Lattice study of flavor-singlet scalar in large N_f QCD

Takeshi Yamazaki

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

NAGOYA UNIVERSITY

Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K. Miura, K.-i. Nagai, H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki (LatKMI Collaboration)

Refs. $N_f =$ 12: Phys. Rev. Lett. 111(2013)162001 $N_f =$ 8: arXiv:1309.0711 (Lattice2013 Proceedings) + Update

KMI International Symposium 2013 (KMI2013) @ Nagoya University December 11–13, 2013

Contents

- Introduction
 - Recent studies in our project
 - Difficulty of calculation
 - Flavor-singlet scalar in $N_f = 12 \text{ QCD}$
- Flavor-singlet scalar in $N_f = 8 \text{ QCD}$
 - Preliminary result
- Summary

Recent study of LatKMI Collaboration

PRD86(2012)054506; PRD87(2013)094511

Search for candidate of walking technicolor from lattice calculation

 $N_f = 4$ QCD: Spontaneous chiral symmetry breaking

- $N_f = 12$ QCD: Consistent with conformal phase [Talk: Aoki and Ohki]
- $N_f = 8$ QCD may be candidate of Walking technicolor [Talk: Aoki and Nagai]
 - Spontaneous chiral symmetry breaking

 $F_{\pi} \neq 0$ and $F_{\pi}/m_{\pi} \rightarrow \infty$ towards $m_f \rightarrow 0$

- Slow running (walking) coupling in wide scale range Different behaviors of F_{π} in light and middle m_f
- Large anomalous mass dimension $\gamma^* \sim 1$ in walking region $\gamma = 0.62-0.97$: Hyperscaling-like behavior in middle m_f
- Light composite scalar \leftarrow Important to check!

Calculation of flavor-singlet scalar in (approximate) conformal theory

Recent study of LatKMI Collaboration

PRD86(2012)054506; PRD87(2013)094511

Search for candidate of walking technicolor from lattice calculation

 $N_f = 4$ QCD: Spontaneous chiral symmetry breaking

- $N_f = 12$ QCD: Consistent with conformal phase [Talk: Aoki and Ohki]
- $N_f = 8$ QCD may be candidate of Walking technicolor [Talk: Aoki and Nagai]
 - Spontaneous chiral symmetry breaking

 $F_{\pi} \neq 0$ and $F_{\pi}/m_{\pi} \rightarrow \infty$ towards $m_f \rightarrow 0$

- Slow running (walking) coupling in wide scale range Different behaviors of F_{π} in light and middle m_f
- Large anomalous mass dimension $\gamma^* \sim 1$ in walking region $\gamma = 0.62-0.97$: Hyperscaling-like behavior in middle m_f
- Light composite scalar \leftarrow Important to check!

Calculation of flavor-singlet scalar in (approximate) conformal theory

Difficulty of flavor-singlet scalar meson

• Flavor non-singlet scalar meson $S_{NS}(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_b(\vec{x}, t) \ (a \neq b)$ $\langle 0|S_{NS}(t)S_{NS}^{\dagger}(0)|0 \rangle = \langle \checkmark \rangle = -C(t)$

c.f. m_{π}, F_{π} from non-singlet pseudoscalar

<u>Calc. cost</u>: O(100) configurations \times O(1) $D^{-1}[U](x,y)$

• Flavor-singlet scalar meson $S(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_a(\vec{x}, t)$ $\langle 0|S(t)S^{\dagger}(0)|0 \rangle = -C(t) + (N_f/4)D(t) \text{ (disconnected)}$ $D(t) = \langle \times \rangle \rangle - \langle \times \rangle^2$

Much harder but essential for flavor-singlet <u>Calc. cost</u>: O(10000) configurations $\times O(100) D^{-1}[U](x,x)$

