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1. Introduction



How can we extract hadronic interaction from lattice QCD ?

Ex. Phenomenological NN potential
(~40 parameters to fit 5000 phase shift data)
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Nuclear force is a basis for understanding ...

• Ignition of Type II SuperNova

Λ
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matter

quark

Matter?

Atomic nuclei Neutron starHadrons
Can we extract a nuclear force in (lattice) QCD ?

• Structure of ordinary and hyper nuclei

• Structure of neutron star 
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2. Strategy



Potentials in QCD ?

What are “potentials” (quantum mechanical objects) in quantum field theories such as QCD ? 

“Potentials” themselves can NOT be directly measured. cf. running coupling in QCD

scheme dependent, Unitary transformation

“Potentials” are useful tools to extract observables such as 
scattering phase shift. 

experimental data of scattering phase shifts potentials, but not unique 

One may adopt a convenient definition of potentials as long 
as they reproduce correct physics of QCD.  



 Our strategy in lattice QCD

define (Equal-time) Nambu-Bethe-Salpeter (NBS) Wave function
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N(x) = εabcqa(x)qb(x)qc(x): local operator

energy

partial wave r = |r|→∞

δl(k) scattering phase shift  (phase of the S-matrix by unitarity) in QCD !

How can we extract it ?

Wk = 2
�

k2 + m2
N

ϕl
k → Al

sin(kr − lπ/2 + δl(k))
kr

ϕk(r) = �0|N(x + r, 0)N(x, 0)|NN, Wk�

Step 1

Important property

cf. Luescher’s finite volume method

Full details: Aoki, Hatsuda & Ishii, PTP123(2010)89.

Spin model: Balog et al., 1999/2001 

Lin et al., 2001; CP-PACS, 2004/2005



Step 2

εk =
k2

2µ
H0 =

−∇2

2µ
non-local potential

[�k −H0] ϕk(x) =
�

d
3
y U(x,y)ϕk(y)

µ = mN/2
reduced mass

define non-local but energy-independent “potential” as 

1. Potential itself is NOT an observable. Using this freedom, we can construct a non-local 
but energy-independent potential as

Properties & Remarks

U(x,y) =
Wk,Wk�≤Wth�

k,k�

[�k −H0] ϕk(x)η−1
k,k�ϕ

†
k�(y)

η−1
k,k� : inverse of ηk,k� = (ϕk, ϕk�)

inner product

ϕk is linearly independent.

For ∀Wp < Wth = 2mN + mπ (threshold energy)
�

d
3
y U(x,y)φp(y) =

�

k,k�

[�k −H0] ϕk(x)η−1
k,k�ηk�,p = [�p −H0] ϕp(x)

Proof of existence (cf. Density Functional Theory)

Of course,  potential satisfying this is not unique. (Scheme dependence. cf. running coupling)

2. Non-relativistic approximation is NOT used. We just take the specific (equal-time) flame.



Step 3 expand the non-local potential in terms of derivative as

U(x,y) = V (x,∇)δ3(x− y)

V (x,∇) = V0(r) + Vσ(r)(σ1 · σ2) + VT (r)S12 + VLS(r)L · S + O(∇2)
LO LO LO NLO NNLO

tensor operator S12 =
3
r2

(σ1 · x)(σ2 · x) − (σ1 · σ2)

spins

VA(x) local and energy independent coefficient function 
(cf. Low Energy Constants(LOC) in Chiral Perturbation Theory)



expansion parameter

Step 4 extract the local potential at LO as

VLO(x) =
[�k −H0]ϕk(x)

ϕk(x)

Step 5 solve the Schroedinger Eq. in the infinite volume with this potential.

phase shifts and binding energy below inelastic threshold

exact by construction 

approximated one by the derivative expansion

We can check a size of errors at LO of the expansion. (See later).
We can improve results by extracting higher order terms in the expansion.  

δL(p �= k)

δL(k)

(We can calculate the phase shift at all angular momentum.)

