第1回 NOP/Φ研/KMI分野横断セミナー 2014年5月26日(月)、名古屋大学 ES総合館

超新星元素合成と ニュートリノ振動の物理

梶野 敏貴(Taka KAJINO) National Astronomical Observatory Department of Astronomy, The University of Tokyo **Challenge of the Century**

Universal expansion is most likely accelerating and flat ! $\Omega_{\rm B} + \Omega_{\rm CDM} + \Omega_{\Lambda} = 1$

SN la magnitude-redshift relation 1998

- What is CDM (Ω_{CDM} = 0.27) and DE (Ω_{Λ} = 0.68) ? CMB including v-mass
- Is BARYON sector ($\Omega_{\rm B}$ = 0.05) well understood ?

Big-Bang Nucleosynthesis with Axions + **SUSY to solve DM & Li Problems**:

SUSY-DM ⇒ "beyond the Standard Model" ⇒ $m_v \neq 0$ is the unique signal !

Key Particles

Neutrons (n's) & Neutrinos (v's).

Big-Bang Nucleosynthesis is now a Precise Science ~1%

Smith, Kawano & Malaney, ApJ S85(2003) 219; Mathews, Kajino & Shima, PRD71 (2005) 21302 (R).

Cosmological Implication for ⁴He-⁶Li-⁷Li PROBLEM

New measurements using Inverse-Compton γ-rays !

Shima et al. PR C72 (2005) 44004 Naito et al. PR C73 (2006) 34003 + New Experiment (2008 —)

⁴He(γ_{NT},n)³He(⁴He,p)⁶Li ⁴He(γ_{NT},p)³H(⁴He,n)⁶Li

Decaying DM (i.e. SUSY) BBN for solving ⁶Li problem:

Kusakabe Kajino, Shima et al., PR D79 (2009) 123513.

Supernova v-Process

4
He(v , v '), 4 He(v_{e} , e -), 4 He($\overline{v_{e}}$, e +)

Kusakabe, Kajino, Yoshida, Shima, Nagai, and Kii (2007-2014).

BBN Constraint on Magnetic Moment of Massive Neutrinos M. Kusakabe, A. B. Balantekin, T. Kajino & Y. Pehlivan, PR D87 (2013), 085045.

$$\frac{n_X}{n_\gamma} = \frac{4}{11} \frac{n_{dX}(m_X)}{n_\gamma(T_d)} = \frac{2\pi^2}{11\zeta(3)} \frac{n_{dX}(m_X)}{T_d^3}.$$
$$n_{dX}(m_X) = \frac{g_X}{2\pi^2} \int_0^\infty dp \frac{p^2}{\exp\left[\sqrt{p^2 + m_X^2}/T_d(m_X)\right] + 1}$$

What happens as neutrinos flow through the SN outer layers ?

Neutrino induced nucleosynthesis to constrain v-mass hierarchy.

Astrophysical sites for r-process including SNe, GRBs and neutron star mergers.

Pulsar kick from v-baryon int. in magnetized neutron stars.

Origin of life - chirality of amino acids.

What happens to neutrinos once they leave the supernova?

Supernova Relic Neutrinos (SRNs) to probe EoS of proto-neutron stars.

What happens as neutrinos flow through the SN outer layers ?

Pulsar Kick from v-baryon int. in Magnetized Neutron Star.

v-induced nucleosynthesis and Mass Hierarchy.

R-process nucleosynthesis in GRBs.

Mass Hierarchy?

Total v-Mass, constrained from Nuclear Physics and Cosmology

 $\sum m_v < 0.36 \text{ eV} (95\% \text{C.L.})$: WMAP-7yr + HST + CMASS (Putter et al. arXiv:1201.1909)

CMB Anisotropies & Polarization including Cosmic Magnetic Field
∑ m_v < 0.2 eV (2σ, B_λ<2nG): with Magnetic Field; Ymazaki, Kajino, Mathews & Ichiki, Phys. Rep. 517 (2012), 141; Phys. Rev. D81 (2010), 103519.</p>

www.esa.int/Our_Activities/Space_Science/ Planck/Planck_reveals_an_almost_perfect_ Universe

Key Physics = beyond the standard model

Unification of elementary forces ? CP violation and Lepto- & Baryo-genesis ? Why left-handed neutrinos, Majorana or Dirac ? Explosion Mechanism of Supernovae ?