Difficulty of flavor-singlet scalar meson

• Flavor non-singlet scalar meson $S_{NS}(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_b(\vec{x}, t) \ (a \neq b)$ $\langle 0|S_{NS}(t)S_{NS}^{\dagger}(0)|0 \rangle = \left\langle \checkmark \right\rangle = -C(t)$

c.f. m_{π}, F_{π} from non-singlet pseudoscalar

<u>Calc. cost</u>: O(100) configurations \times O(1) $D^{-1}[U](x,y)$

• Flavor-singlet scalar meson $S(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_a(\vec{x}, t)$ $\langle 0|S(t)S^{\dagger}(0)|0 \rangle = -C(t) + (N_f/4)D(t)$ (disconnected) $D(t) = \langle \times \rangle \rangle - \langle \times \rangle^2$

Much harder but essential for flavor-singlet

<u>Calc. cost</u>: O(10000) configurations $\times O(10) D^{-1}[U](x,x)$ Noise reduction method

'97 Venkataraman and Kilcup

Phys. Rev. Lett. 111(2013)162001 [Talk: Aoki and Ohki]

Lighter than π in all m_f : Much different from usual QCD Conformal symmetry may make σ light Encouraging result for walking technicolor

Flavor-singlet scalar in $N_f = 8 \text{ QCD}$

 $N_f = 8$ QCD may be candidate of walking theory; PRD87(2013)094511 [Talk: Aoki and Nagai]

If flavor-singlet scalar is light \rightarrow Possibility of composite Higgs (technidilaton)

Required conditon to explain $m_{\rm Higgs}/v_{\rm EW}\sim 0.5$

$$m_\sigma/F\sim$$
 1 in $m_f=$ 0 limit

c.f. usual QCD $m_\sigma/F \sim 4-5$

Purpose

- 1. Different from usual QCD?
- 2. Estimate m_{σ}/F in $m_f = 0$ limit

Flavor-singlet scalar in $N_f = 8$ QCD report of preliminary results arXiv:1309.0711 May be candidate of walking theory; PRD87(2013)094511

Simulation parameters

- Common setup: HISQ/Tree action calculation of m_σ
- $\beta = 3.8$ same as spectrum study
- Huge number of configurations
- Five m_f for chiral extrapolation
- Noise reduction method with $N_r = 64$

L, T	m_{f}	confs
24,32	0.03	27400
	0.04	5500
	0.06	18000
30,40	0.02	8000
	0.04	12600
36,48	0.02	2900
	0.015	2900

All results are preliminary.

Machines: φ at KMI, CX400 at Nagoya Univ.,

CX400 and HA8000 at Kyushu Univ.

Reasonable signals with statistical error < 20%Systematic error from fit range dependence of m_{σ} Finite volume effect seems under control

Reasonable signals with statistical error < 20% Systematic error from fit range dependence of m_σ $m_\sigma \sim m_\pi$ in all m_f

Reasonable signals with statistical error < 20% Systematic error from fit range dependence of m_{σ} $m_{\sigma} \sim m_{\pi}$ in all m_f , much different from $N_f = 2$ QCD Chiral extrapolation (1) in $N_f = 8$

Chiral extrapolation (2) in $N_f = 8$

Chiral extrapolation (2) in $N_f = 8$

 $m_{\sigma} \sim m_{\pi} \rightarrow C \sim 1$: different from $N_f = 2 \text{ QCD}$

Chiral extrapolation (2) in $N_f = 8$

 $N_f = 8$ chiral broken phase [Talk: Aoki and Nagai]

Summary

Flavor-singlet scalar is important in walking technicolor theory. Difficult due to huge noise in lattice simulation

- \Rightarrow Noise reduction method and large $N_{\text{conf}} O(10000)$
- Results of $N_f = 12$ QCD (consistent with conformal phase)
 - $m_{\sigma} < m_{\pi}$; much different from small N_f QCD
 - Conformal symmetry may make σ light

Results of $N_f = 8$ QCD (may be candidate of walking technicolor)

- $m_{\sigma} \sim m_{\pi}$; much different from small N_f QCD
- Might be reflection of approximate conformal symmetry
- Need more data at smaller m_f for chiral extrapolation Linear chiral extrapolation : $m_\sigma/F = 1.7(2.8)$

Possibility of light composite Higgs $m_{\text{Higgs}} \sim v_{EW}$ (technidilaton)

Future work:

Smaller m_f data for more reliable chiral extrapolation