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Anomalous magnetic moment of lepton

@ Electrons and Muons have magnetic moment along their spins, given by
— gl
=9 m

It is known that g-factor deviates from Dirac’s value (g = 2), and it is called
Anomalous magnetic moment

ay = (g — 2)/2
@ Historically it is found in Zeeman splitting of Galium atom which showed that
electron’s g-factor is about 0.1% larger than the prediction of Dirac eq.:

ac(exp) = 0.00115 (4)

Kusch, Foley, PR72, 1256 (1947)

@ Schwinger’s calculation leads to:
ae(theory) = 0.001 161...

Schwinger, PR73, 416L (1948); PR75, 898 (1949)
This was one of the early triumphs of renormalized theory of QED.
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Anomalous magnetic moment of lepton

@ Latest measurement by Harvard group by spin precession of a single electron in

cylindrical Penning trap:

ac(exp) = 0.001 159 652 180 73 (28)

electron top endcap

trap cavity.
electrode

quartz spacer compensation
electrode

ring electrode

nickel rings

3 b
0.5cm] il v\|“q] «~— compensation
bottom endcap Iy ) clectrode
electrode o field emission
] point

microwave inlet

FIG. 2 (color). Cylindrical Penning trap cavity used to confine

a single electron and inhibit spontaneous emission.

[0.24ppb]

Hanneke, Fogwell, Gabrielse, PRL 100, 120801 (2008)

@ Latest theoretical prediction within Standard Model:

ae(theory) = 0.001 159 652 181 78 (77)

[0.67ppb]

TA, Hayakawa, Kinoshita, Nio, PRL 109, 111807 (2012)

@ Experiment and theory are in good agreement with each other:
ae(exp) — ae(theory) = —1.05 (82) x 1072
This indicates that QED (Standard Model) is valid even at this precision.
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Anomalous magnetic moment of lepton

@ Contributions to lepton g —2 within the context of the standard model consist of:
a, = a;(QED) + a¢(Hadronic) + a,(Weak)

and their proportion is:

electron muon
QED (mass-independent) 999999.996  ppm 994623 ppm
QED (mass-dependent) 0.0023 ppm 5313 ppm
Hadronic 0.0014 ppm ~ 60 ppm
Weak 0.00003 ppm 1 ppm
(ppm =10~5)

8e(QED) = A1 + Ag(me/my) + Az(me/m;) + Ag(me/m,,, me/m;)
mass-dependent contribution

@ Therefore electron g—2 is explained almost entirely by QED interaction between
electron and photons. It has provided the most stringent test of QED.

@ Muon g—2 is more sensitive to high energy physics, and thus a window to new
physics beyond the standard model. The precise determination of QED
contribution provides a baseline.
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Lepton g-2: QED contribution

@ QED corrections are evaluated by perturbation theory:

020 =4 (2) AT (2] 2472 0 2) -

@ Up to which order of the QED perturbation theory do we need, to meet the
precision of the measurements?

Considering that

(%)4 ~ 29.1 %1072,

(%)5 ~ 0.067 x 1012,

2

and the experimental uncertainty
dae(exp) = 0.28 x 1072,

evaluation of 10th-order term A9 has to be considered seriously.
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Electron g—2: Theory

@ Up to 6th order terms are known analytically.
8th and 10th order terms are evaluated by numerical means.

year # diagram
Al(z) = 05 Schwinger 1948 1
A® = _0.328478... Sommerfield, Petermann 1957 7
A® = 1181241... Laporta & Remiddi (analytic) 1996 72
Kinoshita (numerical) 1995
A® = _19106(20)  Kinoshita & Nio 2005 891
TA, Hayakawa, Kinoshita, Nio  2007,2012
Al — 916 (58) TA, Hayakawa, Kinoshita, Nio 2012 12,672
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Electron g—2: Theory

@ To compare the theoretical prediction with the experiment, the value of the fine
structure constant « is needed which is determined by an independent method.

@ The best value of such « has been obtained recently from the measurement of
h/mgp combined with Rydberg constant and mgp/me:

a~*(Rb) = 137.035 999 037 (91)

Bouchendira et al., PRL 106, 080801 (2011)

@ With this «, the theoretical prediction of a. becomes:
ac(theory) =1 159 652 181.82 (0.06)(0.02)(0.78) x 1072

uncertainty comes from 8th order term, 10th order term, and uncertainty of
«(Rb).
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Fine Structure Constant «

@ From the measurement and the theory of electron g —2, the value of
fine-structure constant can be determined.

