Quest for Dark Matter with Cosmic Gamma-ray Observations

Hiroyasu Tajima Solar-Terrestrial Environment Laboratory Nagoya University

December 11–13, 2013 KMI International Symposium 2013 on "Quest for the Origin of Particles and the Universe" Nagoya University, Nagoya, Japan

- * Introduction
- * Cosmic gamma-ray experiments
 - * Fermi Gamma-Ray Space Telescope
 - * Imaging atmospheric Cherenkov telescopes (IACTs)
- * WIMP searches with Fermi
- * WIMP search with IACT
- * Future prospects

- * What we know
 - * Dark matter exists
 - Orbital velocities of stars in galaxies, velocity dispersions of galaxies in clusters, temperature distribution of hot gas in clusters of galaxies and gravitational lensing

- * ~6 x ordinary matter
- What we don't know
 - * What is dark matter?
 - MACHO: constrained by micro
 - WIMP
 - Weak scale new particles happen to have suitable mass and cross-section WIMP miracle
 - Axion

- * What we know
 - * Dark matter exists
 - Orbital velocities of stars in galaxies, velocity dispersions of galaxies in clusters, temperature distribution of hot gas in clusters of galaxies and gravitational lensing

- * ~6 x ordinary matter
- What we don't know
 - * What is dark matter?
 - MACHO: constrained by micro
 - WIMP
 - Weak scale new particles happen to have suitable mass and cross-section WIMP miracle
 - Axion

- * What we know
 - * Dark matter exists
 - Orbital velocities of stars in galaxies, velocity dispersions of galaxies in clusters, temperature distribution of hot gas in clusters of galaxies and gravitational lensing

- * ~6 x ordinary matter
- What we don't know
 - * What is dark matter?
 - MACHO: constrained by micro
 - WIMP
 - Weak scale new particles happen to have suitable mass and cross-section WIMP miracle
 - Axion

- * What we know
 - * Dark matter exists
 - Orbital velocities of stars in galaxies, velocity dispersions of galaxies in clusters, temperature distribution of hot gas in clusters of galaxies and gravitational lensing

- * ~6 x ordinary matter
- What we don't know
 - * What is dark matter?
 - MACHO: constrained by micro
 - WIMP
 - Weak scale new particles happen to have suitable mass and cross-section WIMP miracle
 - Axion

- * What we know
 - * Dark matter exists
 - Orbital velocities of stars in galaxies, velocity dispersions of galaxies in clusters, temperature distribution of hot gas in clusters of galaxies and gravitational lensing
 - * Non-relativistic ("cold dark matter")
 - * ~6 x ordinary matter
- What we don't know
 - * What is dark matter?
 - MACHO: constrained by micro-lensing
 - WIMP
 - Weak scale new particles happen to have suitable mass and cross-section WIMP miracle
 - Axion

SM

particle

Production

- * Accelerator production
 - * Precise measurements of "DM" properties: mass, cross section
 - * UED (KK) vs SUSY
- * Direct detection of WIMP scattering
 - * Measurement of local WIMP density
- * Indirect detection of WIMP annihilation
 - * "Direct" constraints on annihilation cross section
- * Distribution of WIMP in the Universe particle physics WIMP

Those approaches are complimentary
 Annihilation
 Different model dependences and sensitivity phase space

- WIMP is in equilibrium between pair creation and annihilation in early Universe
 - * Pair creation stops when thermal energy is not sufficient
 - * Annihilation continues and WIMP density become too low compared with annihilation cross section
 - WIMP density and annihilation cross section is anti-correlated
 - Current dark matter density (Ω_{DM}) constrains annihilation cross section to ~3x10⁻²⁶ cm²/s

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

- * Pair-conversion telescope
 - * Good background rejection due to "clear" gamma-ray signature
- * Tracker (TKR): pair conversion, tracking
 - * Angular resolution is dominated by scattering below ~GeV
- * Calorimeter: energy measurement
 - * 8.4 radiation length
 - * Use shower development to compensate for the leakage
- * Anti-coincidence detector:
 - * Efficiency > 99.97%

Energy band: 20 MeV to >300 GeV Effective area: > 8000 cm2 (~6xEGRET) Field of view: > 2.4 sr (~5xEGRET) Angular resolution: 0.04 – 10° Energy resolution: 5 – 10%

Anti-coincidence Detector </br> Segmented scintillator tiles 99.97% efficiency

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

Highlights of Fermi Science

FERMI (2010)

10²

E (GeV)

(a)

9/21

10³

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

Cherenkov Light 50 photons/m² (5 pe/m²) at 1TeV

Typical parameters

Energy range50GeV ~ 10TeVAngular resolution~0.1 degreesEnergy resolution~20%Detection area~105m²Field of view~4° (~10-2 sr)

