VECTOR BOSON SIGNALS OF ELECTROWEAK SYMMETRY BREAKING

R. SEKHAR CHIVUKULA MICHIGAN STATE UNIVERSITY DECEMBER 5, 2012

KMI-GCOE Workshop on Strong Coupling Gauge Theories in the LHC Perspective

A NEW BOSON

ATLAS

CMS

IS THE NEW BOSON THE HIGGS BOSON?

SYMMETRY MAGAZINE, OCT 30, 2012

ELECTROWEAK SYMMETRY BREAKING

Loss of Unitarity in

SU(2) X U(1) @ E⁴

SU(2) \times U(1) @ E² & THE HIGGS

ALTERNATIVES? "HIGGSLESS" MODELS

4-D KK MODE SCATTERING

Cancellation of bad highenergy behavior through exchange of massive vector particles

> RSC, H.J. He, D. Dicus (2002) Csaki, Grojean, Murayama, Pilo, Terning (2004)

graph	$g^2 C^{eab} C^{ecd}$	$g^2 C^{eac} C^{edb}$	$g^2 C^{ead} C^{ebc}$
(a)	$6c(x^4-x^2)$	$\frac{3}{2}(3-2c-c^2)x^4$	$\frac{-3}{2}(3+2c-c^2)x^4$
		$-3(1-c)x^2$	$+3(1+c)x^2$
(b1)	$-2c(x^4 \downarrow x^2)$		
(c1)	$-4cx^4$		
(<i>b</i> 2, 3)		$\frac{-1}{2}(3-2c+c^2)x^4$	$\frac{1}{2}(3+2c-c^2)x^4$
		$+3(1-c)x^2$	$-3(1+c)x^2$
(c2,3)		$(-3+2c+c^2)x^4$	$(3+2c-c^2)x^4$
		$-8cx^{2}$	$-8cx^2$
Sum	$-8cx^{2}$	$-8cx^{2}$	$-8cx^2 \Rightarrow 0$

Higgsless models are low-energy effective theories of Dynamical Electroweak Symmetry Breaking with. They include:

- massive 4-d gauge bosons arise in the context of a 5-d gauge theory with appropriate boundary conditions
- WW scattering is unitarized through exchange of KK modes (instead of scalar bosons)
- the language of Deconstruction allows a 4-d "Moose" representation of the model

Chivukula & He hep-ph/0201164 Csaki, Grojean, Murayama, Pilo, Terning hep-ph/0305237

A SIMPLE REALIZATON: THE THREE-SITE MODEL

3-SITE MODEL: BASIC STRUCTURE

$$SU(2) \times SU(2) \times U(1)$$
 $g_0, g_2 \ll g_1$

Gauge boson spectrum: photon, Z, Z', W, W' (as in BESS) **Fermion spectrum:** t, T, b, B (ψ is an SU(2) doublet) and also c,C, s,S, u,U, d,D plus the leptons

RSC, Coleppa, DiChiara, He, Kurachi, EHS, Tanabashi hep-ph/0607124

3-SITE FERMION MASSES

 $\begin{array}{ll} \mbox{ordinary fermion masses} \mbox{ are of the form } & m_f \approx M \epsilon_L \epsilon_{fR} \\ \mbox{each ordinary fermion mass value is tied to } & \epsilon_{fR} \\ \mbox{flavor structure same as in standard model} \end{array}$

heavy "KK" fermion masses are ~ M

3-SITE IDEAL DELOCALIZATION

General ideal delocalization condition $g_i(\psi_i^f)^2 = g_W v_i^w$ is realized as $\frac{g_0(\psi_{L0}^f)^2}{g_1(\psi_{L1}^f)^2} = \frac{v_W^0}{v_W^1}$ in 3-site model