Egri&mental value

+(small contributions)
@ Newly obtained value of fine-structure constant is:
a (ae) = 137.035999 173 (351 [0.25ppb]

¢l o (Rb) = 137.035999 037 (91) [0.66ppb]
Bouchendira et al., PRL 106, 080801 (2011)
a *(Cs) = 137.036 000 00 (110) [8.0ppb]

Wicht, et al., Phys. Scr. T102, 82 (2002)
Gerginov, et al., PRA 73, 032504 (2006)

Theoretical calculations

7AW (Q>5+...
™

o o® had+ew exp

(1) (5)(2)(33)
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@ Latest world average of the measured a,,:

a,[exp] = 116 592 089 (63) x 10~ **  [0.5ppm]

Bennett, et al., Phys. Rev. D73 (2006) 072003,
Roberts, Chinese Phys. C 34, 741 (2010).

@ Summary of theoretical values:

(in units of 10—11)

QED 2nd 116 140 973.318 ( 0.077)
4th 413 217.6291 ( 0.0090)
6th 30141.90248  ( 0.00041)
8th 381.008 ( 0.019)
10th 5.0938 ( 0.0080)
a,(QED) 116 584 718.951 ( 0.080)
Hadronic
LO v.p. 6949.1 (42.7)
NLO v.p. 98.4 (0.7
I-by-| 116 (40)
Weak 154 (2
a, (SM) 116 591 840 (59)

@ Discrepancy between experiment and theory is:

a,(exp) — a,(SM) = 249 (87) x 10 **
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Formulation

@ Magnetic property of lepton can be studied through examining its scattering
by a static magnetic field.
The amplitude can be represented as:

Cu(p) [+ Fala®) + 0" A Fale®) | u(p) A5 @)

q

p// \{
@ The anomalous magnetic moment is the static limit of the magnetic form factor
F2(q?):
ar = F2(0) = ZxM, M = lim Tr(P.(p,q)r'”)

q2—0

where I'” is the proper vertex function with the external lepton on the mass shell,
and P, (p, q) is the magnetic projection operator.
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10th-order correction

@ Number of diagrams contributing to 10th order A(llo) is12,672.
@ they are classified into 32 gauge-invariant sets shown as follows:
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10th-order correction

@ the largest and most difficult one is Set V consists of 6354 diagrams that have
no lepton loops.

7 0T Y O
s 2N A
T Jay
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Numerical Approach

@ Our strategy:
o Evaluate diagrams separately by numerical means.

¢ Amplitude of each diagram must be a finite calculable value.

@ Renormalize theory exactly to highest order needed, and in a form
suitable for evaluation on a computer.

@ Procedure:
Step 1. Find distinct set of Feynman diagrams.
Step 2. Construct amplitude in terms of Feynman parametric integral.

Step 3. Construct subtraction terms of UV divergence.
e K-operation

Step 4. Construct subtraction terms of IR divergence.
e |-subtraction of logarithmic IR divergences.
o R-subtraction of residual mass-renormalization.

Step 5. Carry out residual renormalization
to achieve standard on-shell renormalization.
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@ Combined uncertainty of contributions from N diagrams grows roughly as v/N.
Thus it is important to reduce the number of independent integrals.

@ A set of vertex diagrams A obtained by inserting an external vertex
into each lepton line of self-energy diagram X can be related by Ward-Takahashi
identity.

oN*(p,q) ~ 0x(p)
0 g0  OPv

A’/(paq) = _q/1

e.g. 4th-order case:

(40 LR SRR - (LR

@ For Set V diagrams, the number of independent integrals goes
from 6354 to 706 by WT sum,
further reduced by time-reversal symmetry to 389.
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Construction of Amplitude

@ Amplitude is given by an integral over loop momenta according to
Feynman-Dyson rule.

@ Itis converted into Feynman parametric integral over {z; }. Momentum integration
is carried out analytically, and it yields

M — (—1) rn—1) [ (@ Fo Fu
¢ ~\ 71 (n—1) [(dz)g Uzvn_1+u3vn—2+

@ Integrand is expressed by a rational function of terms called building blocks,
Bij, Aj, U, Cij and V.

@ Building blocks are given by functions of {z;}, reflecting the topology of diagram,
flow of momenta, etc.

a 1+5+a

o ‘
12523 4 5 ‘ 7”%% P
242

topology of loops flow of external momenta
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Subtraction of Divergences

@ UV divergence occurs when loop momenta in a subdiagram go to infinity. It
corresponds to the region of Feynman parameter space z; ~ O(e) fori € S.

g /s
@ In order to carry out subtraction numerically, the singularities are cancelled
point-by-point on Feynman parameter space.

