# Phenomenological Analyses in High-Energy Heavy Ion Collisions



Kobayashi Maskawa Institute Department of Physics, Nagoya University *Chiho NONAKA* 

August 6, 2014@KMI Topics

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe



- High-energy heavy ion collisions
  - QCD phase transition, Little Bang
  - Success of the QGP production:

Experimental data and Phenomenological analyses

- Highlights of latest experimental data at RHIC and LHC
  - From Quark Matter 2014
- Relativistic Hydrodynamic Model
  - Description of dynamics of the high-energy heavy ion collisions
  - Importance of the numerical method:

construction of the state-of-the-art algorithm

• Summary



### **QCD** Phase Transition



Karsch, Laermann, Peikert, PLB478(2000)447

Clear evidence of the QCD phase transition in changing the degree of freedom



### **QCD Phase diagram & HIC**

#### **RHIC:2000**



## **Heavy Ion Collisions**













## **Strongly Interacting QGP**

### Relativistic Heavy Ion Collisions



#### • QGP production at RHIC (2005)



White papers : First three years of operation of RHIC BRAHMS, PHOBOS, STAR, PHENIX

Phenomenological analyses and experiments

- •Relativistic Hydrodynamic Models
- Recombination Models
- •Jet Quenching
- Color Glass Condensate





Recombination Fragmentation

**Statistical Model** 

Dics





Observables: QGP property ←a lot of experimental data at RHIC and LHC

Jets

heavy quarkonia

**KMI** topics

Hydrodynamic models: application to HIC, Landau 1953, Bjorken 1983

sQGP

Input

C. NONAKA

Hydrodynamics

Equation of State lattice QCD transport coefficients 

#### **KMI** topics

### **Highlights of Recent Experiments**

- Quark Matter 2014 (May 19-24, ~ 800 participants)
  - Experimental Group

Relativistic Heavy Ion Collider@BNL (RHIC)

• STAR, PHENIX

Large Hadron Collider@CERN (LHC)

- ALICE, CMS, ATLAS
- Experimental data

RHIC: Au+Au, d+Au  $\sqrt{s}=200{
m GeV}$  ,

Beam Energy Scan (BES) $\sqrt{s} = 7.7, 11.5, 14.5, 19.6, 27, 39 \text{GeV}$ U +U  $\sqrt{s} = 193 \text{GeV}$ 

LHC: p+p, Pb+Pb $\sqrt{s} = 2.76 \text{TeV}$ , p+Pb $\sqrt{s} = 5.02 \text{TeV}$ 





### **Higher Harmonics**



KM*i* IMX KMI

### Hydrodynamic Flow in p+Pb?



Finite elliptic flow in such small systems like pp, pPb: validity of hydrodynamic picture?



### **Hydrodynamic Model**

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - g^{\mu\nu} + \Delta T^{\mu\nu}$$
 ideal viscous

Landau 1943, Bjorken 1983

Thermalization ??

#### Assumption

- Local thermodynamical equilibrium

Microscopic reaction rate:  $\Gamma$ 

~cross section ( $\sigma$ ) • local particle density (n)

Macroscopic expansion rate:  $\theta$ 

 $\sigma >> \theta/n$ 

V

Strong elliptic flow



### **Hydrodynamic Model**

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - g^{\mu\nu} + \Delta T^{\mu\nu}$$
 ideal viscous

Landau 1943, Bjorken 1983

- Assumption
  - Local thermodynamical equilibrium

**Thermalization ??** 

Collectivity







Hydrodynamic models: application to HIC, Landau 1953, Bjorken 1986



### Viscous Hydrodynamic Model

Relativistic viscous hydrodynamic equation

 $\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - g^{\mu\nu} + \Delta T^{\mu\nu}$ 

First order in gradient: acausality

- Second order in gradient: which one is suitable for HIC?
  - Israel-Stewart
  - Ottinger and Grmela
  - AdS/CFT
  - Grad's 14-momentum expansion
  - Renormalization group

### Numerical scheme

Shock-wave capturing schemes



### **Numerical Scheme**

- Lessons from wave equation
  - First order accuracy: large dissipation
  - Second order accuracy : numerical oscillation

-> artificial viscosity, flux limiter

- Hydrodynamic equation
  - Shock-wave capturing schemes: Riemann problem
    - Godunov scheme: analytical solution of Riemann problem, Our scheme
    - SHASTA: the first version of Flux Corrected Transport algorithm, Song, Heinz, Chaudhuri
    - Kurganov-Tadmor (KT) scheme, McGill



### Numerical Scheme

**Israel-Stewart Theory** 

Akamatsu, Inutsuka, CN, Takamoto, arXiv:1302.1665, J. Comp. Phys. (2014)34

#### 1. Dissipative fluid equation

$$\partial_{\mu}T^{\mu\nu} = 0$$
  

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} + q^{\mu}u^{\nu} + q^{\nu}u^{\mu} + \tau^{\mu\nu}$$
  

$$= T_{\text{ideal}} + T_{\text{dissip}}$$

Ideal part:

Riemann solver for QGP: Godunov method

Two shock approximation Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005)

**KIVII TOPICS** 



• Shock Tube Test : Molnar, Niemi, Rischke, Eur. Phys. J.C65, 615 (2010)





### **Shock tube problem**

• Ideal case





### L1 Norm

• Numerical dissipation: deviation from analytical solution



### Large $\Delta T$ difference





10



SHASTA with small A<sub>ad</sub> has large numerical dissipation



### Large $\Delta T$ difference



- Our algorithm is stable even with small numerical dissipation.



### **Our Hybrid Model**



Fluctuating Initial conditions Hydrodynamic expansion

Freezeout processFrom Hydro to particleFinal state interactions

```
Akamatsu, Inutsuka, CN, Takamoto,
                  arXiv:1302.1665, J. Comp. Phys. (2014)34
                      hydrodynamic model | Cornelius
   MC-Glauber
                                                                  Oscar sampler
   MC-KLN
                                            Freezeout hypersurface finder
                                                                         Ohio group
                                                Huovinen, Petersen
http://www.aiu.ac.jp/~ynara/mckln/
 Nara
                       Simulation setups:
                          Free gluon EoS
                                                                        UrQMD
                          Hydro in 2D boost invariant simulation
                                                                          KMI topics
      C. NONAKA
```



- High-energy heavy ion collisions
  - QCD phase transition, success of the QGP production
  - QGP properties : comprehensive analyses of observables
- Highlights of latest experimental data at RHIC and LHC
  - Flow in A+A, p+A
- Relativistic Hydrodynamic Model
  - Description of dynamics of the high-energy heavy ion collisions
  - Importance of the numerical method:

construction of the state-of-the-art algorithm

