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Introduction

Accelerating cosmology within modified gravity: advances?

1 No need to introduce extra fields (inflaton, dark scalar or dark fluid, etc) to describe accelerating universe. The problem is solved
by modification of gravitational action at early/late times!

2 Well-known applications to describe inflation in terms of higher-derivative gravity: Starobinsky, Mamaev-Mostepanenko, 1980.

3 Very natural possibility to describe dark energy era via modified gravity. The first discovery of quintessence dark era produced by
power-law F(R) gravity is given by Capozziello (2002).

4 Very natural unification of inflation and dark energy eras in modified gravity: Nojiri-Odintsov 2003.

5 The complete description of the whole universe evolution eras sequence: inflation, radiation/matter dominance, dark energy in
modified F(R) gravity, Nojiri-Odintsov 2006.

6 The possible emergence of dark matter from F(R) gravity (Capozziello 2004).

7 Direct relation of modified gravity theories with string theory. example of F(R) gravity (Nojiri-Odintsov 2003)

8 Relation with high energy physics (effective action, conformal anomaly, unification of GUTs with HD gravity)

9 Cosmological bounds and local tests.
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F (R) gravity:General properties

The action of ghost-free F (R) gravity

SF (R) =

∫
d4x
√
−g
(

F (R)

2κ2
+ Lmatter

)
. (1)

The FRW equations in the Einstein gravity coupled with perfect fluid are given by

ρmatter =
3

κ2
H2
, pmatter = −

1

κ2

(
3H2 + 2Ḣ

)
, (2)

which allow us to define an effective equation of state (EoS) parameter as follows:

weff = −1−
2Ḣ

3H2
. (3)

The field equation in the F (R) gravity with matter is given by

1

2
gµνF (R)− RµνF

′(R)− gµν�F ′(R) +∇µ∇νF ′(R) = −
κ2

2
Tmatterµν . (4)

By assuming a spatially flat FRW universe,

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dx i
)2

, (5)

the equations corresponding to the FRW equations are given as follows:

0 =−
F (R)

2
+ 3
(
H2 + Ḣ

)
F ′(R)− 18

(
4H2Ḣ + HḦ

)
F ′′(R) + κ

2
ρmatter , (6)

0 =
F (R)

2
−
(
Ḣ + 3H2

)
F ′(R) + 6

(
8H2Ḣ + 4Ḣ2 + 6HḦ +

...
H
)
F ′′(R)

+ 36
(

4HḢ + Ḧ
)2

F ′′′(R) + κ
2pmatter . (7)
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F (R) gravity: General properties

One can find several (often exact) solutions of (6). When we neglect the contribution from matter,
by assuming that the Ricci tensor is covariantly constant, that is, Rµν ∝ gµν , Eq. (4) reduces to
an algebraic equation:

0 = 2F (R)− RF ′(R) . (8)

If Eq. (8) has a solution, the (anti-)de Sitter, the Schwarzschild-(anti-)de Sitter space, and/or the
Kerr-(anti-)de Sitter space is an exact vacuum solution.
Now we assume that F (R) behaves as F (R) ∝ f0R

m. Then Eq. (6) gives

0 =f0

{
−

1

2

(
6Ḣ + 12H2

)m
+ 3m

(
Ḣ + H2

)(
6Ḣ + 12H2

)m−1

−3mH
d

dt

{(
6Ḣ + 12H2

)m−1
}}

+ κ
2
ρ0a
−3(1+w)

. (9)

Eq. (7) is irrelevant because it can be derived from (9). When the contribution from the matter can
be neglected (ρ0 = 0), the following solution exists:

H ∼
− (m−1)(2m−1)

m−2

t
, (10)

which corresponds to the following EoS parameter (3):

weff = −
6m2 − 7m − 1

3(m − 1)(2m − 1)
. (11)
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F (R) gravity: General properties

On the other hand, when the matter with a constant EoS parameter w is included, an exact solution
of (9) is given by

a = a0t
h0 , h0 ≡

2m

3(1 + w)
,

a0 ≡
[
−

3f0h0

κ2ρ0

(
−6h0 + 12h2

0

)m−1
{(1− 2m) (1− m)− (2− m)h0}

]− 1
3(1+w)

, (12)

and we find the effective EoS parameter (3) as

weff = −1 +
w + 1

m
. (13)

These solutions (10) and (12) show that modified gravity may describe early/late-time universe

acceleration.
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F (R) gravity: Scalar-tensor description

One can rewrite F (R) gravity as the scalar-tensor theory. By introducing the auxiliary field A, the
action (1) of the F (R) gravity is rewritten in the following form:

S =
1

2κ2

∫
d4x
√
−g
{
F ′(A) (R − A) + F (A)

}
. (14)

By the variation of A, one obtains A = R. Substituting A = R into the action (14), one can repro-
duce the action in (1). Furthermore, by rescaling the metric as gµν → eσgµν

(
σ = − ln F ′(A)

)
,

we obtain the Einstein frame action:

SE =
1

2κ2

∫
d4x
√
−g
(
R −

3

2
gρσ∂ρσ∂σσ − V (σ)

)
,

V (σ) =e
σg
(
e
−σ
)
− e

2σf
(
g
(
e
−σ
))

=
A

F ′(A)
−

F (A)

F ′(A)2
. (15)

Here g
(
e−σ

)
is given by solving the equation σ = − ln

(
1 + f ′(A)

)
= − ln F ′(A) as A = g

(
e−σ

)
.

