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Introduction



α(µ): running gauge coupling

Walking and conformal behavior -> non-perturbative dynamics

4

Many flavor QCD:  benchmark test of walking dynamics

•Understanding of the conformal dynamics is important (e.g. critical phenomena)
•Walking technicolor (WTC) could be realized just below conformal window.
•What the value of the anomalous dimensions !?  (! : critical exponent ) 
•Rich hadron structures may be observed in LHC. 

Asymptotic non-free

Conformal window

QCD-like

Walking technicolor

: Number of flavor



LatKMI-Nagoya project  (since 2011)

Our goals:  
• Understand the flavor dependence of the theory
• Find the conformal window
• Find the walking regime and investigate the anomalous dimension

Status (lattice): 
 Nf=16: likely conformal 
 Nf=12: controversial
 Nf=8: controversial, our study suggests walking behavior?
 Nf=4: chiral broken and enhancement of chiral condensate

Observables:
 pseudoscalar,  vector meson   -> chiral behavior 
 Glueball (O++) and/or flavor-singlet scalar

Is this lighter compared with others? If so, Good candidate of  “Higgs” (techni-dilaton).   
 

This talk

talk by K.-i. Nagai (next)

talk by T. Yamazaki 

Systematic study of flavor dependence in Large Nf QCD 
using single setup of the lattice simulation



Our work
• use of improved staggered action
     Highly improved staggered quark action [HISQ] 
• use MILC version of HISQ action 
          use tree level Symanzik gauge action
          no (ma)2 improvement (no interest to heavy quarks)= HISQ/tree
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Simulation setup
• SU(3), Nf=12 flavor
simulation parameters
two bare gauge couplings (!) & four volumes & various fermion masses
• !=6/g2=3.7 and 4.0
• V=L3xT: L/T=3/4; L=18, 24, 30, 36   
• 0.03≦mf≦0.2 for !=3.7,   0.04≦mf≦0.2 for !=4.0
Statistics ~ 2000 trajectory
• Measurement of meson spectrum 
      in particular pseudoscalar (“NG-pion”) mass (M"),  decay constant (F")
       vector meson mass (M#), flavor-singlet scalar mass (M$) 
Machine: % @ KMI, CX400 @ Kyushu Univ.



Nf=12 theory: 
Conformal phase v.s. Chiral broken phase
From the fermion mass (mf) dependence of the hadron mass, 
we study the phase structure of the theory.
Conformal hypothesis: critical phenomena near the fixed point
       hyper-scaling,  ! : mass anomalous dimension at the fixed point

• MH
 ∝ mf1/(1+!)                    

• F"  ∝ mf1/(1+!)  + …     (for small mf)
　　　⇒     F"/M"  # constant     (mf#0)
                 M$/M"  # constant 
Chiral symmetry breaking hypothesis:  " is NG-boson. 

Chiral perturabation theory (ChPT) works.
• M"

2 ∝ mf (PCAC relation)
• F"=F+c M"

2  + …        (for small mf)
　　　⇒     F"/M"  # %  (mf # 0)



Nf=12 Result   

               
[LatKMI, PRD86 (2012) 054506] 

and 
Some updates
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In both of !=3.7 and 4.0, both ratios at L=30 and L=36 seem to be flat in the small 
mass region, but small volume data (L≦24) shows large finite volume effect.
This behavior is contrast to the result in ordinary QCD system 

LatKMI

Nf=12
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From naïve scale matching,
one can obtain the relation

• a(β=3.7)  >  a(β=4.0)

Our result suggests 
asymptotically free region for 
beta=3.7-4.

Flat region 

Ratio is almost flat in small mass region (wider than F"/M") 
-> consistent with hyper scaling  
Volume dependence is smaller than F"/M".
In the large mass region, large mass effects show up.
M#/M! should be 1, as mf -> infinity.