Mg — LsMg/S — /(dz)g {mg — Ksmg}

@ IR divergence of each diagram may occur in a particular region of Feynman
parameter space that corresponds to some photons goes soft. This singularity is
also subtracted point-by-point way.

@ Subtraction terms are so constructed that they can be factorized into (divergent
part of) renormalization constant and lower-order magnetic part.

/(dZ)g [Ksmg} = Lg'Mg/s

This property is crucial for the residual renormalization step.
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Amplitude as a finite integral

@ This formulation can be generalized to higher order diagrams.

@ Finite amplitude AMg free from both UV and IR divergences is obtained by
Feynman-parameter integral as:

. unrenormalized
AMg = / (d2) [Fg amplitude
+ Z H —Ks)F UV subtraction terms
Sef

f: Zimmermann'’s forests:
combinations of UV divergent subdiagrams.

+ Z (~Is) - (~Rs))---Fg <—IR subtraction terms
f: annotated forests:
combinations of self-energy subdiagrams
with distinction of I-/R-subtractions.

@ Identification of divergent parts is diagram-based, and suitable
for automated treatment.
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Subtraction terms: Example

@ Consider an 8th order case, Mg, which have
two self-energy subdiagrams (Si1, S2), and

M
two vertex subdiagrams (Ss, Sa). ;;; 1
S S,
S3 Sy

@ Relations between subdiagrams are:

o S1 and S, S3, S, are independent.
@ S, contains Sz, Ss.
o Sz and S, are cross-overlapping.
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UV Forests

@ According to Zimmermann's forest formula, UV divergent parts and
corresponding subtraction terms are identified as:

{81}

{82}

{83} {54}

{81,852}

{81, 83}, {51, S4}

{S2, Sz} {S2, Sa}

{81, S, 83},
{81, 82,84}

o
L
L
i)
AN
L
i)

—8M,Mgc(14) — BaMec

—OMgaMap (1) — BaaMab

—LMgy  (x2)

+5r?\26rT14aM2** + 5ﬁ2B4aM2* + B25ﬁ4aM2* + ByByaM,

+5mszM4b(1*) +ByloMgp  (X2)

+hp0MyMyp (1) + LB Map  (X2)

—6m2L25m2M2** - SmZLZBZMZ* - BZLZSmZMZ* — ByL,ByM, (x2)
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“Annotated forests” for IR subtraction

@ IR subtraction terms are identified by combination of self-energy type
subdiagrams with distinction of |- or R-subtraction operation as:

g I
—M,L,
[l &85 276c,1
SiIOM [} 7
g M
Ji@; " Maallab(a)
S Qom
g I
—MygL,
PP 4a"db,1
SOM 1 J
+M,, 5 L.
ey 277422
) "7

SIOQM  S:(ém
- UV subdivergent terms
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Divergence structure: an example

X072

DMX072 = MX072 - dmm47uv#M21s - Bm4TuvsM2 - - B6buv*Mdb - - B4buv#M6b - dm2uv*Mm474s - B2uv#Mm47 + dmEbuvs
dm21suvsM2is + 1s + + 1s + 1s + + 1s +
+ + 1suv*M4b2s + + + +
1s - - - 1suvM2ls - 1suvM2ls - 1s - B
- 1s - 1s - 1s - -
- - - + suv*M21s + B2u
+ s + s + - dmm47ir*M21s + dm
6buv*dm21sir*M21s + B6buv*dm2ir*M2is + 1s + + dm r*M21s + 1s - dmdbuvdm
21suv*dm21sirsM21s - sirsM21s - r*M21s - m 1sirsM21s - 1sirsM21s - B2u
r¥M21s - irsM21s - irsM21s - r*M21s + dm2uv*dm21suv*dm2isuv*dm21sirs
M21s + r*M21s + 1sirsM21s + r*M21s - Mm47*L2vir + dm6buv*M21s*L2vir +
B6buv*M2#L2vir + 2vir + 2vir + ir + B2uv#M6b*L2vir - s*L2vir 4\
v*M21s#L2vir - 2vir - 2vir - 1s#L2vir - 4l 2vir - dm2uv+dm21suv*M4b2s*
L2vir - 2vir 2vir + 1s*L2vir + suv*M21s*L2vir + B2uv*B2uvx
dm2uv*M21s*L2vir + B2uv*B2uv*B2uv*M2+L2vir - dm6bir*M4b2s + dm6bir*dm2isuv*M21s + dm4buv*dm21sir*M4b2s + B4buv*dm2ir*M4b2s + dm2uv*d
m4b2sir*M4b2s_+ T*M4b: - 151 - _Bdbuy*dm2ir*dm21suy*M21s - dm2uv*dm4b2sir*dm2isuy*M21s - B2uv*dmédb
irsdm21suvsM *dm21suvsM21
s + B2uv+dm2 + B4buvsM2x
L4b2vir + dm ir - B2uvsM
4b*L2vuv*L2v| = 2vir + B2uv
otz 100+ subtraction terms
s + B2uv*dm2 ir*dm21suv*
M4b2s - B2uv| 4b*L4b2vuv*
L2vir + M4bsLZ av*M2+L4b2vu