Due to the conformal transformation, a coupling of the scalar field σ with usual matter arises. Since
the mass of σ is given by

m2
σ ≡

3

2

d2V (σ)

dσ2
=

3

2

{
A

F ′(A)
−

4F (A)

(F ′(A))2
+

1

F ′′(A)

}
, (16)

unless mσ is very large, the large correction to the Newton law appears.
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F (R) gravity: Viable modified gravities

As an example, we may consider the following exponential model

F (R) = R + α
(
e
−bR − 1

)
. (17)

Here α and b are constants. One can regard α as an effective cosmological constant and we choose
the parameter b so that 1/b is much smaller than the curvature R0 of the present universe. Then
in the region R � R0, we find

m2
σ ∼

ebR

2αb2
, (18)

which is positive and m2
σ could be very large and the correction to the Newton law is very small. In

paper by Hu-Sawicky 2007, the one of the first examples of “realistic” F (R) model was proposed.
Currently, several viable models are proposed.
In order to obtain a realistic and viable model, F (R) gravity should satisfy the following conditions:

1 When R → 0, the Einstein gravity is recovered, that is,

F (R)→ R that is,
F (R)

R2
→

1

R
. (19)

This also means that there is a flat space solution.

2 There appears a stable de Sitter solution, which corresponds to the late-time acceleration

and, therefore, the curvature is small R ∼ RL ∼
(

10−33 eV
)2

. This requires, when R ∼ RL,

F (R)

R2
= f0L − f1L (R − RL)2n+2 + o

(
(R − RL)2n+2

)
. (20)

Here, f0L and f1L are positive constants and n is a positive integer. Of course, in some cases
this condition may not be strictly necessary.
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F (R) gravity: Viable modified gravities

3 There appears a quasi-stable de Sitter solution that corresponds to the inflation of the early

universe and, therefore, the curvature is large R ∼ RI ∼
(

1016∼19 GeV
)2

. The de Sitter
space should not be exactly stable so that the curvature decreases very slowly. It requires

F (R)

R2
= f0I − f1I (R − RI )

2m+1 + o
(

(R − RI )
2m+1

)
. (21)

Here, f0I and f1I are positive constants and m is a positive integer.

4 In order to avoid the curvature singularity when R →∞, F (R) should behaves as

F (R)→ f∞R2 that is
F (R)

R2
→ f∞ . (22)

Here, f∞ is a positive and sufficiently small constant. Instead of (22), we may take

F (R)→ f∞̃R2−ε that is
F (R)

R2
→

f∞̃

Rε
. (23)

Here, f∞̃ is a positive constant and 0 < ε < 1. The above condition (22) or (23) prevents
both the future singularity and the singularity due to large density of matter.

5 To avoid the anti-gravity, we require

F ′(R) > 0 , (24)

which is rewritten as
d

dR

(
ln

(
F (R)

R2

))
−

2

R
. (25)
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F (R) gravity: Viable modified gravities

6 Combining conditions (19) and (24), one finds

F (R) > 0 . (26)

7 To avoid the matter instability (Dolgov-Kawasaki 2003), we require

U(Rb) ≡
Rb

3
−

F (1)(Rb)F (3)(Rb)Rb

3F (2)(Rb)2
−

F (1)(Rb)

3F (2)(Rb)

+
2F (Rb)F (3)(Rb)

3F (2)(Rb)2
−

F (3)(Rb)Rb

3F (2)(Rb)2
< 0 . (27)

The conditions 1 and 2 tell that an extra, unstable de Sitter solution must appear at R = Re

(0 < Re < RL). Since the universe evolution will stop at R = RL because the de Sitter solution
R = RL is stable; the curvature never becomes smaller than RL and, therefore, the extra de Sitter
solution is not realized.
An example of viable F (R) gravity is given below

F (R)

R2
=
{

(Xm (RI ; R)− Xm (RI ; R1)) (Xm (RI ; R)− Xm (RI ; RL))2n+2

+Xm (RI ; R1) Xm (RI ; RL)2n+2 + f 2n+3
∞

} 1
2n+3 ,

Xm (RI ; R) ≡
(2m + 1) R2m

I

(R − RI )
2m+1 + R2m+1

I

. (28)

Here, n and m are integers greater or equal to unity, and n,m ≥ 1 and R1 is a parameter related
with Re by

X (RI ; Re) =
(2n + 2) X (RI ; R1) X (RI ; R1) + X (RI ; RL)

2n + 3
. (29)

We also assume 0 < R1 < RL � RI .
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F (R) gravity: Viable modified gravities

Another realistic theory unifying inflation with dark energy is given in

F (R) = R − 2Λ

(
1− e

− R
R0

)
− Λi

(
1− e

−
(

R
Ri

)n)
+ γRα . (30)

Here Λ is the effective cosmological constant in the present universe and we also assume the pa-

rameter R0 is almost equal to Λ. Ri and Λi are typical values of the curvature and the effective

cosmological constant. α is a constant: 1 < α ≤ 2. Generalizations: coupling of curvature with

trace of EMT (Harko-Lobo- -Nojiri-Odintsov) or with EMT (Saez-Gomez).
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Stable neutron stars from f (R) gravity
A.Astashenok,S. Capozziello and S.D. Odintsov,arXiv:1309.1978

It is convenient to write function f (R) as

f (R) = R + αh(R), (31)

The field equations are

(1 + αhR )Gµν −
1

2
α(h − hRR)gµν − α(∇µ∇ν − gµν�)hR =

8πG

c4
Tµν . (32)

Spherically symmetric metric with two independent functions of radial coordinate:

ds2 = −e2φc2dt2 + e2λdr2 + r2(dθ2 + sin2
θdφ2). (33)

The energy–momentum tensor Tµν = diag(e2φρc2, e2λP, r2P, r2 sin2 θP), where ρ is the matter
density and P is the pressure. The components of the field equations are

−8πG

c2
ρ = −r−2 + e−2λ(1− 2rλ′)r−2 + αhR (−r−2 + e−2λ(1− 2rλ′)r−2)

−
1

2
α(h − hRR) + e−2λ

α[h′R r
−1(2− rλ′) + h′′R ], (34)