Nf=12



MH ∝ m1/(1+γ)
f

, Fπ ∝ m1/(1+γ)
f

Conformal hypothesis in infinite volume & finite volume
• Universal behavior for all hadron masses (hyper-scaling) 
• Mass dependence is determined by scaling dimension (mass-deformed CFT.)  

Our interest : the same low-energy physics with the one obtained            
in infinite volume limit

But all the numerical simulations can be done only in finite size system (L).

Note: In order to avoid dominant finite volume effect and 
to connect with infinite volume limit result, 
we focus on the region of L >> " (correlation length), (LM# >>1). 

we use Finite size scaling hypothesis 
-> Finite size hyper-scaling for hadron mass in L^4 theory 
    [DeGrand et al. ; Del debbio et. al., ’09 ]

!"#$#"%&'()*+,&'-&.+*%/



Finite size hyper-scaling
• Universal behavior for all hadron masses  
• From RG argument the scaling variable x is determined as a combination of mass 

and size

c.f.  Finite Size Scaling (FSS) of 2nd order phase transition

Ref [DeGrand et al. ; Del debbio et. al., ’09 ]

• The universal description for hadron masses are given by the following forms as,



Test of Finite size hyper-scaling

We test the finite hyper-scaling for our data at L=18, 24, 30, 36.
The scaling function f(x) is unknown in general,
But if the theory is inside the conformal window,
the data should be described by one scaling parameter x.
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y = LMπ

|yj − f (KL)(xj)|

!To quantify the alignment and obtain the optimal &

16

We define a function P(&) to quantify how much the data “align” as a function of x.

[LatKMI, PRD86 (2012) 054506]

P (γ) =
1
N

�

L

�

j �∈KL

|yj − f(KL)(xj)|2

|δyj |2

18
24
30

Optimal value of ! for alignment will minimize P(!).

our analysis: three observables of yp=LMp  for p=#, $;   yF=LF# . 

A scaling function f(x) is unknown,  

→ f(xj) is obtained by interpolation (spline) with linear ansatz (quadratic for a 
systematic error).

If "j is away from f(xi) by % "j as average → P=1.
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P(&) analysis 
• P(&) has minimum at a certain value of &, 
  from which we evaluate the optimal value of &. 
• At minimum, P(&) is close to 1.   

Results for data for L=18, 24, 30 at !=3.7
L > " is satisfied in our analysis.

(LMπ > 8.5 for our simulation parameter region)

γ
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• The error -> both statistical & systematic errors
   <- estimation by changing x range of the analysis

[LatKMI, PRD86 (2012) 054506]

2012 Result

•Remember: F" data seems to be out of scaling region 
due to finite mass & volume corrections. Flat range is smaller than M#/M".
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• !(M#) is stable against the change of the mass (x) and & .
• smaller mass with larger volume (18,24,30 ->24,30,36) 
→closer value to !(M#) 

[LatKMI,  2013]

The universal scaling is obtained for both values of & =3.7 & 4.0 
!=0.4-0.5.

2013 Update

γ



Short summary
• !=3.7-4.0:  M", F", M# show conformal hyper scaling
• F" : large mass corrections in our whole mass parameters, likely too 

heavy mf to be neglect. '  Approaching small mass region, we obtain  
hyper-scaling behavior. 

• We find that the hyper-scaling is realized in larger volume region 
together with smaller mass region.  

• In such a region, the universal & can be obtained for M", F", M#.



Scalar mass in Nf=12
[LatKMI, PRL(2013)]



Scalar in conformal phase

• The scalar in mass-deformed CFT could be lighter due to the 
dilatonic nature [Bando-Matumoto-Yamawaki, ’86].                                                       
However, it has never been showed in many flavor QCD system 
from the first principle lattice calculation.

     This is the first result for the scalar measurement in Nf=12 QCD. 
• Information of the scalar could be a hint for the composite Higgs 

boson in the walking technicolor model, emerging as the techni-
dilaton from the (near-) conformal dynamics.

motivation



method

• Flavor-singlet scalar from fermion bilinear
• very noisy in general for disconnected diagram
• we use high statistics: a few 1000 ~14000 

configurations
• Details of the calculation -> talk by T. Yamazaki.