vAL2vir - dn2uvsM21s*L2vuv+Ldb2vir - B2uvsM2+L2vuv+L4b2vir + dmluv+M2is+L2vav+L2vuvL2vir + B2uveM2+L2vuv+L2vav+L2vir - M2+Lmd74vir
+ M2#L6b3vuv+L2vir + M2+L4b2vuv+L4b2vir + M2+L2vuv+L6b3vir - M2+LAb2vuvsL2vuv+L2vir - M2+L2vav+L4b2vuv+L2vir - M2+L2vuv+L2vuv+Ldb2vi

T+ M2L2vuvsL2vuvsL2vuvsL2vir + dmbbirsdm2isirsM21s - dndbuvdn21sirsdm21sirsM21s - 121sir#i21s - dn dn21s
irsM21s - B2uvsdndbirsdn21sirsi2is + du2uvxdn2 rrdn2isirsh21s + 1sirsdn21sirsM21s + B2uv*B2uvxdn2irsdn2isirs
M21s + dubbirsM21sxL2vir - rAM21SHL2VIT - AM21SHL2vir - irM21s4L2vir - rHM21s*L2vir +

dnuvsdn2isuvsdn2isirsM21s+L2vir + Bouvsdn2uv+dn2isirsM21s+L2vir + Bouv+B2uvsdn2irsM21s+L2vir + M6bxL2virsL2vir - dndbuvM2is+L2vir
+L2vir - BAbuvsN2+L2virsL2vir - dn2uvsM4b2s*L2virsL2vir - B2uvsM4bsL2virL2vir + dnuv+dn2isuvsN2is+L2virsL2vir + B2uvsdn2uvM21s+L2

virsL2vir + 2virsL2vir + dndbir 1s - rM21s - THM21s - B2uvsdm2ir
*dndb2siraM21s + dn2uvkdn2isirsdn2isuvkdn2isirsM2is + B2uvtdn2irsdn2isuvdn2isirsM2is + dudbirsM4b2s*L2vir - dndbirtdn21suvsN21s+L2v
ir - dn2uvxdn2isir ir - B2uvsdn2ir ir + sirsdn2isuveM21s¥L2vir + B2uvrdn2irsdn2isuvsM21s+L2vir + M4bsLdb

2virsL2vir - MAb*L2vuv+L2virsL2vir - dn2uvsM21s+L4b2virsL2vir - B2uveM2+L4b2vir+L2vir + dmQuvsM21s+L2vuvL2virsL2vir + B2uvxM2+L2vuy
*L2virsL2vir + M2+LGb3VirsL2vir - M2#LAb2vuvsL2virsL2vir - M2<L2vavsL4b2virxL2vir + M2+L2vuvsL2vuv+L2virsL2vir + dmdbirsdm21sirMdb2
s - dndbirsdn21isir+dn2isuvsli2is - dn2uvsdn2isirdm21sirsM4b2s - B2uvsdn2irsdm21sirsM4b2s + dm2uvsdm21isirxdn21sirsdn2isuvi2is + B2uv
*dn2ir*dn21sirsdn21suv4l2ls + dndbir+M21s+L4b2vir - dmdbir+M21s*L2vav4L2vir - dn2uvkdn21sirsH21s+L4b2vir - B2uvsdm2ir+M21s+Ldb2vir +
dnuvsdn21sirsM21sL2vuvsL2vir + Bouvsdn2irsM21s+Lovav+L2vir + M4bsL2virsLdb2vir - M4b*L2vir+L2vuv+L2vir - dn2uvsN21s+L2virsL4b2vir
- BouvsM2+L2virsL4b2vir + dn2uv+M21sL2virsL2vuveL2vir + B2uveM2+L2virsL2vav+L2vir + M2+L4b2vir+Ldb2vir - M2+LAb2virsL2vuvsL2vir -
M2L2vav+L2virsL4b2vir + M2+L2vav+L2virsL2vuvsL2vir + M2L2virsL6b3vir - M2+L2virsL4b2vuvL2vir - M2+L2virsL2vuvsL4b2vir + M2+L2virs
LovuvsL2vuvsL2vir - dndbirsdn2isirsdn2isirshi21s + dn2uvsdn2lsirtdn2isirsdn2isirsh2is + B2uvsdn2irtdn2isirsdn2isir+h2ls - dndbirrdn21
sirsi21s+L2vir + dn2uvkdn2isirsdn21sirM21sL2vir + B2uvkdn2irsdn21sirsM21s+L2vir - dudbirsM21s+L2virsL2vir + dnuvtdn21sirs}21s+L2v
irsL2vir + B2uvxdm2irsN21s+L2virsL2vir - MAb*L2virsL2virsL2vir + dmuv+M21s+L2virsL2virsL2vir + BRuvsM2+L2virsL2vir+L2vir - M2+Ldb2v
iTsL2virsL2vir + M2+L2vuvAL2virsL2virsL2vir - M2#L2virsL4b2virL2vir + M2+L2virsL2vuvL2virsL2vir - M2+L2virsL2virsLdb2vir + M2+L2vi
TAL2virsL2vavsLovir + M2L2virsL2virsL2virsL2vir
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Automation

