The KMI $\, \varphi \,$ project

Yasumichi Aoki [Kobayashi-Maskawa Institute(KMI), Nagoya University]

- at KMI2013 International Symposium -

Dec. 11, 2013

- purpose
 - strong gauge dynamics, especially for BSM physics
 - solve the non-perturbative dynamics quantitatively
 - allows to test the theory against experiments: EW measurements, LHC

- purpose
 - strong gauge dynamics, especially for BSM physics
 - solve the non-perturbative dynamics quantitatively
 - allows to test the theory against experiments: EW measurements, LHC
- uniqueness
 - setting main target as BSM physics ↔ QCD dedicated computers

- purpose
 - strong gauge dynamics, especially for BSM physics
 - solve the non-perturbative dynamics quantitatively
 - allows to test the theory against experiments: EW measurements, LHC
- uniqueness
 - setting main target as BSM physics ↔ QCD dedicated computers
- operation policy
 - promote a few projects to grant large resource to maximize the outcome
 - while allowing small projects for test phase use / non-demanding tasks
 - anybody can use under collaboration with PI in KMI or Nagoya Univ.

- non GPU nodes
 - 148 nodes
 - 2x Xenon 3.3 GHz
 - 24 TFlops (peak)

- non GPU nodes
 - 148 nodes
 - 2x Xenon 3.3 GHz
 - 24 TFlops (peak)
- GPU nodes
 - 23 nodes
 - 3x Tesla M2050
 - 39 TFlops (peak)

- non GPU nodes
 - 148 nodes
 - 2x Xenon 3.3 GHz
 - 24 TFlops (peak)
- GPU nodes
 - 23 nodes
 - 3x Tesla M2050
 - 39 TFlops (peak)

• 62 TFlops (peak; comparable to Japanese top 20 of top500 list @ 2012.10)

$\varphi_{\rm inauguration}$

March 2, 2011

Inauguration Ceremony of φ March 2nd, 2011

φιλοσοφια φυσικοζ P g: CP phase T. QKAWA 2011.03.02

Infrastructure for global data sharing: JLDG

priority projects

Group	Project title	PI	Members
sc-su2phase	Lattice study of quantum-mechanical dynamics of two-color QCD with six flavors of quarks	M. Hayakawa	K. Ishikawa, Y. Osaki, S. Takeda, M. Tomii, N. Yamada
scgt8	Exploring for walking technicolor model with 8-flavor SU(3) gauge theory	T. Aoyama, T. Yamazaki	Y. Aoki, K. Hasebe, M. Kurachi, T. Maskawa, K. Miura, Ki. Na- gai, H. Ohki, E. Rinaldi, A. Shi- bata, K. Yamawaki
scgt12	Phase structure near the chiral phase boundary in many flavor QCD	Y. Aoki, H. Ohki	T. Aoyama, K. Hasebe, M. Kurachi, T. Maskawa, K. Miura, Ki. Nagai, E. Rinaldi, A. Shibata, K. Yamawaki, T. Yamazaki
scgtmeas	Nonperturbative computation of the spectroscopy in $SU(3)$ gauge theory	M. Kurachi, Ki. Nagai	Y. Aoki, T. Aoyama, K. Hasebe,T. Maskawa, K. Miura, H. Ohki,E. Rinaldi, A. Shibata, K. Ya-mawaki, T. Yamazaki