Result

LatKMI,
Phys. Rev. Lett. 111 (2013)162001



Effective mass (mf=0.06, L=24, 14000config.)Effective mass in Nf = 12 (mf = 0.06,243×32 with Nconf = 14000,

Preliminary)

meff(t) = log(CH(t)/CH(t+1)) t"1−−−→ mH
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Effective mass in Nf = 12 (mf = 0.06,243×32 with Nconf = 14000,

Preliminary)
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good signal !!

! (“NG-boson”) 

Effective mass in Nf = 12 (mf = 0.06,243×32 with Nconf = 14000,

Preliminary)

meff(t) = log(CH(t)/CH(t+1)) t"1−−−→ mH
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This requires computationally expensive measurements
and high statistics in order to give results with relatively
small errors. Previous studies of the scalar spectrum us-
ing fermionic operators in Nf = 12 QCD either did not
include the computation of disconnected diagrams [20],
or were restricted to an unphysical region of the param-
eter space that is not related to the continuum limit
physics of the asymptotically free theory [21].
We discretize the continuum SU(3) gauge theory with

12 degenerate fermions using 3 degenerate staggered
fermion species of bare mass mf (each coming in 4
tastes). In this letter all the dimensionful quantities are
expressed in lattice units. At finite lattice spacing, where
the simulations take place, the continuum flavor symme-
try does not hold exactly. We use a tree–level Symanzik
gauge action and the highly improved staggered quark
(HISQ) [22] action without the tadpole improvement and
the mass correction in the Naik term [23] for the fermions.
The flavor symmetry breaking of this action is highly sup-
pressed in QCD [23] and we observed that it is almost
negligible in our Nf = 12 QCD simulations [10]. At
fixed lattice spacing, defined by the bare coupling con-
stant β = 6/g2 = 4.0, we simulate three physical volumes
L3 with L = 24, 30, 36 and aspect ratio T/L = 4/3. We
investigate the flavor–singlet scalar spectrum at four dif-
ferent bare quark masses mf = 0.05, 0.06, 0.08, and 0.10.
These parameters allow us to check for finite size system-
atics and to test hyperscaling [24, 25].
We carry out the simulations by using the standard

hybrid Monte-Carlo (HMC) algorithm using MILC code
version 7 [26] with some modifications to suit our needs,
such as the Hasenbusch mass preconditioning [27] to re-
duce the large computational cost at the smaller mf . Be-
side the excellent flavor(–taste) symmetry, another im-
portant feature of our simulations is the large number
of Monte Carlo trajectories from uninterrupted Markov
chains obtained after more than 1000 trajectories for
thermalization. For all sets of parameters explored, we
collect between 8000 and 30000 trajectories and we do
measurements every 2 trajectories. This is a necessary
step to contrast the rapid degradation of the signal in the
flavor–singlet scalar correlators. The simulation param-
eters and number of trajectories for each parameter are
tabulated in Table I. For the measurement of the ground
state mass of this channel we used interpolating operators
including both the fermionic fields and the gauge fields,
with the appropriate quantum numbers. The statistical
errors for the fermionic and gluonic measurements are
estimated by jackknife method with bin size of 200 and
160 trajectories, respectively.
In our fermionic scalar calculation, we employ the local

fermionic bilinear operator

OS(t) =
3∑

i=1

∑

!x

χi(#x, t)χi(#x, t) , (1)

where the index i runs through different staggered
fermion species. The explicit staggered spin–taste struc-
ture of the bilinear operator can be written as χi(y +

L3
× T mf Ncfgs mσ mπ mσ/mπ

243 × 32 0.05 11000 0.240(12)(0002) 0.3273(19)∗ 0.73(4)(00)

