Lepton-Specific two-Higgs doublet model as a solution of the muon g-2 anomaly

Tomohiro Abe (IAR, KMI)

in Collaboration with **Ryosuke Sato** (Weizmann Institute) **Kei Yagyu** (Southampton \rightarrow INFN)

JHEP 1507 (2015) 064 (arXiv:1504:07059)

KMI topics 2016.10.12

Success of the Standard Model

Yukawa interaction

 $-\bar{q}_L^i \tilde{H} y_u^{ij} u_R^j - \bar{q}_L^i H y_d^{ij} d_R^j - \bar{\ell}_L^i H y_e^{ij} e_R^j$

- ★ fermion mass
- ★ CKM matrix
- ★ CP violation

Higgs potential

 $V=\mu^2 H^\dagger H+\lambda (H^\dagger H)^2$

- spontaneous symmetry breaking
- ★ Higgs mass

We need a model beyond the Standard Model

• SM cannot explain that

- ★ dark matter
- ★ baryon asymmetry (matter >> anti-matter in the universe)
- \star the origin of neutrino mass
- * muon g-2
- * …

Muon g-2

• the property of muon as *a magnet*

• Status: more than 3σ deviation

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = (28.7 \pm 8.0) \times 10^{-10},$$
 Davier et.al. (2011)
 $a_{\mu}^{\exp} - a_{\mu}^{SM} = (26.1 \pm 8.0) \times 10^{-10},$ Hagiwara et.al. (2011)

• three interpretations:

- \star error in experiments
- \star error in theoretical prediction
- * new physics

Muon g-2 and new physics scale

SM + dim. 6 operators

$$+\frac{c'}{(4\pi)^2}\frac{g'}{\Lambda'^2}\left(\bar{\ell}_L\sigma^{\mu\nu}He_RB_{\mu\nu}\right) - \frac{c}{(4\pi)^2}\frac{g}{\Lambda^2}\left(\bar{\ell}_L\sigma^{\mu\nu}W_{\mu\nu}He_R\right) + (h.c.)$$

$$\operatorname{Amp} \sim \bar{u}i\sigma^{\mu\nu}q_\nu\epsilon_\mu\frac{\delta a_\mu}{2m_\mu}u \qquad \delta a_\mu = 2m_\mu\frac{v}{\sqrt{2}}\frac{1}{(4\pi)^2}\left(2\frac{c'}{\Lambda'^2} + \frac{c}{\Lambda^2}\right)$$

ex) c = 0

C'	1	0.1	0.01	0.001
Λ'[TeV]	13	4.2	1.3	0.42

strong expectation of the existence new physics around TeV scale

exp. schedule

http://agenda.linearcollider.org/event/6772/contributions/33275/attachments/27394/41633/muon_g-2EDM_MS.pdf

NOW is the time for g-2

Muon g-2 and new physics

What kind of models are preferred?

- new particle must coupling to lepton (muon)
- ★ simple model
- ★ verifiable model in the near future

two-Higgs doublet model

- \star simple extension from SM
- * new scalar particles (H^0 , A^0 , H^{\pm})
- ★ mass ~ O(10)- O(1000)GeV
- ★ large coupling to leptons
- ★ the great candidate for muon g-2!

two-Higgs doublet model

- "two-Higgs doublet model" = a set of many models
- Many models exist for different structure of Yukawa interactions
 - ★ different names for different models

A viable model for muon g-2 !

lepton specific two-Higgs doublet model

- SM + one more Higgs doublet
- two Higgs : H_1 and H_2
 - ***** SM-like Higgs (h)
 - ***** new scalars (H^0, A^0, H^{\pm})
- important parameter: tan β (1 < tan β < 100)
- the lepton Yukawa interactions are enhanced by $tan\beta$

$$\begin{array}{c|c} u, d \\ & & \\ u, d \end{array} \xrightarrow{H^0, A^0, H^{\pm}} \sim y_{u,d}^{\mathrm{SM}} \times \frac{1}{\tan \beta} \end{array} \qquad \begin{array}{c} \ell \\ & \\ \ell \end{array} \xrightarrow{H^0, A^0, H^{\pm}} \sim y_{\ell}^{\mathrm{SM}} \times \tan \beta \end{array}$$

lepton physics

- new particles affect to all the physics with leptons
- **good point :** muon g-2