8πG

c4
P = −r−2 + e−2λ(1 + 2rφ′)r−2 + αhR (−r−2 + e−2λ(1 + 2rφ′)r−2)

−
1

2
α(h − hRR) + e−2λ

αh′R r
−1(2 + rφ′), (35)

where prime denotes derivative with respect to radial distance, r .
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Stable neutron stars from f (R) gravity

For the exterior solution, we assume a Schwarzschild solution. For this reason, it is convenient to
define the change of variable

e−2λ = 1−
2GM

c2r
. (36)

The value of parameter M on the surface of a neutron star can be considered as a gravitational star
mass. Useful relation

GdM

c2dr
=

1

2

[
1− e−2λ(1− 2rλ′]

)
, (37)

.
The hydrostatic condition of equilibrium can be obtained from the Bianchi identities

dP

dr
= −(ρ + P/c2)

dφ

dr
, . (38)

The second TOV equation can be obtained by substitution of the derivative dφ/dr from (38) in
Eq.(35). The dimensionless variables

M = mM�, r → rg r , ρ→ ρM�/r
3
g , P → pM�c

2
/r3

g , R → R/r2
g .

Here M� is the Sun mass and rg = GM�/c
2 = 1.47473 km. Eqs. (34), (35) can be rewritten as(

1 + αr2
g hR +

1

2
αr2

g h
′
R r

)
dm

dr
= 4πρr2 −

1

4
αr2r2

g

(
h − hRR − 2

(
1−

2m

r

)(
2h′R
r

+ h′′R

))
,

(39)

8πp = −2
(

1 + αr2
g hR
) m

r3
−
(

1−
2m

r

)(
2

r
(1 + αr2

g hR ) + αr2
g h
′
R

)
(ρ + p)−1 dp

dr
− (40)

−
1

2
αr2

g

(
h − hRR − 4

(
1−

2m

r

)
h′R
r

)
,

where ′ = d/dr .
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Stable neutron stars from f (R) gravity

For α = 0, Eqs. (39), (40) reduce to
dm

dr
= 4πρ̃r2 (41)

dp

dr
= −

4πpr3 + m

r(r − 2m)
(ρ̃ + p) , (42)

i.e. to ordinary dimensionless TOV equations. These equations can be solved numerically for a given
EoS p = f (ρ) and initial conditions m(0) = 0 and ρ(0) = ρc .
For non-zero α, one needs the third equation for the Ricci curvature scalar. The trace of field Eqs.
(32) gives the relation

3α�hR + αhRR − 2αh − R = −
8πG

c4
(−3P + ρc2). (43)

In dimensionless variables, we have

3αr2
g

((
2

r
−

3m

r2
−

dm

rdr
−
(

1−
2m

r

)
dp

(ρ + p)dr

)
d

dr
+

(
1−

2m

r

)
d2

dr2

)
hR

+ αr2
g hRR − 2αr2

g h − R = −8π(ρ− 3p) . (44)

We need to add the EoS for matter inside star to the Eqs. (39), (40), (44). Standard polytropic
EoS p ∼ ργ works, although a more realistic EoS has to take into account different physical states
for different regions of the star and it is more complicated.
Perturbative solution. For a perturbative solution the density, pressure, mass and curvature can be
expanded as

p = p(0) + αp(1) + ..., ρ = ρ
(0) + αρ

(1) + ..., (45)

m = m(0) + αm(1) + ..., R = R(0) + αR(1) + ...,

where functions ρ(0), p(0), m(0) and R(0) satisfy to standard TOV equations assumed at zeroth order.

Terms containing hR are assumed to be of first order in the small parameter α, so all such terms

should be evaluated at O(α) order.
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Stable neutron stars from f (R) gravity

For m = m(0) + αm(1), the following equation

dm

dr
= 4πρr2−αr2

(
4πρ(0)hR +

1

4
(h − hRR)

)
+

1

2
α

((
2r − 3m(0) − 4πρ(0)r3

) d

dr
+ r(r − 2m(0))

d2

dr2

)
hR

(46)

for pressure p = p(0) + αp(1)

r − 2m

ρ + p

dp

dr
= 4πr2p +

m

r
− αr2

(
4πp(0)hR +

1

4
(h − hRR)

)
− α

(
r − 3m(0) + 2πp(0)r3

) dhR

dr
.

(47)
The Ricci curvature scalar, in terms containing hR and h, has to be evaluated at O(1) order, i.e.

R ≈ R(0) = 8π(ρ(0) − 3p(0)) . (48)

We can consider various EoS for the description of the behavior of nuclear matter at high densities.
For example the SLy and FPS equation have the same analytical representation:

ζ =
a1 + a2ξ + a3ξ

3

1 + a4ξ
f (a5(ξ − a6)) + (a7 + a8ξ)f (a9(a10 − ξ))+ (49)

+(a11 + a12ξ)f (a13(a14 − ξ)) + (a15 + a16ξ)f (a17(a18 − ξ)),

where

ζ = log(P/dyncm−2) , ξ = log(ρ/gcm−3) , f (x) =
1

exp(x) + 1
.

The coefficients ai for SLy and FPS EoS are different.
Neutron star with a quark core. The quark matter can be described by the very simple EoS:

pQ = a(ρ− 4B), (50)

where a is a constant and the parameter B can vary from ∼ 60 to 90 Mev/fm3.
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Stable neutron stars from f (R) gravity

For quark matter with massless strange quark, it is a = 1/3. We consider a = 0.28 corresponding
to ms = 250 Mev. For numerical calculations, Eq. (50) is used for ρ ≥ ρtr , where ρtr is the
transition density for which the pressure of quark matter coincides with the pressure of ordinary
dense matter. For example for FPS equation, the transition density is ρtr = 1.069 × 1015 g/cm3

(B = 80 Mev/fm3), for SLy equation ρtr = 1.029× 1015 g/cm3 (B = 60 Mev/fm3).

