元素合成と素粒子

川崎 雅裕 (東京大学宇宙線研究所)

1. Introduction

BBN (Big Bang Nucleosynthesis)

- Important process leading to success of the big bang model
- BBN determines baryon density of the Universe
 - Before CMB provide better estimation
 - Goal which baryogenesis must achieves
- BBN is very sensitive to physical conditions at T~ 1MeV
 - Prove to the early universe
 - Unstable particles,
 - Extra species contributing to cosmic density

今日の話

- 1. Introduction
- 2. BBN constraints on unstable particles
 - A. Gravitino problem
 - B. Annihilation of dark matter
 - C. MeV reheating
- 3. Baryogenesis and dark matter
 - A. Affleck-Dine baryogenesis
 - B. Q-ball cogenesis

1.1 Standard Big Bang Nucleosynthesis (BBN)

• In the early universe (T=1-0.01 MeV)

$$2p + 2n \rightarrow {}^{4}\text{He}$$
 + small D ${}^{3}\text{He}$ ⁷Li

Initial Condition p and n interchange via weak interaction

Reaction Rate $\Gamma \sim \sigma v n_e \sim G_F^2 T^2 T^3 \sim G_F^2 T^5$

\triangleright $\Gamma >> H$ \longrightarrow Chemical equilibrium

$$\frac{\mu_{\nu_e} + \mu_n = \mu_p + \mu_{e^-}}{n_{e^-} - n_{e^+}} = \frac{1}{3}\mu_e T^2 = n_p$$

 $\mu_e/T \ll 1 (\Leftarrow n_{e^-} - n_{e^+} \ll n_{\gamma}) \quad \mu_\nu \ll 1 \text{ (assumption)}$

 $\Gamma = H \quad \text{weak interactions freeze out} \longrightarrow T_f \sim 1 \text{ MeV}$ $freeze-out \quad freeze-out \quad temp.$

Almost all neutrons that exist at that time are synthesized into He4

$$\rightarrow \frac{\rho_{^{4}\text{He}}}{\rho_{\text{H}} + \rho_{^{4}\text{He}}} = \frac{4(n_{n}/2)}{n_{n} + n_{p}} = 2\frac{n_{n}/n_{p}}{1 + n_{n}/n_{p}} \simeq 0.25$$

0.1 MeV < T < 1 MeV $p+n \leftrightarrow D+\gamma$ $Q_d = 2.22 \text{ MeV}$ $n_{\gamma} \sim 10^{10} n_B \gg n_B$ Produced D is destroyed $D + \gamma \rightarrow p + n$ $T \simeq 0.1 \text{ MeV}$ n $n_{\gamma}(E_{\gamma} > 2.22 \mathrm{MeV}) \searrow$ $\Rightarrow p + n \rightarrow D + \gamma$ ▶ T < 0.1 MeV 2.22MeV F $D + D \rightarrow {}^{3}He + n$ ${}^{3}\text{He} + n \rightarrow {}^{3}\text{He} + p$ 4 He \rightarrow + small amount of D, ³He, ³H 3 He + D \rightarrow 4 He + n $(^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \bar{\nu}_{e}, \ \tau_{1/2} \sim 12 \text{yr})$

Heavier Light Elements?

No stable nuclei with A=5 or 8

- Coulomb Barrier
- But tiny amount of Li7

 ${}^{4}\mathrm{He} + {}^{3}\mathrm{H} \rightarrow {}^{7}\mathrm{Li} + \gamma$

 ${}^{4}\mathrm{He} + {}^{3}\mathrm{He} \rightarrow {}^{7}\mathrm{Be} + \gamma$

 $^{7}\mathrm{Be} + e^{-} \rightarrow ^{7}\mathrm{Li} + \nu_{e}$

Abundances of Light Elements only depend on baryon-to-photon ratio

Prediction vs Observation

• Abundance

 $Y_p = \frac{\rho_{^4\mathrm{He}}}{\rho_{\mathrm{H}} + \rho_{^4\mathrm{He}}}$

- $\frac{\mathsf{A}}{\mathsf{H}} = \frac{n_{\mathsf{A}}}{n_{\mathsf{H}}}$
- Baryon-photon ratio
 D/H observation