- On the other hand, constraints on the lepton couplings are important
 - **★** Z → ττ
 - * $Z \rightarrow \tau \tau A^0$
 - $\star \ \tau \to \mu \nu_\tau \bar{\nu}_\mu, \ \tau \to e \nu_\tau \bar{\nu}_e$
 - * Michel parameters
 - * lepton coupling universality

lepton physics

- new particles affect to all the physics with leptons
- good point : muon g-2

• On the other hand, constraints on the lepton couplings are important

tan

★ Z → ττ

★
$$Z \rightarrow \tau \tau A^0$$

$$\star \ \tau \to \mu \nu_\tau \bar{\nu}_\mu, \ \tau \to e \nu_\tau \bar{\nu}_e$$

- * Michel parameters
- * lepton coupling universality

the most stringent bound

lepton β decays

• H[±] breaks lepton universality

flavor universal interaction

flavor dependent interaction (Yukawa)

- large contributions in $\tau \rightarrow \mu \nu \nu$ process
- small contributions in $\mu \rightarrow evv$ process
- loop diagrams also there

tanβ dilemma

new particle couplings to lepton is enhanced by tanβ

 large tanβ is better for muon g-2 strong constraint from lepton coupling universality

small tanβ is required to avoid the constraint

- tanβ is in a dilemma
 between g-2 and lepton flavor universality
- Is it possible to explain muon g-2 in this model?
 (→ see next slide !)

Result: g-2 with constraints

- **g-2 within 1σ region (dark blue)** is completely excluded!
- g-2 within 2σ region (light blue) is survive!
- constraint from lepton universality is strong.

short summary

- lepton specific two-Higgs doublet model can explain muon g-2 within 2σ
- parameters for the muon g-2
 - * 10 GeV < m_A < 30 GeV
 - * 250 GeV < $m_{H\pm}$ < 350 GeV
 - \star m_{H0} = m_{H±}
 - \star 30 < tan β < 40

- What else …?
- phenomenology at the LHC is a good complement

Collider physics

h(125) couplings (1)

htt : more than 10% deviation from the SM prediction

h(125) couplings (2)

• hyy : more than 10% deviation from the SM prediction

H^0 , A^0 , H^{\pm} at the LHC

• many tau leptons are produced at the LHC 14TeV

• xsec [fb]

$m_{H^{\pm}}$ [GeV]	$\sigma_{H^+H^-}$	σ_{H^+H}	σ_{H^-H}	σ_{H^+A}	σ_{H^-A}	σ_{AH}	$\sigma_{4\tau}$	$\sigma_{3\tau}$	$\sigma_{4\tau W}$	$\sigma_{4\tau Z}$
200	18.6	22.0	11.3	116	67.0	101	29.3	50.1	143	70.7
250	8.0	9.7	4.7	53.5	29.5	45.1	7.2	12.8	72.5	37.4
300	3.9	4.8	2.3	28.2	14.9	23.2	2.3	4.3	39.4	20.6
350	2.1	2.6	1.1	16.2	8.2	13.0	0.9	1.7	22.9	12.0

Table 2: Cross sections of the electroweak production processes expressed in Eq. (05), and those of the multi-tau processes expressed in Eqs. (67)-(70) at $\sqrt{s} = 14$ TeV in the unit of fb. We take $m_A = 20$ GeV, $m_H = m_{H^{\pm}}$, $\sin(\beta - \alpha) = 1$ and $\tan \beta = 35$.

Summary

Summary

lepton specific two-Higgs doublet model

- \star simple extension from the SM
- \star large new particle couplings to the leptons by tanβ
- **★** tanβ is in a dilemma between g-2 and lepton flavor universality
- \star can explain muon g-2 within 2 σ

• parameters for the muon g-2

- * 10 GeV < m_A < 30 GeV
- ★ 250 GeV < $m_{H\pm, H0}$ < 350 GeV
- * $30 < \tan\beta < 40$

• LHC phenomenology

- * more than 10% deviation in hττ and hγγ couplings (within the reach of LHC14TeV 300fb-1 (year 2022?))
- * O(10) fb multi-r events will be observed