Model 1.
f (R) = R + βR(exp(−R/R0)− 1), (51)

We can assume, for example, R = 0.5r−2
g . For R << R0 this model coincides with quadratic model

of f (R) gravity.
For neutron stars models with quark core, there is no significant differences with respect to General
Relativity. For a given central density, the star mass grows with α. The dependence is close to
linear for ρ ∼ 1015g/cm3. For the piecewise equation of state ( FPS case for ρ < ρtr ) the maximal
mass grows with increasing α. For β = −0.25, the maximal mass is 1.53M�, for β = 0.25,
Mmax = 1.59M� (in General Relativity, it is Mmax = 1.55M�). With an increasing β, the maximal
mass is reached at lower central densities. Furthermore, for dM/dρc < 0, there are no stable star
configurations. A similar situation is observed in the SLy case but mass grows with β more slowly.

For the simplified EoS (49), other interesting effects can occur. For β ∼ −0.15 at high central

densities (ρc ∼ 3.0 − 3.5 × 1015g/cm3), we have the dependence of the neutron star mass from

radius and from central density. For β < 0 for high central densities we have the stable star

configurations (dM/dρc > 0).
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Stable neutron stars from f (R) gravity

For example the measurement of mass of the neutron star PSR J1614-2230 with 1.97 ± 0.04 M�
provides a stringent constraint on any M − R relation. The model with SLy equation is more
interesting: in the context of model (51), the upper limit of neutron star mass is around 2M� and
there is second branch of stability star configurations at high central densities. This branch describes
observational data better than the model with SLy EoS in GR.
Possibility of a stabilization mechanism in f (R) gravity which leads to the existence of stable neutron
stars which are more compact objects than in General Relativity. Cubic model.

f (R) = R + αR2(1 + γR) . (52)

Let |γR| ∼ O(1) for large R and αR2(1 + γR) << R. For small masses, the results coincide

with R2 model. For γ = −10 (in units r2
g ) the maximal mass of neutron star at high densities

ρ > 3.7× 1015 g/cm3 is nearly 1.88M� and radius is about ∼ 9 km (SLy equation). For γ = −20
the maximal mass is 1.94M� and radius is about ∼ 9.2 km . In the GR, for SLy equation, the
minimal radius of neutron stars is nearly 10 km. Therefore such a model of f (R) gravity can give
rise to neutron stars with smaller radii than in GR. Therefore such theory can describe (assuming
only the SLy equation), the existence of peculiar neutron stars with mass ∼ 2M� (the measured
mass of PSR J1614-2230) and compact stars (R ∼ 9 km) with masses M ∼ 1.6− 1.7M�.
For smaller values of γ the minimal neutron star mass (and minimal central density at which stable
stars exist) on second branch of stability decreases.

It is interesting to note that for negative and sufficiently large values of ε, the maximal limit of

neutron star mass can exceed the limit in General Relativity for given EoS (the stable stars exist for

higher central densities). Therefore some EoS which ruled out by observational constraints in GR

can describe real star configurations in frames of such model of gravity. One has to note that the

upper limit in this model of gravity is achieved for smaller radii than in GR for acceptable EoS.
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f (G) gravity: General properties

Topological Gauss-Bonnet invariant:

G = R2 − 4RµνR
µν + RµνξσR

µνξσ
, (53)

is added to the action of the Einstein gravity. One starts with the following action:

S =

∫
d4x
√
−g
(

1

2κ2
R + f (G) + Lmatter

)
. (54)

Here, Lmatter is the Lagrangian density of matter. The variation of the metric gµν :

0 =
1

2κ2

(
−Rµν +

1

2
gµνR

)
+ Tµνmatter +

1

2
gµν f (G)− 2f ′(G)RRµν

+ 4f ′(G)RµρR
νρ − 2f ′(G)RµρστRνρστ − 4f ′(G)RµρσνRρσ + 2

(
∇µ∇ν f ′(G)

)
R

− 2gµν
(
∇2f ′(G)

)
R − 4

(
∇ρ∇µf ′(G)

)
Rνρ − 4

(
∇ρ∇ν f ′(G)

)
Rµρ

+ 4
(
∇2f ′(G)

)
Rµν + 4gµν

(
∇ρ∇σf ′(G)

)
Rρσ − 4

(
∇ρ∇σf ′(G)

)
Rµρνσ . (55)

The first FRW equation:

0 = −
3

κ2
H2 − f (G) + Gf ′(G)− 24Ġf ′′(G)H3 + ρmatter . (56)

Here G has the following form:

G = 24
(
H2Ḣ + H4

)
. (57)

the FRW-like equations (fluid description):

ρ
G
eff =

3

κ2
H2
, pGeff = −

1

κ2

(
3H2 + 2Ḣ

)
. (58)
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Here,

ρ
G
eff ≡− f (G) + Gf ′(G)− 24Ġf ′′(G)H3 + ρmatter ,

pGeff ≡f (G)− Gf ′(G) +
2GĠ
3H

f ′′(G) + 8H2G̈f ′′(G) + 8H2Ġ2f ′′′(G) + pmatter . (59)

When ρmatter = 0, Eq. (56) has a de Sitter universe solution where H, and therefore G, are
constant. For H = H0, with a constant H0, Eq. (56) turns into

0 = −
3

κ2
H2

0 + 24H4
0 f
′
(

24H4
0

)
− f

(
24H4

0

)
. (60)

As an example, we consider the model

f (G) = f0 |G|β , (61)

with constants f0 and β. Then, the solution of Eq. (60) is given by

H4
0 =

1

24 (8 (n − 1)κ2f0)
1

β−1

. (62)