Wp −Wk

Wth − 2mN
� ∆Ep

mπ



3. Nuclear potential



Extraction of NBS wave function

NBS wave function Potential

4-pt Correlation function

It is now clear that there is no unique definition for the NN potential. Ref. [18, 24, 25], however,
criticized that the NBS wave function is not ”the correct wave function for two nucleons” and that its
relation to the correct wave function is given by

ϕW (r) = ZNN(|r|)〈0|T{N0(x + r, 0)N0(x, 0)}|2N, W, s1, s2〉 + · · · (23)

where N0(x, t) is ”a free-field nucleon operator” and the ellipses denotes ”additional contributions from
the tower of states of the same global quantum numbers”. Thus 〈0|T{N0(x+r, 0)N0(x, 0)}|2N,W, s1, s2〉
is considered to be ”the correct wave function”. In this claim it is not clear what is ”a free-field nucleon
operator” in the interacting quantum field theory such as QCD. An asymptotic in or out field operator
may be a candidate. If the asymptotic field is used for N0, however, the potential defined from the
wave function identically vanishes for all r by construction. To be more fundamental, a concept of
”the correct wave function” is doubtful. If some wave function were ”correct”, the potential would be
uniquely defined from it. This clearly contradicts the fact discussed above that the potential is not an
observable and therefore is not unique. This argument shows that the criticism of Ref. [18, 24, 25] is
flawed.

3 Lattice formulation

In this section, we discuss the extraction of the NBS wave function from lattice QCD simulations. For
this purpose, we consider the correlation function on the lattice defined by

F (r, t − t0) = 〈0|T{N(x + r, t)N(x, t)}J (t0)|0〉 (24)

where J (t0) is the source operator which creates two nucleon state and its explicit form will be considered
later. By inserting the complete set and considering the baryon number conservation, we have

F (r, t − t0) = 〈0|T{N(x + r, t)N(x, t)}
∑

n,s1,s2

|2N, Wn, s1, s2〉〈2N, Wn, s1, s2|J (t0)|0〉

=
∑

n,s1,s2

An,s1,s2ϕ
Wn(r)e−Wn(t−t0), An,s1,s2 = 〈2N,Wn, s1, s2|J (0)|0〉. (25)

For a large time separation that (t − t0) → ∞, we have

lim
(t−t0)→∞

F (r, t − t0) = A0ϕ
W0(r)e−W0(t−t0) + O(e−Wn!=0(t−t0)) (26)

where W0 is assumed to be the lowest energy of NN states. Since the source dependent term A0 is just
a multiplicative constant to the NBS wave function ϕW0(r), the potential defined from ϕW0(r) in our
procedure is manifestly source-independent. Therefore the statement that the potential in this scheme
is ”source-dependent” in Ref. [26] is clearly wrong.

In this extraction of the wave function, the ground state saturation for the correlation function F in
eq. (26) is important. In principle, one can achieve this by taking a large t − t0. In practice, however,
F becomes very noisy at large t − t0, so that the extraction of ϕW0 becomes difficult at large t − t0.
Therefore it is crucial to find the region of t where the ground state saturation is approximately satisfied
while the signal is still reasonably good. The choice of the source operator becomes important to have
such a good t-region.

before using the potential in nuclear physics.
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NBS wave function

This is a standard method in lattice QCD and was employed for our first calculation.

ground state saturation at large t

ϕk(r) = �0|N(x + r, 0)N(x, 0)|NN, Wk� [�k −H0]ϕk(x) =
�

d
3
y U(x,y)ϕk(y)

+ · · ·



Improved method

normalized 4-pt Correlation function R(r, t) ≡ F (r, t)/(e−mN t)2 =
∑

n

AnϕWn(r)e−∆Wnt

∆Wn = Wn − 2mN =
k2

n

mN
− (∆Wn)2

4mN

− ∂

∂t
R(r, t) =

{
H0 + U − 1

4mN

∂2

∂t2

}
R(r, t)

potential
Leading Order
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∫
d3r′ U(r, r′)R(r′, t) = VC(r)R(r, t) + · · ·

1st 2nd 3rd total

3rd term(relativistic correction) 
is negligible. 

Ground state saturation is no more required !  (advantage over finite volume method.)

Ishii et al. (HALQCD), PLB712(2012) 437



NN potential
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2+1 flavor QCD, spin-singlet potential (PLB712(2012)437)

mπ ! 700 MeVa=0.09fm, L=2.9fm phenomenological potential

Qualitative features of NN potential are reproduced !