fy

Diagram

FORTRAN

“gencode”

“abcdeedcba ”

Build Amplitude,
Identify divergences,
Construct subtraction terms

Numerical
integration code

Symbolic representation
of diagram

@ 10-20 min./diagram for code generation on ordinary PC.
@ Program size amounts to ©(10°) FORTRAN lines per diagram.

@ “gencode” is tailored so that it can process any order of diagrams.
This enables us to check the validity of the code generator by lower
order diagrams.

TA, Hayakawa, Kinoshita, Nio, Nucl. Phys. B 740, 138 (2006)
TA, Hayakawa, Kinoshita, Nio, Nucl. Phys. B 796, 184 (2008)
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Numerical integration

@ The amplitude is expressed as a multi-dimensional integral.
(D = 14 — 1 for 10th-order diagrams)

@ The integrand is a huge rational function. The size of integrand is ©(10°) lines of
FORTRAN code per diagram.

@ Numerical integration is performed by an adaptive-iterative Monte-Carlo method,
VEGAS. (Lepage, 1978)

@ Integral over s-dimensional region I° = [0, 1]° is evaluated from N independent
samples of a random variable that is distributed according to p(x) within I°.

—

L7
ESEREZALT
CSEFERZ AT
PR
22

VEGAS: adaptive grid adjustment during iterations
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Numerical integration

)

Divergences are dealt with subtractive scheme point-by-point in the parameter
space. Severe digit-deficiency problem may occur.

IEEE754 double-precison floating point format:
exponent fraction
sign (11 bit) (52 bit)

63 52 0 figure taken from Wikipedia
resolution is 27 (16-17 digits).
A remedy is to employ extended precision arithmetic (quadruple, etc).

e.g. express a floating-point value a by a set of double-precision data
dp, d1, ...as:

a:ao+ea1+eza2+~~, 6i2753
Arithmetics over a are translated to those over a;’s, by passing rounding-off

residues to lower order components based on
Knuth and Dekker algorithm.

We use “double-double” and “quadruple-double” of qd library
Bailey, Hida, Li. c.f. http://crd.lbl.gov/"dhbailey/mpdist/
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Numerical integration: Facilities

@ Numerical calculations are mainly conducted on supercomputers in RIKEN.
9 RIKEN Super Combined Cluster (RSCC)
Apr. 2005 — Jun. 2009

9@ RIKEN Integrated Cluster of Clusters (RICC)
Oct. 2009 —

@ Several other facilities are used e.g. workstations in Nagoya University, and
KMI ¢ cluster computing system.

T. Aoyama (KMI) 2425



Concluding Remarks

@ 2012 updates on QED contribution to lepton g —2:

¢ The complete 10th order term that consists of 12,672 vertex Feynman
diagrams is evaluated.

@ The numerical precision of 8th order contribution is improved.

@ The improved value of the fine structure constant « become available from
Rb measurement.

@ These lead to:

@ The theoretical value of electron g—2 is obtained by the uncertainty of
0.77 x 1072, and it is in good agreement with the experimental value
measured up to the uncertainty of 0.28 x 10~ *2,

@ From the measurement and the theory of electron g —2, the most precise
value of the fine structure constant « is obtained, whose uncertainty is
0.25 x 10~°.

¢ For the muon g—2, the QED contribution has been pinned down precisely
enough for the current and near-future experiments.

@ These 10th-order contributions are obtained by numerical means, in which the
automation in generating the numerical integration code speeds up drastically for
those complicated Feynman diagrams.
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