No matter and GR. Eq. (56) reduces to

0 = Gf ′(G)− f (G)− 24Ġf ′′(G)H3
. (63)

If f (G) behaves as (61), assuming

a =

{
a0t

h0 when h0 > 0 (quintessence)

a0 (ts − t)h0 when h0 < 0 (phantom)
, (64)

one obtains
0 = (β − 1) h6

0 (h0 − 1) (h0 − 1 + 4β) . (65)
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As h0 = 1 implies G = 0, one may choose

h0 = 1− 4β , (66)

and Eq. (3) gives

weff = −1 +
2

3(1− 4β)
. (67)

Therefore, if β > 0, the universe is accelerating (weff < −1/3), and if β > 1/4, the universe is in
a phantom phase (weff < −1). Thus, we are led to consider the following model:

f (G) = fi |G|βi + fl |G|βl , (68)

where it is assumed that

βi >
1

2
,

1

2
> βl >

1

4
. (69)

Then, when the curvature is large, as in the primordial universe, the first term dominates, compared
with the second term and the Einstein term, and it gives

− 1 > weff = −1 +
2

3(1− 4βi )
> −

5

3
. (70)

On the other hand, when the curvature is small, as is the case in the present universe, the second
term in (68) dominates compared with the first term and the Einstein term and yields

weff = −1 +
2

3(1− 4βl )
< −

5

3
. (71)

Therefore, theory (68) can produce a model that is able to describe inflation and the late-time

acceleration of the universe in a unified manner.
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The action (54) can be rewritten by introducing the auxiliary scalar field φ as,

S =

∫
d4x
√
−g
[

R

2κ2
− V (φ)− ξ(φ)G

]
. (72)

By variation over φ, one obtains
0 = V ′(φ) + ξ

′(φ)G , (73)

which could be solved with respect to φ as

φ = φ(G) . (74)

By substituting the expression (74) into the action (72), we obtain the action of f (G) gravity, with

f (G) = −V (φ(G)) + ξ (φ(G))G . (75)

Assuming a spatially-flat FRW universe and the scalar field φ to depend only on t, we obtain the
field equations:

0 =−
3

κ2
H2 + V (φ) + 24H3 dξ(φ(t))

dt
, (76)

0 =
1

κ2

(
2Ḣ + 3H2

)
− V (φ)− 8H2 d

2ξ(φ(t))

dt2

− 16HḢ
dξ(φ(t))

dt
− 16H3 dξ(φ(t))

dt
. (77)

Combining the above equations, we obtain

0 =
2

κ2
Ḣ − 8H2 d

2ξ(φ(t))

dt2
− 16HḢ

dξ(φ(t))

dt
+ 8H3 dξ(φ(t))

dt

=
2

κ2
Ḣ − 8a

d

dt

(
H2

a

dξ(φ(t))

dt

)
, (78)
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which can be solved with respect to ξ(φ(t)) as

ξ(φ(t)) =
1

8

∫ t

dt1
a(t1)

H(t1)2
W (t1) , W (t) ≡

2

κ2

∫ t dt1

a(t1)
Ḣ(t1) . (79)

Combining (76) and (79), the expression for V (φ(t)) follows:

V (φ(t)) =
3

κ2
H(t)2 − 3a(t)H(t)W (t) . (80)

As there is a freedom of redefinition of the scalar field φ, we may identify t with φ. Hence, we
consider the model where V (φ) and ξ(φ) can be expressed in terms of a single function g as

V (φ) =
3

κ2
g ′ (φ)2 − 3g ′ (φ) eg(φ)U(φ) ,

ξ(φ) =
1

8

∫ φ

dφ1
eg(φ1)

g ′(φ1)2
U(φ1) ,

U(φ) ≡
2

κ2

∫ φ

dφ1e
−g(φ1)g ′′ (φ1) . (81)

By choosing V (φ) and ξ(φ) as (81), one can easily find the following solution for Eqs.(76) and (77):

a = a0e
g(t) (H = g ′(t)

)
. (82)

Therefore one can reconstruct F (G) gravity to generate arbitrary expansion history of the universe.
Thus, we reviewed the modified Gauss-Bonnet gravity and demonstrated that it may naturally lead
to the unified cosmic history, including the inflation and dark energy era.
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Stringy gravity:

S =

∫
d4x
√
−g
[
R

2
+ Lφ + Lc + . . .

]
, (83)

where φ is the dilaton, Lφ is the Lagrangian of φ, and Lc expresses the string curvature correction
terms,

Lφ = −∂µφ∂µφ− V (φ) , Lc = c1α
′
e

2
φ
φ0 L(1)

c + c2α
′2
e

4
φ
φ0 L(2)

c + c3α
′3
e

6
φ
φ0 L(3)

c , (84)

where 1/α′ is the string tension, L(1)
c , L(2)

c , and L(3)
c express the leading-order (Gauss-Bonnet term

G in (53)), the second-order, and the third-order curvature corrections, respectively:

L(1)
c = Ω2 , L(2)

c = 2Ω3 + RµναβR
αβ
λρ Rλρµν , L

(3)
c = L31 − δHL32 −

δB

2
L33 . (85)

Here, δB and δH take the value of 0 or 1 and

Ω2 = G ,

Ω3 ∝ εµνρστηεµ′ν′ρ′σ′τ′η′R
µ′ν′

µν R ρ′σ′
ρσ R τ′η′

τη ,

L31 = ζ(3)RµνρσR
ανρβ

(
RµγδβR

δσ
αγ − 2RµγδαR

δσ
βγ

)
,

L32 =
1

8

(
RµναβR

µναβ
)2

+
1

4
R γδ
µν R ρσ

γδ R αβ
ρσ R µν

αβ −
1

2
R αβ
µν R ρσ

αβ RµσγδR
νγδ
ρ −R αβ

µν R ρν
αβ R γδ

ρσ R µσ
γδ ,

L33 =
(
RµναβR

µναβ
)2
− 10RµναβR

µνασRσγδρR
βγδρ − RµναβR

µνρ
σR

βσγδR α
δγρ .(86)

The correction terms are different depending on the type of string theory; the dependence is encoded
in the curvature invariants and in the coefficients (c1, c2, c3) and δH , δB , as follows,

For the Type II superstring theory: (c1, c2, c3) = (0, 0, 1/8) and δH = δB = 0.