 $\eta_B \simeq 6 \times 10^{-10}$

• Lithium problem

Observational abundances of light elements

- He4 [Extragalactic HII region] $Y_p = 0.254 \pm 0.003$ Izotov, Stasinska, Guseva (2013) $Y_p = 0.2465 \pm 0.0097$ PDG (2013) D [Damped Ly alpha system] $(\mathsf{D}/\mathsf{H})_p = (2.53 \pm 0.04) \times 10^{-5}$ Cooke et al, (2013) Li7 [Metal poor halo stars] $(^{7}L/H)_{p} = (1.6 \pm 0.3) \times 10^{-10}$ Sbordone et al, (2010) Li6 [Metal poor halo stars] $({}^{6}L/{}^{7}Li)_{p} < 0.5$ Asplund et al, (2006)
 - He3 [Solar system] $({}^{3}\text{He}/{}^{7}\text{D})_{p} < 0.83 \pm 0.27$ Geiss, Gloeckler (2003)

2. BBN constraints on unstable particles

- Long-lived unstable particles might spoil success of BBN
- High energy particles from decay destroy light elements
 - Radiative decay (photons, electrons)
 - Hadronic decay (quarks, gluons)
- Candidates
 - Gravitino (SUSY partner of graviton)
 - Moduli fields (predicted in superstring)
 - Dark matter annihilation

- 2.1 Gravitino Problem
 - Supersymmetry (SUSY)
 - Hierarchy Problem Keep electroweak scale against radiative correction
 - Coupling Constant Unification in GUT
 - SUSY particles
 quark

 quark
 squarks
 lepton
 slepton
 photon
 photino
 - Gravitino superpartner of graviton

Gravitino

SUSY Breaking Scheme

• At low energy

 $(m_{\tilde{q}}, m_{\tilde{\ell}} \sim 1 \text{TeV} \gg m_q, m_\ell)$

• Gravity Mediated SUSY Breaking (GMSB)

SUSY

• Squark, slepton masses

$$m_{\tilde{q}}, m_{\tilde{\ell}} \sim \frac{M_{\text{SUSY}}^2}{M_p} \sim 10^{2-3} \text{ GeV}$$

... $M_{\text{SUSY}} \sim 10^{11-13} \text{ GeV}$

• Gravitino

$$m_{3/2} \sim 10^{2-3} \text{ GeV}$$

Gravitino production and decay

• Gravitinos are produced during reheating after inflation

$$\frac{n_{3/2}}{n_{\gamma}} \simeq 10^{-11} \left(\frac{T_R}{10^{10} \text{GeV}} \right)$$

 $\psi_{3/2}$

Bolz, Brandenburg, Buchmüller (2001); MK, Moroi (1995)

$$n_{3/2}/n_{\gamma} \sim \sigma n_q t \sim (1/M_p^2) T_R^3 (M_p/T_R^2)$$

- Gravitino decay
 - Radiative decay e.g. $\psi_{3/2} \rightarrow \tilde{\gamma} + \gamma$

$$\tau(\psi_{3/2} \to \tilde{\gamma} + \gamma) \simeq 4 \times 10^8 \operatorname{sec}\left(\frac{m_{3/2}}{100 \operatorname{GeV}}\right)^-$$

► Hadronic decay e.g. $\psi_{3/2} \rightarrow \tilde{g} + g$ $\tau(\psi_{3/2} \rightarrow \tilde{g} + g) \simeq 6 \times 10^7 \sec\left(\frac{m_{3/2}}{100 \text{GeV}}\right)^{-3}$ Gravitino problem and constraint on reheating temperature

2.2 Radiative decay and BBN

Radiative decay High energy photons **Electromagnetic shower** $\gamma + \gamma_{\rm BG} \rightarrow e^+ + e^ \epsilon_{\gamma} > m_e^2/22T$ $e^{\pm} + \gamma_{\rm BG} \to e^{\pm} + \gamma$ $\gamma + \gamma_{BG} \rightarrow \gamma + \gamma$ 40 Many soft photons $\epsilon_{\gamma} \gtrsim 2.2 {
m MeV} ~(T \lesssim 10 {
m keV})$ 30 $\log_{10}[f/(GeV^2)]$ $\epsilon_{\gamma} \gtrsim 20 \text{MeV} \ (T \lesssim 1 \text{keV})$ 20

Destruct light elements

ε_=100GeV $\gamma + \gamma_{BG} \rightarrow \gamma + \gamma$ $\gamma + \gamma_{\rm BG} \rightarrow e^+ + e^-$ 10eV 1keV T=100keV 10 10^{-2} 10^{-1} 10° 10² 10^{3} 10^{-3} 10¹ 10^{4} Energy (GeV)

 $\psi_{3/2}$

MK, Moroi (1995)

