0∼ mηq̄q ⇔ ρ(λ)
λ→0∼ ληq̄q . (27)

This in turn implies:

ηq̄q|QCD−like = 0 , ηq̄q|mCGT > 0 , (28)

since in QCD the condensate remains finite in the chiral limit, while it vanishes in mCGT.

Let us derive the same scaling coefficient ηq̄q (4) from a RG analysis. The starting point
is the two-point function Cq̄q(t; m̂, µ), as in Eq. (8), where the hadronic field H = q̄q, and
the explicit dependence on the coupling g is suppressed. The solution of the RG equations

for this specific case is:

Cq̄q(t; m̂, µ) = b−2∆q̄qCq̄q(tb
−1; bymm̂, µ) . (29)

Imposing again bymm̂ = 1, finally leads to:

Cq̄q(t; m̂, µ) = m̂
2∆q̄q
ym Cq̄q(tm̂

1/ym ; 1, µ) . (30)

Inserting a complete set of states the exponential decrease of any state other than the

vacuum for large t results in:

Cq̄q(t; m̂, µ)
t→∞∼ m2ηq̄q , (31)

whence the scaling exponent (27) follows:

ηq̄q =
∆q̄q

ym
=

3− γ∗
1 + γ∗

. (32)

10

Scaling of the eigenvalue density:

Measure the mode number of  D†D +m2

ν(M) ∝ Ληq̄q+1

ν(M,m) =

� +Λ

−Λ
dλρ(λ,m),

Λ =
�

M2 −m2

[DeGrand 09, LDD & Zwicky 10, Patella 12]

ηq̄q + 1 =
4

1 + γ∗

γ∗ = 0.37(2)

[Patella 12]
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Finite-size scaling
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Numerical simulations are performed in a finite volume. The finite-volume effects can be 
incorporated in the RG analysis:

CH(t;m,µ,L) = b−2γHCH(t;m�, µ�, L)

Using the power-law scaling of the couplings, and dimensional analysis:

CH(t;m,µ,L) = b−2(dH+γH)CH(b−1t; bymm,µ, b−1L)

Choose: b−1L = L0

CH(t;m,µ,L) =

�
L

L0

�−2∆H

CH

�
t

L/L0
;x

1

µLym

0

, µ, L0

�

x = Lymm

ym = 1 + γ∗
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Finite-size scaling 2
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Comparing with the asymptotic large-time behaviour:

MH = L−1f(x)

In order to recover the correct behaviour at infinite volume:

f(x) ∼ x1/ym , as x → ∞

If we go to the massless limit, at fixed volume and cut-off, the masses of the states in the 
spectrum of the theory saturate and scale as:

MH ∝ L−1
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FSS - example
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Prelim
inary
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FSS - asymptotic behaviour
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Conclusions
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• Lattice simulations yield first principle results about the NP dynamics of strongly 
interacting theories; tools need to be adapted to the new dynamics. 

• Studies so far have focused on understanding the phase diagram (IRFP)

• Quantitative results on the spectrum, beta function and the anomalous dimensions 

• Searches for new physics rely on effective theory descriptions of the low-energy 
dynamics: NP effects are encoded in the LECs. 

• Signatures of DEWSB have been studied: compare with results from the LHC

• Lattice input to phenomenology: LECs, S parameter. Feasible & expensive!

• We need to ask the right questions!!!
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Spectrum - systematic errors
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finite volume effects

[LDD et al 11]
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