For the heterotic superstring theory: (c1, c2, c3) = (1/8, 0, 1/8) and δH = 1, δB = 0.

For the bosonic superstring theory: (c1, c2, c3) = (1/4, 1/48, 1/8) and δH = 0, δB = 1.
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The starting action is:

S =

∫
d4x
√
−g
[

R

2κ2
−

1

2
∂µφ∂

µ
φ− V (φ)− ξ(φ)G

]
. (87)

Field equations:

0 =
1

κ2

(
−Rµν +

1

2
gµνR

)
+

1

2
∂
µ
φ∂

ν
φ−

1

4
gµν∂ρφ∂

ρ
φ +

1

2
gµν (−V (φ) + ξ(φ)G)

− 2ξ(φ)RRµν − 4ξ(φ)RµρR
νρ − 2ξ(φ)RµρστRνρστ + 4ξ(φ)RµρνσRρσ

+ 2
(
∇µ∇νξ(φ)

)
R − 2gµν

(
∇2
ξ(φ)

)
R − 4

(
∇ρ∇µξ(φ)

)
Rνρ − 4

(
∇ρ∇νξ(φ)

)
Rµρ

+ 4
(
∇2
ξ(φ)

)
Rµν + 4gµν (∇ρ∇σξ(φ)) Rρσ + 4 (∇ρ∇σξ(φ)) Rµρνσ . (88)

FRW eq.:

0 =−
3

κ2
H2 +

1

2
φ̇

2 + V (φ) + 24H3 dξ(φ(t))

dt
, (89)

0 =
1

κ2

(
2Ḣ + 3H2

)
+

1

2
φ̇

2 − V (φ)− 8H2 d
2ξ(φ(t))

dt2

− 16HḢ
dξ(φ(t))

dt
− 16H3 dξ(φ(t))

dt
. (90)

Scalar equation
0 = φ̈ + 3Hφ̇ + V ′(φ) + ξ

′(φ)G . (91)



Introduction F (R) gravity f (G) gravity String-inspired model F (R) bigravity What is the next?

String-inspired model and scalar-Einstein-Gauss-Bonnet gravity

In particular when we consider the following string-inspired model,

V = V0e
− 2φ
φ0 , ξ(φ) = ξ0e

2φ
φ0 , (92)

the de Sitter space solution follows:

H2 = H2
0 ≡ −

e
− 2ϕ0
φ0

8ξ0κ2
, φ = ϕ0 . (93)

Here, ϕ0 is an arbitrary constant. If ϕ0 is chosen to be larger, the Hubble rate H = H0 becomes
smaller. Then, if ξ0 ∼ O(1), by choosing ϕ0/φ0 ∼ 140, the value of the Hubble rate H = H0 is
consistent with the observations. The model (92) also has another solution:

H =
h0
t , φ = φ0 ln t

t1
when h0 > 0 ,

H = − h0
ts−t , φ = φ0 ln ts−t

t1
when h0 < 0 . (94)

Here, h0 is obtained by solving the following algebraic equations:

0 = −
3h2

0

κ2
+
φ2

0

2
+ V0t

2
1 −

48ξ0h
3
0

t2
1

, 0 = (1− 3h0)φ2
0 + 2V0t

2
1 +

48ξ0h
3
0

t2
1

(h0 − 1) . (95)

Eqs. (95) can be rewritten as

V0t
2
1 =−

1

κ2 (1 + h0)

{
3h2

0 (1− h0) +
φ2

0κ
2 (1− 5h0)

2

}
, (96)

48ξ0h
2
0

t2
1

=−
6

κ2 (1 + h0)

(
h0 −

φ2
0κ

2

2

)
. (97)

The arbitrary value of h0 can be realized by properly choosing V0 and ξ0. With the appropriate
choice of V0 and ξ0, we can obtain a negative h0 and, therefore, the effective EoS parameter (3) is
less than −1, weff < −1, which corresponds to the effective phantom.
For example, if h0 = −80/3 < −1 and, therefore, w = −1.025, which is consistent with the
observed value, we find

V0t
2
1 =

1

κ2

(
531200

231
+

403

154
γφ

2
0κ

2
)
> 0 ,

f0

t2
1

=−
1

κ2

(
9

49280
+

27

7884800
γφ

2
0κ

2
)
. (98)
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Non-linear massive gravity (with non-dynamical background metric) was extended to the ghost-free
construction with the dynamical metric (Hassan et al).
The convenient description of the theory gives bigravity or bimetric gravity which contains two
metrics (symmetric tensor fields). One of two metrics is called physical metric while second metric
is called reference metric.
Next is F (R) bigravity which is also ghost-free theory. We introduce four kinds of metrics, gµν , gJ

µν ,

fµν , and f Jµν . The physical observable metric gJ
µν is the metric in the Jordan frame. The metric

gµν corresponds to the metric in the Einstein frame in the standard F (R) gravity and therefore the
metric gµν is not physical metric. In the bigravity theories, we have to introduce another reference

metrics or symmetric tensor fµν and f Jµν . The metric fµν is the metric corresponding to the Einstein

frame with respect to the curvature given by the metric fµν . On the other hand, the metric f Jµν is
the metric corresponding to the Jordan frame.
The starting action is given by