- 2/3 of whole resource is granted to these 4 projects
- rest ~10 small projects

priority projects

Group	Project title	PI	Members
sc-su2phase	Lattice study of quantum-mechanical dynamics of two-color QCD with six flavors of quarks	M. Hayakawa	K. Ishikawa, Y. Osaki, S. Takeda, M. Tomii, N. Yamada
scgt8	Exploring for walking technicolor model with 8-flavor $SU(3)$ gauge theory	T. Aoyama, T. Yamazaki	Y. Aoki, K. Hasebe, M. Kurachi, T. Maskawa, K. Miura, Ki. Na- gai, H. Ohki, E. Rinaldi, A. Shi- bata, K. Yamawaki
scgt12	Phase structure near the chiral phase boundary in many flavor QCD	Y. Aoki, H. Ohki	T. Aoyama, K. Hasebe, M. Ku- rachi, T. Maskawa, K. Miura, K i. Nagai, E. Rinaldi, A. Shibata, K. Yamawaki, T. Yamazaki
scgtmeas	Nonperturbative computation of the spectroscopy in SU(3) gauge theory	M. Kurachi, Ki. Nagai	Y. Aoki, T. Aoyama, K. Hasebe, T. Maskawa, K. Miura, H. Ohki, E. Rinaldi, A. Shibata, K. Ya- mawaki, T. Yamazaki CONADORATION:
		KMI's flagship project	

- 2/3 of whole resource is granted to these 4 projects
- rest ~10 small projects

priority projects

Group	Project title	PI	Members	
sc-su2phase	Lattice study of quantum-mechanical dynamics of two-color QCD with six flavors of quarks	M. Hayakawa	K. Ishikawa, Y. Osaki, S. Takeda, M. Tomii, N. Yamada	
scgt8	Exploring for walking technicolor model with 8-flavor $SU(3)$ gauge theory	T. Aoyama, T. Yamazaki	Y. Aoki, K. Hasebe, M. Kurachi, T. Maskawa, K. Miura, Ki. Na- gai, H. Ohki, E. Rinaldi, A. Shi- bata, K. Yamawaki	
scgt12	Phase structure near the chiral phase boundary in many flavor QCD	Y. Aoki, H. Ohki	T. Aoyama, K. Hasebe, M. Ku- rachi, T. Maskawa, K. Miura, K i. Nagai, E. Rinaldi, A. Shibata, K. Yamawaki, T. Yamazaki	
scgtmeas	Nonperturbative computation of the spectroscopy in SU(3) gauge theory	M. Kurachi, Ki. Nagai	Y. Aoki, T. Aoyama, K. Hasebe, T. Maskawa, K. Miura, H. Ohki, E. Rinaldi, A. Shibata, K. Ya- mawaki, T. Yamazaki COIIADOIATION:	
		KN/l'a flagabia project		
		rvivii s naysnip project		

- 2/3 of whole resource is granted to these 4 projects
- rest ~10 small projects

e/µ anomalous magnetic moment → talk by Aoyama (Today)

• ctpl1 & ctpl2

COSMOS

• ctpl1 & ctpl2

COSMOS

ctpl1 & ctpl2

COSMOS

ctpl1 & ctpl2

COSMOS

QCD hydrodynamics → talk by Nonaka (Thursday)

LatKMI collaboration

LatKMI mission

- (kick off meeting at 28 Sep. 2010; computer installment 2 Mar. 2011)
- mission focused as time goes by...
- find / understand (near) **conformal dynamics** in gauge theory (late 2010)
 - /w state-of-the-art lattice discretization (HISQ) and large scale computation
- find conformal window in SU(3) gauge theory w. N_f m=0 fundamental fermions
- find a walking technicolor theory in SU(3) gauge theory
- investigate N_f=8 in some detail
- investigate flavor singlet scalar in SU(3) gauge theory ⇔ Higgs
- test N_f=8 against experiment

Physics motivation: new physics

Standard Model

Walking Technicolor (WTC)

- a candidate of the new physics beyond the Standard Model of particles
- could replace Higgs sector of the Standard Model
 - Higgs sector is a low energy effective theory of WTC
- free from the gauge hierarchy problem (naturalness)
- gives explanation of the electro-weak gauge symmetry breaking,
 - thus origin of mass of the elementary particles
- "Higgs" = pseudo Nambu-Goldstone boson
 - due to breaking of the approximate scale invariance
 - Techni Dilaton (Yamawaki, Bando, Matsumoto)