1st paper(quenched QCD): Ishii-Aoki-Hatsuda, PRL90(2007)0022001

This paper has been selected as one of 21 papers in Nature Research Highlights 2007.
(One from Physics, Two from Japan, the other is on “iPS” by Sinya Yamanaka et al. )

(1)attractions at medium and long distances 
(2)repulsion at short distance(repulsive core)

1S0



NN potential phase shift
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It has a reasonable shape. The strength is weaker due to the heavier quark mass.

Need calculations at physical quark mass.

1S0

aexp
0 (1S0) = 23.7 fm

a0(1S0) = 1.6(1.1) fm



Convergence of velocity expansion

If the higher order terms are large, LO potentials determined from NBS wave functions at 
different energy become different.(cf. LOC of ChPT).

Numerical check in quenched QCD
mπ ! 0.53 GeV
a=0.137fm, L=4.0 fm

K. Murano, N. Ishii, S. Aoki, T. Hatsuda 

PTP 125 (2011)1225.

●     PBC    (E～0 MeV)         　                     ●　APBC  (E～46 MeV)

potentials

NBS wave functions



(16)

)(
)()()( 0

x
xHErV

E

E
CHigher order terms turn out to be very small at low energy in HAL scheme.

Need to be checked at lighter pion mass in 2+1 flavor QCD.

Note: convergence of the velocity expansion can be checked within this method. 

(in contrast to  convergence of ChPT, convergence of perturbative QCD)



4. H-dibaryon
H-dibaryon:  

a possible six quark state(uuddss) 
predicted by the model but not observed yet.

u d s

U d s

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.106.162001

Binding baryons on the lattice

April 26, 2011

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.106.162001
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.106.162001


 Baryon Potentials in the flavor SU(3) symmetric limit
mu = md = ms

1. First setup to predict YN, YY interactions not accessible in exp.
2. Origin of the repulsive core (universal or not)

BB interactions
in a SU(3) symmetric world x

Six independent potentials in flavor-basis 

1. First step to predict YN, YY interactions not accessible in exp. 
2. Origin of the repulsive core (universal or not) 
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6 independent potentials in flavor-basis

BB interactions
in a SU(3) symmetric world x

Six independent potentials in flavor-basis 

1. First step to predict YN, YY interactions not accessible in exp. 
2. Origin of the repulsive core (universal or not) 

BB interactions
in a SU(3) symmetric world x

Six independent potentials in flavor-basis 

1. First step to predict YN, YY interactions not accessible in exp. 
2. Origin of the repulsive core (universal or not) 

Inoue et al. (HAL QCD Coll.), PTP124(2010)591 

3-flavor QCD a=0.12 fm

Inoue et al. (HAL QCD Coll.), NPA881(2012)28

L=2 fm

L=2-4 fm
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L ! 4 fm, mπ ! 470 MeV

same as NN 8s: strong repulsive core. repulsion only. 1: attractive instead of repulsive 
core ! attraction only .

same as NN 10: strong repulsive core. weak attraction. 8a: weak repulsive core. 
strong attraction.

Flavor dependences of BB interactions become manifest in SU(3) limit !



 H-dibaryon in the flavor SU(3) symmetric limit

Attractive potential 
in the flavor singlet channel  

possibility of a bound state (H-dibaryon)

ΛΛ − NΞ − ΣΣ

Inoue et al. (HAL QCD Coll.), PRL106(2011)162002 a=0.12 fm
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Solve Schroedinger equation 
in the infinite volume 

One bound state (H-dibaryon) exists.
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An H-dibaryon exists in the flavor SU(3) limit.
Binding energy = 25-50 MeV at this range of quark mass.
A mild quark mass dependence.

Real world ?



5. Conclusion
• HAL QCD scheme is shown to be a promising method to extract hadronic interactions 

in lattice QCD.  

• ground state saturation is not required.

• Calculate potential (matrix) in lattice QCD on a finite box. 

• Calculate phase shift by solving (coupled channel) Shroedinger equation in infinite 
volume. 

• bound/resonance/scattering

• Future directions

• calculations at the physical pion mass on “K-computer”

• hyperon interactions with the SU(3) breaking

• Baryon-Meson, Meson-Meson

• Exotic other than H such as penta-quark, X, Y etc.

• 3 Nucleon forces

• Other applications ? (weak interaction ?)

Thank you !