Sbi =M2
g

∫
d4x
√
− det g R(g) + M2

f

∫
d4x
√
− det f R(f )

+ 2m2M2
eff

∫
d4x
√
− det g

4∑
n=0

βn en
(√

g−1f
)
. (99)

Here R(g) is the scalar curvature for gµν and R(f ) is the scalar curvature for fµν . Meff is defined by

1

M2
eff

=
1

M2
g

+
1

M2
f

. (100)

Furthermore, tensor
√

g−1f is defined by the square root of gµρfρν , that is,
(√

g−1f
)µ
ρ

(√
g−1f

)ρ
ν

=

gµρfρν .
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For general tensor Xµν , en(X )’s are defined by

e0(X ) = 1 , e1(X ) = [X ] , e2(X ) = 1
2 ([X ]2 − [X 2]) ,

e3(X ) = 1
6 ([X ]3 − 3[X ][X 2] + 2[X 3]) ,

e4(X ) = 1
24 ([X ]4 − 6[X ]2[X 2] + 3[X 2]2 + 8[X ][X 3]− 6[X 4]) ,

ek (X ) = 0 for k > 4 . (101)

Here [X ] expresses the trace of arbitrary tensor Xµν : [X ] = Xµµ. In order to construct the consistent

F (R) bigravity, we add the following terms to the action (99):

Sϕ = −M2
g

∫
d4x
√
− det g

{
3

2
gµν∂µϕ∂νϕ + V (ϕ)

}
+

∫
d4xLmatter

(
e
ϕgµν ,Φi

)
, (102)

Sξ = −M2
f

∫
d4x
√
− det f

{
3

2
f µν∂µξ∂νξ + U(ξ)

}
. (103)

By the conformal transformations gµν → e−ϕgJ
µν and fµν → e−ξf Jµν , the total action SF =

Sbi + Sϕ + Sξ is transformed as

SF =M2
f

∫
d4x
√
− det f J

{
e
−ξRJ(f ) − e

−2ξU(ξ)
}

+ 2m2M2
eff

∫
d4x
√
− det gJ

4∑
n=0

βne

(
n
2
−2
)
ϕ− n

2
ξ
en

(√
gJ−1f J

)

+ M2
g

∫
d4x
√
− det gJ

{
e
−ϕRJ(g) − e

−2ϕV (ϕ)
}

+

∫
d4xLmatter

(
gJ
µν ,Φi

)
. (104)
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The kinetic terms for ϕ and ξ vanish. By the variations with respect to ϕ and ξ as in the case of
convenient F (R) gravity, we obtain

0 =2m2M2
eff

4∑
n=0

βn

(
n

2
− 2

)
e

(
n
2
−2
)
ϕ− n

2
ξ
en

(√
gJ−1f J

)
+ M2

g

{
−e−ϕRJ(g)

+2e−2ϕV (ϕ) + e
−2ϕV ′(ϕ)

}
, (105)

0 =− 2m2M2
eff

4∑
n=0

βnn

2
e

(
n
2
−2
)
ϕ− n

2
ξ
en

(√
gJ−1f J

)
+ M2

f

{
−e−ξRJ(f ) + 2e−2ξU(ξ) + e

−2ξU′(ξ)
}
.

(106)

The Eqs. (105) and (106) can be solved algebraically with respect to ϕ and ξ as

ϕ = ϕ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
and

ξ = ξ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
. Substituting above ϕ and ξ into (104), one gets F (R) bigravity:

SF = M2
f

∫
d4x
√
− det f JF (f )

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))

+ 2m2M2
eff

∫
d4x
√
− det g

4∑
n=0

βne

(
n
2
−2
)
ϕ

(
RJ(g),en

(√
gJ−1 f J

))
en

(√
gJ−1f J

)

+ M2
g

∫
d4x
√
− det gJFJ(g)

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
+

∫
d4xLmatter

(
gJ
µν ,Φi

)
,

(107)
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FJ(g)
(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
≡
{
e
−ϕ

(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
RJ(g)

−e
−2ϕ

(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
V

(
ϕ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

)))}
, (108)

F (f )
(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
≡
{
e
−ξ
(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
RJ(f )

−e
−2ξ

(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
U

(
ξ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

)))}
. (109)

Note that it is difficult to solve Eqs. (105) and (106) with respect to ϕ and ξ explicitly. Therefore,

it might be easier to define the model in terms of the auxiliary scalars ϕ and ξ as in (104).
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Let us consider the cosmological reconstruction program. For simplicity, we start from the minimal
case

Sbi =M2
g

∫
d4x
√
− det g R(g) + M2

f

∫
d4x
√
− det f R(f )

+ 2m2M2
eff

∫
d4x
√
− det g

(
3− tr

√
g−1f + det

√
g−1f

)
. (110)

In order to evaluate δ
√

g−1f , two matrices M and N, which satisfy the relation M2 = N are taken.
Since δMM + MδM = δN, one finds

tr δM =
1

2
tr
(
M−1

δN
)
. (111)

For a while, we consider the Einstein frame action (110) with (102) and (103) but matter contribution
is neglected. Then by the variation over gµν , we obtain

0 =M2
g

(
1

2
gµνR

(g) − R(g)
µν

)
+ m2M2

eff

{
gµν

(
3− tr

√
g−1f

)
+

1

2
fµρ
(√

g−1f
)−1 ρ

ν
+

1

2
fνρ
(√

g−1f
)−1 ρ

µ

}
+ M2

g

[
1

2

(
3

2
gρσ∂ρϕ∂σϕ + V (ϕ)

)
gµν −

3

2
∂µϕ∂νϕ

]
. (112)

On the other hand, by the variation over fµν , we get

0 =M2
f

(
1

2
fµνR

(f ) − R(f )
µν

)
+ m2M2

eff

√
det (f−1g)

{
−

1

2
fµρ
(√

g−1f
)ρ
ν

−
1

2
fνρ
(√

g−1f
)ρ
µ

+ det
(√

g−1f
)
fµν

}
+ M2

f

[
1

2

(
3

2
f ρσ∂ρξ∂σξ + U(ξ)

)
fµν −

3

2
∂µξ∂νξ

]
.