• QCD

- one dynamical scale
- non-zero quark mass
- vast experimental results

- QCD
 - one dynamical scale
 - non-zero quark mass
 - vast experimental results

- WTC
 - multiple scale : separated
 - zero quark mass is the target
 - one exp. result: Higgs mass

- QCD
 - one dynamical scale
 - non-zero quark mass
 - vast experimental results

- WTC
 - multiple scale : separated
 - zero quark mass is the target
 - one exp. result: Higgs mass

• Rich structure

- QCD
 - one dynamical scale
 - non-zero quark mass
 - vast experimental results

- WTC
 - multiple scale : separated
 - zero quark mass is the target
 - one exp. result: Higgs mass

- Rich structure
- New concepts

- QCD
 - one dynamical scale
 - non-zero quark mass
 - vast experimental results

- WTC
 - multiple scale : separated
 - zero quark mass is the target
 - one exp. result: Higgs mass

- Rich structure
- New concepts
- developing field

- QCD
 - one dynamical scale
 - non-zero quark mass
 - vast experimental results

- WTC
 - multiple scale : separated
 - zero quark mass is the target
 - one exp. result: Higgs mass

- Rich structure
- New concepts
- developing field
- still controversies

LatKMI publications

- LatKMI, PRD 85 (2012), "Study of the conformal hyperscaling relation through the Schwinger-Dyson equation" [non-lattice]
- LatKMI, PRD 86 (2012), "Lattice study of conformality in twelve-flavor QCD"
- LatKMI, PRD 87 (2013), "Walking signals in Nf=8 QCD on the lattice"
- LatKMI, PRL 111 (2013), "Light composite scalar in twelve-flavor QCD on the lattice"
LatKMI publications

- LatKMI, PRD 85 (2012), "Study of the conformal hyperscaling relation through the Schwinger-Dyson equation" [non-lattice]
- LatKMI, PRD 86 (2012), "Lattice study of conformality in twelve-flavor QCD"
- LatKMI, PRD 87 (2013), "Walking signals in Nf=8 QCD on the lattice"
- LatKMI, PRL 111 (2013), "Light composite scalar in twelve-flavor QCD on the lattice"

models being studied:

- SU(3)
 - fundamental: Nf=6, 8, 10, 12, 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram $\gamma = 2$ $\gamma = 1$ Fund Ladder Ryttov & Sannino 07 Dietrich & Sannino 07 Sannino & Tuominen 04

18

models being studied:

- SU(3)
 - fundamental: Nf=6,(8,)10,(12),(16)
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

models being studied:

- SU(3)
 - fundamental: Nf=6 8,10,12 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

Hadron spectrum: response to mass (m_f) deformation

- IR conformal phase:
 - coupling runs for $\mu < m_f$: like $n_f=0$ QCD with $\Lambda_{QCD} \sim m_f$
 - multi particle state : $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$ (criticality @ IRFP)

- S χ SB phase:
 - ChPT
 - at leading: $M_{\pi^2} \propto m_f$, ; $F_{\pi} = F + c m_f$

Hadron spectrum: response to mass (m_f) deformation

- IR conformal phase:
 - coupling runs for $\mu < m_f$: like $n_f=0$ QCD with $\Lambda_{QCD} \sim m_f$
 - multi particle state : $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$ (criticality @ IRFP)

- S χ SB phase:
 - ChPT
 - at leading: $M_{\pi^2} \propto m_f$, ; $F_{\pi} = F + c m_f$