Destruction of light elements

 $\begin{array}{ll} \mathsf{D} + \gamma \rightarrow n + p & [2.2 \, \mathrm{MeV}] \\ \mathsf{T} + \gamma \rightarrow \mathsf{D} + n & [6.2 \, \mathrm{MeV}] \\ ^3 \mathrm{He} + \gamma \rightarrow \mathsf{D} + p & [5.5 \, \mathrm{MeV}] \\ ^4 \mathrm{He} + \gamma \rightarrow \mathsf{T} + n & [19.8 \, \mathrm{MeV}] \\ ^4 \mathrm{He} + \gamma \rightarrow ^3 \, \mathrm{He} + n & [20.5 \, \mathrm{MeV}] \\ ^4 \mathrm{He} + \gamma \rightarrow \mathsf{D} + n + p & [26.1 \, \mathrm{MeV}] \end{array}$

→ Non thermal production of Li6

$$T + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + n$$
 [4.0MeV]
 ${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + p$ [4.8MeV]

Dimopoulos et al (1989) Jedamzik (2000)

Constraint on radiative decay

MK, Kohri, Moroi (2005)

• He3/D gives the most stringent constraint

2.3 Haronic decay and BBN

Reno, Seckel (1988) Dimopoulos et al (1989) MK, Kohri, Moroi (2005) Jedamzik (2006)

 Hadronic decay takes place even if gravitino only couples to photon and photino

Constraint on hadronic decay

D/H (τ < 10⁷ sec) or He3/D (τ > 10⁷ sec) gives the most stringent constraint

2.4 Constraint on reheating temperature

MK, Kohri, Moroi, Yotsuyanagi (2008)

Gravitino lifetime

- $m_{3/2}$ decay modes
- Gravitino abundance

$$Y_{3/2} \equiv \frac{n_{3/2}}{s} \simeq 1.9 \times 10^{-12} \left(\frac{T_R}{10^{10} \text{GeV}}\right)$$

 T_{R}

- SUSY mass spectrum
 - adopt CMSSM (constrained minimal susy standard model)
 - Universal gaugino mass $m_{1/2}$
 - Universal scalar mass m_0
 - Universal trilinear coupling A_0
 - ratio of VEV of the two Higgs fields $\tan \beta$

MK Kohri Moroi Yotsuyanagi (2008)

• Reheating temperature T_R should be less than ~ 10⁶ GeV for $m_{3/2} = 0.1 - 40$ TeV

2.3 Constraint on annihilation of dark matter

 Motivated by the observation of cosmic ray positrons and electrons by the PAMELA satellite

$$\rightarrow$$

$$DM + DM \longrightarrow e^+ + e^-$$

$$\langle \sigma v \rangle \sim 10^{-23} \mathrm{cm}^{-3} \mathrm{s}^{-1}$$

• DM annihilation also affects BBN

Hisano, Kawasaki, Kohri, Moroi, Nakayama (2009)

AMS(2013)

2.4 MeV reheating (lower bound on reheating temperature)

- Low reheating temperature after inflation
- Late-time decay of massive particles
 - Reheating temperature =O(1)MeV

- Inflaton decay into standard model particles
- All particles except neutrinos are quickly thermalized
 - Insufficient neutrino thermalization
- small number of electron neutrinos

small effective number of neutrino species

Momentum distribution of neutrinos

Ichikawa, Kawasaki, F.Takahashi (2005)

• BBN (p/n) $\leftarrow p + e^- \leftrightarrow n + \nu_e$

small number of $v_e \rightarrow weak$ interaction $\searrow \rightarrow n/p \nearrow$

 \triangleright small v density \Longrightarrow cosmic expansion \searrow \implies $n/p \searrow$

Effective number of neutrinos

$$N_{\nu} = \frac{\sum \rho_{\nu_i}}{\rho_{\rm std}}$$

• He4 abundance

 $n/p \nearrow \Rightarrow Y_p \nearrow$

Lowering T_R only acts to delay the p-n ratio freeze-out and decreases Y_p

Constrain on reheating temperature

- BBN constraint \rightarrow T_R > 2 MeV
- If hadronic decay occurs ($\pi^{\pm} K^{\pm} \dots$) it changes n/p

 \rightarrow T_R > 3-5 MeV

Kawasaki, Kohri, Sugiyama (2000)

3. Baryogenesis and dark matter

- Our universe is made of baryons (not anti-baryons)
- Asymmetry between matter and ant-matter
- How large asymmetry?