(113)
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We should note that det
√
g det

√
g−1f 6=

√
det f in general. The variations of the scalar fields ϕ

and ξ are given by
0 = −3�gϕ + V ′(ϕ) , 0 = −3�f ξ + U′(ξ) . (114)

Here �g (�f ) is the d’Alembertian with respect to the metric g (f ). By multiplying the covariant
derivative ∇µg with respect to the metric g with Eq. (112) and using the Bianchi identity 0 =

∇µg
(

1
2 gµνR

(g) − R(g)
µν

)
and Eq. (114), we obtain

0 =− gµν∇µg
(
tr
√

g−1f
)

+
1

2
∇µg

{
fµρ
(√

g−1f
)−1 ρ

ν
+ fνρ

(√
g−1f

)−1 ρ

µ

}
. (115)

Similarly by using the covariant derivative ∇µf with respect to the metric f , from (113), we obtain

0 =∇µf

[√
det (f−1g)

{
−

1

2

(√
g−1f

)−1ν

σ
gσµ −

1

2

(√
g−1f

)−1µ

σ
gσν + det

(√
g−1f

)
f µν
}]

.

(116)

In case of the Einstein gravity, the conservation law of the energy-momentum tensor depends from
the Einstein equation. It can be derived from the Bianchi identity. In case of bigravity, however, the
conservation laws of the energy-momentum tensor of the scalar fields are derived from the scalar
field equations. These conservation laws are independent of the Einstein equation. The Bianchi
identities give equations (115) and (116) independent of the Einstein equation.
We now assume the FRW universes for the metrics gµν and fµν and use the conformal time t for
the universe with metric gµν :

ds2
g =

3∑
µ,ν=0

gµνdx
µdxν = a(t)2

(
−dt2 +

3∑
i=1

(
dx i
)2

)
,

ds2
f =

3∑
µ,ν=0

fµνdx
µdxν = −c(t)2dt2 + b(t)2

3∑
i=1

(
dx i
)2

. (117)
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Then (t, t) component of (112) gives

0 = −3M2
gH

2 − 3m2M2
eff

(
a2 − ab

)
+

(
3

4
ϕ̇

2 +
1

2
V (ϕ)a(t)2

)
M2

g , (118)

and (i, j) components give

0 =M2
g

(
2Ḣ + H2

)
+ m2M2

eff

(
3a2 − 2ab − ac

)
+

(
3

4
ϕ̇

2 −
1

2
V (ϕ)a(t)2

)
M2

g . (119)

Here H = ȧ/a. On the other hand, (t, t) component of (113) gives

0 = −3M2
f K

2 + m2M2
effc

2

(
1−

a3

b3

)
+

(
3

4
ξ̇

2 −
1

2
U(ξ)c(t)2

)
M2

f , (120)

and (i, j) components give

0 =M2
f

(
2K̇ + 3K 2 − 2LK

)
+ m2M2

eff

(
a3c

b2
− c2

)

+

(
3

4
ξ̇

2 −
1

2
U(ξ)c(t)2

)
M2

f . (121)

Here K = ḃ/b and L = ċ/c. Both of Eq. (115) and Eq. (116) give the identical equation:

cH = bK or
cȧ

a
= ḃ . (122)

If ȧ 6= 0, we obtain c = aḃ/ȧ. On the other hand, if ȧ = 0, we find ḃ = 0, that is, a and b are

constant and c can be arbitrary.
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F (R) bigravity: Cosmological Reconstruction and Cosmic Acceleration

We now redefine scalars as ϕ = ϕ(η) and ξ = ξ(ζ) and identify η and ζ with the conformal time
t, η = ζ = t. Hence, one gets

ω(t)M2
g =− 4M2

g

(
Ḣ − H2

)
− 2m2M2

eff (ab − ac) , (123)

Ṽ (t)a(t)2M2
g =M2

g

(
2Ḣ + 4H2

)
+ m2M2

eff (6a2 − 5ab − ac) , (124)

σ(t)M2
f =− 4M2

f

(
K̇ − LK

)
− 2m2M2

eff

(
−

c

b
+ 1

)
a3c

b2
, (125)

Ũ(t)c(t)2M2
f =M2

f

(
2K̇ + 6K 2 − 2LK

)
+ m2M2

eff

(
a3c

b2
− 2c2 +

a3c2

b3

)
. (126)

Here

ω(η) = 3ϕ′(η)2
, Ṽ (η) = V (ϕ (η)) , σ(ζ) = 3ξ′(ζ)2

, Ũ(ζ) = U (ξ (ζ)) . (127)

Therefore for arbitrary a(t), b(t), and c(t) if we choose ω(t), Ṽ (t), σ(t), and Ũ(t) to satisfy

Eqs. (123-126), the cosmological model with given a(t), b(t) and c(t) evolution can be recon-

structed. Following this technique we presented number of inflationary and/or dark energy models

as well as unified inflation-dark energy cosmologies. The method is general and maybe applied to

more exotic and more complicated cosmological solutions.
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What is the next?

What is the next? So far F(R) gravity which also admits extensions as HL or massive
gravity is considered to be the best: simplest formulation, ghost-free, easy emergence
of unified description for the universe evolution, friendly passing of cosmological bounds
and local tests, absence of singularities in some versions(Bamba-Nojiri-Odintsov 2007),
possibility of easy further modifications. More deep cosmological tests are necessary to
understand if this is final phenomenological theory of universe and how it is related with
yet to be constructed QG!
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