Detailed analysis of F_{π} vs m_{f}

 $N_f=12$

crucial difference between $N_f=8$ and 12

- conformal \leftrightarrow broken chiral symmetry picture:
 - property should emerge in the $m_f \rightarrow 0, V \rightarrow \infty$ limit
- N_f=12
 - conformal hypothesis:
 - getting better in $m_f \rightarrow 0, V \rightarrow \infty$
 - broken chiral symm. analysis: $f_{\pi}(m_f \rightarrow 0) \neq 0$; but very long extrapolation
- N_f=8
 - conformal hypothesis
 - good for intermediate $m_f \leftrightarrow \text{getting worse in } m_f \rightarrow 0$
 - broken chiral symm. analysis: $f_{\pi}(m_f \rightarrow 0) \neq 0$; better controlled than $n_f=12$

crucial difference between $N_f=8$ and 12

- conformal \leftrightarrow broken chiral symmetry picture:
 - property should emerge in the $m_f \rightarrow 0, V \rightarrow \infty$ limit
- N_f=12
 - conformal hypothesis:
 - getting better in $m_f \rightarrow 0, V \rightarrow \infty$
 - broken chiral symm. analysis: $f_{\pi}(m_f \rightarrow 0) \neq 0$; but very long extrapolation
- N_f=8
 - conformal hypothesis
 - good for intermediate $m_f \leftrightarrow \text{getting worse in } m_f \rightarrow 0$

• broken chiral symm. analysis: $f_{\pi}(m_f \rightarrow 0) \neq 0$; better controlled than $n_f=12$

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables
- can be interpreted as "walking":

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables
- can be interpreted as "walking":
 - probing energy scale with $\mu \sim m_f \rightarrow$ schematic picture

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables
- can be interpreted as "walking":
 - probing energy scale with $\mu \sim m_f \rightarrow$ schematic picture
 - if N_f=8 is close to conformal transition point n_f^c, $\gamma \sim \gamma_m \sim 1$

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables
- can be interpreted as "walking":
 - probing energy scale with $\mu \sim m_f \rightarrow$ schematic picture
 - if N_f=8 is close to conformal transition point n_f^c, $\gamma \sim \gamma_m \sim 1$
- walking: a solution to classical technicolor problem: quark mass ↔ FCNC

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish $\gamma \sim 0.6-1$ for various observables
- can be interpreted as "walking":
 - probing energy scale with $\mu \sim m_f \rightarrow$ schematic picture
 - if N_f=8 is close to conformal transition point n_f^c, $\gamma \sim \gamma_m \sim 1$
- walking: a solution to classical technicolor problem: quark mass ↔ FCNC
- Next interesting direction \rightarrow prediction (postdiction) of spectrum

- What's observed:
 - chiral symmetry spontaneously broken for $m_f \rightarrow 0$
 - hyperscaling for intermediate m_f
 - largish γ ~ 0
 details presented by Nagai
- · can be interpreted as warning
 - probing energy scale with $\mu \sim m_f \rightarrow$ schematic picture
 - if N_f=8 is close to conformal transition point n_f^c, $\gamma \sim \gamma_m \sim 1$
- walking: a solution to classical technicolor problem: quark mass \leftrightarrow FCNC

 $m_f m_D m_f$

 Λ_{QCD} μ

• Next interesting direction \rightarrow prediction (postdiction) of spectrum

Physics motivation: new physics

 \Rightarrow compare with experiments \rightarrow LHC

N_f=8 spectrum

- with input $F_{\pi} = 246 / \sqrt{N \text{ GeV}}$ (N: # weak doublet in techni-sector)
- prediction: $M_{\rho}/F_{\pi} = 7.7(1.5) \binom{+3.8}{-0.4}$ (with only technicolor dynamics)
 - for example: $M_{\rho} = 970(^{+515}_{-195}) \text{ GeV}$ for one family model: N=4
- Higgs mass ?
 - 125 GeV (LHC) seems very light for technicolor
 - 0++: one of the difficult quantities on the lattice
 - multi-faceted nature of N_f=8 adds another difficulty: delicate chiral extrapl.
 - → first analyze simpler N_f=12, which shares "conformality" → techni dilaton

➡Is 0++ state light in (mass deformed) N_f=12 theory ?

flavor singlet scalar spectrum in N

flavor singlet scalar spectrum in N

- with very high statistics
 - thanks to $\boldsymbol{\phi}$
 - and other computers
- signal obtained !
- π was lightest in QCD (N_f=2)
 - results by SCALAR Collab.