IACTs on Earth

VHE Skymap

2010-11-11 - Up-to-date plot available at http://www.mpp.mpg.de/~rwagner/sources/

106 sources (45 Extragalactics + 61 Galactics) in Nov 2010 Blazars, FSRQs, FR-I, Starburst galaxies SNRs, PWNe, Pulsar, Binaries, un-IDs

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

- Many dwarf spheroidal galaxies (dSph) around our Galaxy
 - * dSphs are known to have large dark matter fraction (~100%)
 - * Negligible gamma-ray backgrounds from ordinary matter (few stars)

- * 15 most promising dSph (dwarf spheroidal) based on distance, Matter/Light (M/L)
 - * New DM-dominated dSph is being discovered recently

KMI2013, DEC 11–13, 2013, Nagoya

Fermi WIMP Search in Dwarf Galaxies

CTA

- * Galactic halo region except Galactic disk
 - * Avoid very large Galactic diffuse background in the disk region

15/21

Galactic halo region except Galactic disk

* Avoid very large Galactic diffuse background in the disk region

E = 10 GeV

CTA

- * Galactic halo region except Galactic disk
 - * Avoid very large Galactic diffuse background in the disk region

* Galactic halo region except Galactic disk

* Avoid very large Galactic diffuse background in the disk region

* Galactic halo region except Galactic disk

* Avoid very large Galactic diffuse background in the disk region

- * Galactic center is expected to have enormous amount of WIMPs
 - * BG in TeV band is relatively low compared with GeV band due to steep Galactic diffuse BG spectrum
 - * BG is dominated by cosmic-ray electrons

Phys.Rev.Lett.106:161301,2011

- * Galactic center is expected to have enormous amount of WIMPs
 - * BG in TeV band is relatively low compared with GeV band due to steep Galactic diffuse BG spectrum
 - * BG is dominated by cosmic-ray electrons

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

- Fermi/LAT limit on WIMP annihilation cross section now cuts into expected value for thermal relic WIMP for the mass below 15~20 GeV/c²
- * Cherenkov telescope is not currently very competitive

- * Observations of gamma rays in 20 GeV 100 TeV band
 - Cherenkov light from electromagnetic shower produced by interaction of gamma rays with atmosphere
- * Large collection area by placing many telescopes
 - * x10 better sensitivity
- * Wide energy band coverage by three different size of telescopes
 - * Large-size telescope (LST): Φ = 23 m, 20 GeV 1 TeV, 4 telescopes
 - * Medium-size telescope (MST): $\Phi = 10 12$ m, 0.1 10 TeV, ~20 telescopes
 - * Small-size telescope (SST): $\Phi = 4 7$ m, 1 100 TeV, 30 70 telescopes

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

- * ~ an order of magnitude improvements expected
 - * Fermi: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - * Cherenkov telescope: better sensitivities with CTA

- * Collider, direct and indirect WIMP searches are complimentary
 - * Collider: best for gluon and quark (*m*_{DM} < 200 GeV) interactions
 - * Direct: best for lepton (*m*_{DM} < 200 GeV) and gluon interactions
 - * Indirect: best for lepton and quark interactions (*m*_{DM} > 200 GeV)

- * Collider, direct and indirect WIMP searches are complimentary
 - * Collider: best for gluon and quark (*m*_{DM} < 200 GeV) interactions
 - * Direct

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

- * Collider, direct and indirect WIMP searches are complimentary
 - * Collider: best for gluon and quark ($m_{DM} < 200 \text{ GeV}$) interactions
 - * Direct

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

- * Collider, direct and indirect WIMP searches are complimentary
 - * Collider: best for gluon and quark (*m*_{DM} < 200 GeV) interactions
 - * Direct

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

- CTA
- * Collider, direct and indirect WIMP searches are complimentary
 - * Collider: best for gluon and quark (*m*_{DM} < 200 GeV) interactions
 - * Direct

Quest for Dark Matter with Cosmic Gamma-ray Observations KMI2013, DEC 11–13, 2013, Nagoya

- Weakly Interacting Massive Particle is a extremely promising candidate for dark matter
- Indirect search is one of complimentary approaches in WIMP dark matter studies
- Fermi/LAT limit on WIMP annihilation cross section is now cutting into expected value from thermal relic WIMP for the mass below 15~20 GeV/c²
 - * Excluded mass range would extend to multi-100 GeV/c² in the future with longer observations with more targets
- * CTA is a promising project to search for WIMP in TeV energy band
 - * Excluded mass range would overlap with Fermi at lower energies
 - * Excluded mass range would extend to multi-TeV/c²
 - Region beyond collider and direct searches