243 × 32 0.06 14000 0.283(16)(0401) 0.3646(16)∗ 0.78(4)(10)

243 × 32 0.08 15000 0.363(21)(0222) 0.4459(11) 0.81(5)(05)

243 × 32 0.10 9000 0.458(41)(3206) 0.5210(7) 0.88(8)(61)

303 × 40 0.05 10000 0.277(13)(1907) 0.3192(14)∗ 0.87(4)(62)

303 × 40 0.06 15000 0.331(14)(4510) 0.3648(9)∗ 0.91(4)(123 )

303 × 40 0.08 15000 0.386(21)(0020) 0.4499(8) 0.86(5)(04)

303 × 40 0.10 4000 0.437(50)(0709) 0.5243(7) 0.83(9)(12)

363 × 48 0.05 5000 0.285(22)(0003) 0.3204(7)∗ 0.89(7)(01)

363 × 48 0.06 6000 0.307(21)(2304) 0.3636(9)∗ 0.84(6)(61)

TABLE I: Parameters of lattice simulations for Nf = 12 QCD
at fixed β = 4.0. Ncfgs is the number of saved gauge configu-
rations. The second error of mσ is a systematic error coming
from the fit range. The values of mπ are from Ref. [10], but
the ones with (∗) have been updated. The error on mσ/mπ

comes only from mσ.

A)(1 ⊗ 1)ABχi(y + B) with y as an origin of the hy-
percube, and A, B as vectors in the hypercube. Note
that this system has exact symmetry for exchanging the
species. The taste symmetry breaking, which is to vanish
in the continuum limit, is very small in our simulations.
Therefore, a part of the full flavor symmetry is exact, and
the rest is only broken by a small amount. From OS(t)
we calculate the correlator, which is constructed by both
the connected C(t) and vacuum–subtracted disconnected
D(t) correlators, 〈OS(t)O

†
S(0)〉 = 3D(t)−C(t), where the

factor in front of D(t) comes from the number of species.
It is noted that the contribution of D(t) with respect to
C(t) increases with Nf = #species×4.
The operatorOS overlaps with the flavor–singlet scalar

state (σ), but also with a flavor non–singlet pseudo–scalar
state (πSC), which is the staggered parity partner of σ;
therefore, in the large–time limit, the correlator above
behaves as

3D(t)− C(t) = Aσ(t) + (−1)tAπ
SC
(t) , (2)

where AH(t) = AH(e−mHt + e−mH(T−t)), and the
pseudo–scalar state has a (γ5γ4 ⊗ ξ5ξ4) spin–taste struc-
ture, but is species–singlet.
Because C(t) can be regarded as a flavor non–singlet

scalar correlator, it should have a contribution from the
lightest non–singlet scalar state (a0) (e.g. a0(980) in
QCD [13]), and its staggered parity partner (πSC). When
t is large, we can therefore write

− C(t) = Aa0
(t) + (−1)tAπSC

(t) , (3)

where both a0 and πSC are species non-singlet and have
the same taste structure as σ and πSC, respectively. The
πSC state is degenerate with the (γ5⊗ξ5) π and also with
πSC (mπSC

= mπ = mπ
SC
) when the taste symmetry,

thus the full flavor symmetry, is recovered.
The disconnected correlator D(t), which is essential to

obtain the σ mass, can be calculated by inverting the

Results: Nf=12 summary

O++ scalar is lighter than ".
It is consistent with hyper-scaling (&~0.4)
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FIG. 3: Fermionic mσ and gluonic mG effective masses (re-
spectively from correlators in Eq. (4) and Eq. (5)) for L = 24
and mf = 0.06. The fitted masses are highlighted by dashed
and dotted lines respectively.
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FIG. 4: The mass of the flavor–singlet scalar meson σ (see Ta-
ble I) compared to the mass of the pseudo–scalar π state in
units of the lattice spacing. Errors are statistical and system-
atics added in quadrature. For comparison, gluonic masses
mG are also shown. The hyperscaling curve is described in
the text. The triangle and filleds square symbols are slightly
shifted for clarity.