• σ is lightest for N_f=12: LatKMI is the first to show this !

- σ is lightest for N_f=12: LatKMI is the first to show this !
- mechanism to make the composite scalar light is working

- σ is lightest for N_f=12: LatKMI is the first to show this !
- mechanism to make the composite scalar light is working
- LatKMI, PRL 111 (2013), "Light composite scalar in twelve-flavor QCD on the lattice"

scalar (Higgs) in Nf=8 theory

scalar (Higgs) in Nf=8 theory

• preliminary results reported at Lattice 2013

scalar (Higgs) in Nf=8 theory

- preliminary results reported at Lattice 2013
 - · σ is as light as π

- preliminary results reported at Lattice 2013
 - · σ is as light as π
 - far lighter than ρ

0.02

m_f

0.01

0.04

0.03

LatKMI PoS2013

0

0

- preliminary results reported at Lattice 2013
 - · σ is as light as π
 - far lighter than ρ
 - $m_f \rightarrow 0$ is what we want to know

- preliminary results reported at Lattice 2013
 - · σ is as light as π
 - far lighter than ρ
 - $m_f \rightarrow 0$ is what we want to know
 - $m_{\sigma}/f_{\pi} = 4 \pm 4$

- preliminary results reported at Lattice 2013
 - · σ is as light as π
 - far lighter than ρ
 - $m_f \rightarrow 0$ is what we want to know
 - $m_{\sigma}/f_{\pi} = 4 \pm 4$
 - 1 family model : $m_{\sigma}=0\sim500$ GeV

- preliminary results reported at Lattice 2013
 - · σ is as light as π
 - far lighter than ρ
 - $m_f \rightarrow 0$ is what we want to know
 - $m_{\sigma}/f_{\pi} = 4 \pm 4$
 - 1 family model : $m_\sigma = 0 \sim 500 \text{ GeV}$
 - large error

- preliminary results reported at Lattice 2013
 - · σ is as light as π
 - far lighter than ρ
 - $m_f \rightarrow 0$ is what we want to know
 - $m_{\sigma}/f_{\pi} = 4 \pm 4$
 - 1 family model : $m_{\sigma}=0\sim500$ GeV
 - large error
 - more statistics, points are being added

- preliminary results reported at Lattice 2013
 - · σ is as light as π
 - far lighter than ρ
 - $m_f \rightarrow 0$ is what we want to know
 - $m_{\sigma}/f_{\pi} = 4 \pm 4$
 - 1 family model : $m_\sigma=0\sim500~GeV$
 - large error
 - more statistics, points are being added
 - further effort will be required

- preliminary results reported at Lattice 2013
 - σ is as light as π
 - far lighter than ρ

details and updates to be presented by Yamazaki

0.6

0.5

L=30 L=24 L=18

- 1 family model : $m_\sigma=0\sim500$ GeV
- large error
- more statistics, points are being added
- further effort will be required

Summary and Outlook

- KMI high performance computer φ has been used for 2.5 years, probing BSM possibilities for electro-weak symmetry breaking, through strong dynamics, producing interesting results.
- Results from LatKMI collaboration
 - 1st to show light composite scalar in N_f=12
 - N_f=8 is a candidate walking technicolor theory
 - 1st to find light scalar in N_f=8, which could realize 125 GeV Higgs

Summary and Outlook

- Solidness of the emerging picture will have to be investigated further:
 - precision needs to be improved
 - towards LHC run2 (2015-)
 - controversial pictures (conformal window) from different collaborations
- Calculation / technology development for other quantities are underway
 - S parameter: new method proposed for vacuum polarization function
 - low energy parameters in π and σ as effective light elements
 - Scaler (Higgs) decays need to be investigated
 - Finite Temperature ↔ Baryogenesis
 - Property of Dark Matter candidate: techni-baryon...

Thank you very much for your attention !