3.1 Sakharov's condition

For successful baryogenesis
 (1) B violation (L-B violation)
 (2) C and CP violation
 (3) Out of equilibrium

(2) CP transformation

A + B → C + D ⇒ A^{CP} + B^{CP} → C^{CP} + D^{CP}

If the theory is CP invariant

Γ[A + B → C + D] = Γ[A^{CP} + B^{CP} → C^{CP} + D^{CP}]
B = 0

(3) Thermal distribution is determined by T and m

CPT invariance $m_A = m_{\bar{A}} \longrightarrow B = 0$

3.2 Baryogenesis mechanism

- Electroweak baryogenesis
 - In the standard model
 - too small CP (Kobayashi-Maskawa)
 - EW phase transition is not 1st order

- Leptogenesis
 - Lepton number generation from heavy right-handed v
 - \blacktriangleright L \rightarrow B by sphaleron process
 - Requires high reheating temperature T > 10⁹ GeV
 graviton problem?
- Affleck-Dine baryogenesis

3.2 Affleck-Dine Mechanism

Affleck, Dine (1985)

Scalar potential (squark, slepton, higgs) in MSSM (minimal supersymmetric standard model)

Flat Directions = Affleck-Dine fields $\Phi \leftarrow C$

baryon (lepton) number

- (flat if SUSY and no cut-off)
- In the inflationary universe, dynamics of some AD field produces baryon asymmetry of the universe
- Scalar potential

Dynamics of Affleck-Dine Field

3.3 Affleck-Dine mechanism and Q-ball formation

 However, Dynamics of AD-field is complicated by the existence of Q-ball
 Kusenko Shaposhnikov (1998) Enqvist McDonald (1998) Kasuya MK (2000)

 Q-ball : Non-topological Soliton in Scalar Field Theory with Global U(1)

S. Coleman (1984)

3.4 Cogenesis with Q Balls

- Affleck-Dine mechanism for baryogenesis
- Flat directions (=AD fields Φ) in scalar potential of SUSY extensions of the standard model \tilde{q} (squarks), \tilde{l} (sleptons), H
 - Large field value during inflation
 - Start oscillation after inflation
 - Baryon number generation
 - Formation of Q Balls AD field produces spherical condensates through instabilities
- LSPs (lightest SUSY particles) can be dark matter

- Q balls are unstable in gravity mediated SUSY breaking
 - Q balls decay into quarks and LSPs (χ)
 - Q-ball decay into quarks is saturated by Pauli blocking

Simple relation among decay rates

- n_q: number of species of quarks interacting with Q-ball
- g_s : number of degrees of freedom of sparticles
- f(m) =1 for $m_\Phi \gg m_s$

 \longrightarrow $n_B \simeq 72 \; n_{ ilde{\chi}}$ (n_q = 27 for udd-flat direction)

 $m_{\tilde{\chi}} \simeq 360 \text{GeV} \Rightarrow \rho_B = \rho_{\tilde{\chi}}/5$

$$|\mathsf{F} \ m_{\Phi} \simeq m_{\tilde{\chi}} \ \Rightarrow \ n_{\tilde{\chi}} \ \searrow \ \Rightarrow \ m_{\tilde{\chi}} \ \nearrow$$

- To keep Ω_{DM}/Ω_B relation, produced LSPs should not annihilate
 - Late decay of Q balls
 - Low reheating temperature T_R < 1 GeV</p>
- For example, LSP = winos NLSP = bono
 Q balls → winos → bins

Kamada MK Yamada (2012)

Q ball cogenesis in CMSSM

Kamada MK Yamada (2014)

- **b** Low reheating temperature $T_R < 1$ GeV
- sparticle mass spectrum in CMSSM
- Cogenesis is consistent with 126 GeV Higgs

Backup

- OB stars ionize H and He
- ▶ E(HI)= 13.6eV, E(HeI)= 24.6eV, E(HeII)= 56.4eV
- Recombination lines

NGC 6611

measure Hell/Hll

Spectrum

MRK 193 Izotov, Thuan, Lipovetsky (1994)

4

Determination of Yp

- Izotov & Thuan (2010)
 - ▶111 HII regions (from 1610 samples)

Taking into systematic effects

$$Y_p = 0.254 \pm 0.003$$

D abundance

• Lyman α , β , γ , δ ... absorption in QSOs spectrum

• DLAS at $z_{abs} = 3.067$ toward QSO SDSS J1358+6522

Cooke et al, (2013)

weighted mean $({\rm D/H})_p = (2.53\pm0.04)\times10^{-5}$

Li7 Abundance

Spite plateau [Spite & Spite (1987)]

constant Li7 abundance in warmest metal-poor stars

Primordial abundance of Li 7

Bonifacio, Molaro 1997 46

$$(^{7}L/H)_{p} = (1.6 \pm 0.3) \times 10^{-10}$$

Sbordone et al, (2010)