large–time behavior (t = 6–8) of the correlator and we
obtain mG = 0.242(68) at mf = 0.05, mG = 0.246(79)
at mf = 0.06 and mG = 0.28(12) at mf = 0.08. These
mG are all lighter than mπ by more than one standard
deviation, while the statistical errors are large.
Figure 4 presents the flavor–singlet scalar spectrum as

function of mf . All the mG’s are consistent with mσ at
each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statistics.
For a check of consistency with the hyperscaling of mπ,
we fit mσ on the largest volume data at each mf using
the hyperscaling form mσ = C(mf )1/1+γ with a fixed
γ = 0.414 estimated from mπ [10], which gives a reason-
able value of χ2/dof = 0.12. The fit is shown in Fig.4.
We also estimate the ratiomσ/mπ at each parameter and
report it in Table I. All the ratios are smaller than unity

by more than one standard deviation including the sys-
tematic error, except the one at mf = 0.06 on L = 30, as
previously explained. A constant fit with the largest vol-
ume data at eachmf gives 0.86(3). These results are con-
sistent with the theory being infrared conformal. More-
over they do not show an abnormal mf dependence of
mσ similar to the one observed in Ref. [21], by which an
effect of an unphysical phase boundary would have been
suspected.
To summarize, we performed the first study of the

scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.
Despite it being studied by several groups using differ-

ent approaches,Nf = 12 QCD has not yet been identified
as an infrared–conformal or near–conformal theory. The
majority of studies suggests the presence of an infrared
fixed point with a somewhat smaller anomalous dimen-
sion than the one expected for the walking technicolor. If
this turns out to be the case, such a theory would not be
a viable candidate for a phenomenologically interesting
walking technicolor model. Nevertheless, the light scalar
state observed for Nf = 12 in this study is regarded as
a reflection of the dilatonic nature of the conformal dy-
namics, since otherwise the p–wave bound state (scalar)
is expected to be heavier than the s–wave one (pseudo–
scalar). Thus, it is a promising signal for the search of a
successful walking theory, where a similar conformal dy-
namics is operative in a wide infrared region above the
chiral–symmetry–breaking scale of O(Fπ).
Another consequence of this study is that the use of

chiral perturbation theory, to test for chiral symmetry
breaking signals, should be more involved to include the
light scalar degree of freedom, in the relevant fermion
mass region explicitly measured in our simulations. At
the moment, our results are consistent with the theory
being in the conformal window.
While further investigation of the scalar state in Nf =

12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [36].
Acknowledgments.– Numerical simulation has been car-

Goldstone pion 
mass

empty ... Fermionic

full      ... Gluonic
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Results: Nf=12 summary

M# > M" > M$
Nf=12 QCD is in sharp contrast to the real-life QCD 
(right figure: Nf=2 lattice QCD result)
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c.f. Nf=2 lattice QCD result
[T. Kunihiro,et al., 
SCALAR Collaboration, 2003]



Summary
•Large Nf SU(3) gauge theory is being investigated in LatKMI project.
•We focus on the Nf=12 case. 

[LatKMI, PRD 2012]. 
•Finite size hyper scaling is observed for the ! (“NG-boson”) mass, 
decay constant and rho meson mass.
•Nf=12 is consistent with conformal gauge theory.
•The resulting universal " ~0.4-0.5 (not favored as Walking 
Technicolor)
•ChPT expansion is not valid, expansion parameter is much larger than 1. 
(Not yet exclude chiral broken scenario (very small F"))

[LatKMI, PRL 2013]
•We measured Flavor-singlet meson (& 0++ glueball) spectrum. 
•Scalar is lighter than ", which is in sharp contrast to the real-life QCD.

How about other # of fermions??
-> e.g. 8 flavor case, talk by K.-i. Nagai (next!)        
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END
Thank you 