From the W, fermion eigenvectors, one solves for

$$\epsilon_L^2 \to (1 + \epsilon_{fR}^2)^2 \left[\frac{x^2}{2} + \left(\frac{1}{8} - \frac{\epsilon_{fR}^2}{2} \right) x^4 + \cdots \right] \qquad x^2 \equiv \left(\frac{g_0}{g_1} \right)^2 \approx 4 \left(\frac{M_W}{M_W'} \right)^2$$

For all but top quark, $\epsilon_{fR} \ll 1$ so the choice

$$\epsilon_L^2 \approx 2 \left(\frac{M_W^2}{M_{W'}^2} \right)$$

makes W' fermiophobic and Z' nearly so

$$\hat{S} = \hat{T} = W = 0$$

$$Y = M_W^2 (\Sigma_W - \Sigma_Z)$$

Use WW scattering to see W': Birkedal, Matchev, Perelstein hep-ph/0412278

3-SITE PARAMETER SPACE

Chivukula et al. hep-ph/0607124

BUT WHAT ABOUT THE NEW BOSON?

HONG-JIAN HE, NING CHEN, TOMOHIRO ABE: ARXIV 1207.4103

LINEAR 3-SITE MODEL

Linear Scalar Link Fields: $\phi_1 \& \phi_2$

Leads to two-Higgs particles: h, H

He, Chen, Abe: arxiv 1207.4103

WW UNITARIZATION

Unitarize jointly by scalar and vector exchange! Leads to sum rule:

$$G_{4W_0} - \frac{3M_{Z_0}^2}{4M_{W_0}^2} G_{W_0W_0Z_0}^2 = \sum_k \frac{3M_{Z_k}^2}{4M_{W_0}^2} G_{W_0W_0Z_k}^2 + \sum_k \frac{G_{W_0W_0h_k}^2}{4M_{W_0}^2}$$

See next talk...

LHC PHENOMENOLOGY OF VECTOR BOSONS

RSC, EHS, H.-J. HE, Y.-P. KUANG, ET. AL., PHYS. REV. D78 (2008) 031701 & ARXIV:1206.6022 AND PRD IN PRESS

W',Z' PRODUCTION AND DECAY AT LHC

W' PRODUCTION AT LHC

Two processes with large rates and clear signatures!

ASSOCIATED PRODUCTION (WZZ CHANNEL)

500 GeV W'boson

VECTOR BOSON FUSION (WZJJ CHANNEL)

Background is 10x larger than estimated in Birkedal, Matchev & Perelstein (2005)

forward jet tag removes WZ background $E_j > 300 \,\text{GeV}, \quad p_{Tj} > 30 \,\text{GeV}, \quad |\eta_j| < 4.5, \quad |\Delta \eta_{jj}| > 4,$ $p_{T\ell} > 10 \,\text{GeV}, \quad |\eta_\ell| < 2.5$

INTEGRATED LUMINOSITY FOR W' DISCOVERY

W' DISCOVERY AT 8 TEV

Associated Production

W' PRODUCTION AT 8 TEV

TABLE II. The 5σ discovery reaches of the W_1^{\pm} bosons at the LHC-8, with the integrated luminosities $\int \mathcal{L} = 10, 15, 20, 25, 30, 35, 40, 50, 60 \text{ fb}^{-1}$, respectively.

$\int \mathcal{L} (fb^{-1})$	M_{W_1} (GeV)	
10	277	
15	302	
20	320	
25	335	
30	346	
35	357	
40	367	
50	385	
60	397	

arxiv:1206.6022, PRD in press

LHC SEARCHES HAVE BEGUN

SEMI-LEPTONIC WW AT 7 TEV

CONCLUSION

- ATLAS/CMS has discovered a new boson.
- Measure properties: is it the Higgs?
 - Must check in multiple channels!
- If it isn't, there are potential new signatures in multi-gauge boson signals.

BACKUP SLIDES

DISCUSSION QUESTION

N.Arkani-Hamed, SavasFest 2012

Z' SEARCH AT LHC

Ohl & Speckner predict that the 3site Z' boson (at or near ideal delocalization) should be visible in 100 fb⁻¹ of LHC data