The "KNOWN" in Neutrino Oscillations

23-mixing

KAMIOKANDE, SK, KamLand (reactor v), SNO determined Δm_{12}^2 and θ_{12} uniquely: SK (atmospheric v) determined Δm_{23}^2 and θ_{23} uniquely.

Various Neutrino-Sources in Nature/Culture

Solar System Abundance

Various roles of v's in SN-nucleosynthesis

92 Nb also has SN- ν Origin !

Hayakawa et al., ApJ 778 (2013) L1.

 $^{92}\text{Nb}~(\tau_{\text{1/2}}\text{=}3.47\text{x}10^7\text{ y})$: Unique Chronometer of SN $\nu\text{-}Process$

Tantalum (^{180,181}Ta)

¹⁸¹Ta_g(stable), ¹⁸⁰Ta_g(unstable, $\tau_{1/2} = 8h$), ¹⁸⁰Ta^m(isomer, $\tau_{1/2} > 10^{15}y$) The rarest isotope on the Earth & Universe !

Origin of ¹⁸⁰Ta was unknown since 1957. S-process cannot explain both ¹⁸⁰Ta & ¹³⁸La ! SN v-process for overproduced ¹⁸⁰Ta/¹³⁸La ? Solved by $T_{ve} = 3.2 \text{ MeV},$ $T_{\overline{ve}} = 4 \text{ MeV }!$

We solved dynamical "explosive SN-nucleosynthesis" coupled with "quantum transitions" simultaneously.

(Hayakawa, et al. 2010, PR C81, 052801®; PR C82, 058801)

Galactic Chemical Evolution of ⁹Be & ^{10,11}B

Mean v-temperatures are known!

- •R-process Elements & ¹⁸⁰Ta/¹³⁸La $\rightarrow T_{V_e} = 3.2$ MeV, $T_{\overline{V_e}} = 4$ MeV
- •Astron. GCE of Light Elements & ¹¹B $\implies Tv_{\mu} = Tv_{\tau} = 6$ MeV

Temperature Hierarchy of Supernova- v

Supernova v-Process: ⁷Li, ¹¹B, ⁹²Nb, ¹³⁸La, ¹⁸⁰Ta 14N ⁴He(v,v'p)³H, ⁴He $|\Delta m^2_{13}| = |\Delta m^2_{23}| = 2.4 \times 10^{-3} \text{ eV}^2$ (v,v'n)12C ⁴He(ve,e⁻p)³He, ⁴He($\overline{v}e,e^+n$)³H, ¹²C(ve,e⁻p)¹¹C, (a,n) (α,γ) $2\sqrt{2G_F(\hbar c)}\varepsilon_{\nu}$ (β+) $^{12}C(\overline{v}e,e^{+}n)^{11}B$ $= 6.55 \times 10^6 \left(\frac{\Delta m_{ji}^2}{1 \text{ eV}^2}\right) \left(\frac{1 \text{ MeV}}{\varepsilon_{ii}}\right) \cos 2\theta_{ij}$ (v,v'p) 11**B** ⁷Be (e-,ve) Shell Model: (α,γ) Yoshida, Suzuki, Chika, Kajino, et al., ApJ 686 (2008), 448: (α,γ) Phys. G40 (2013), 083101: Suzuki and Kajino, 7Li **RPA:** (v,v'n)(2010), W28501; 4RC82 (2010), 035504; oun, et al (v,v'p)(α,γ) J. Phys. G37 (2010), 05510 PPRES 3 20 Phys. G37 (2010), 05510 PPRES 3 20 PPRES shell at $\rho \sim 10^3 - 10^4$ g/cm³. 3H 10⁻⁶ 10⁻⁵ O-rich O/C <u>0/C</u> He/C O-rich He/C He/N He/N A = 11 A = 7 7 ¹¹B ⁷Be Fraction 10⁻⁷ Fraction 10⁻⁶ 10⁻⁸ 10⁻⁷ Mass Mass 10⁻⁹ 10⁻⁸

10⁻⁹

6

2

3 5 4 Mr / M_{\odot}

10⁻¹⁰

2

 Mr / M_{\odot}

3

¹¹C

5

6

Role of Nucl. Phys. for v–Nucleus X-Sections

New Shell Model cal. with NEW Hamiltonian: v-12C, 4He

Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307. Suzuki, Fujimoto & Otsuka, PR C67, 044302 (2003)

¹²C: New Hamiltonian = Spin-isospin flip int. with tensor force to explain neutron-rich exotic nuclei.

- μ -moments of p-shell nuclei
- GT strength for ${}^{12}C \rightarrow {}^{12}N$, ${}^{14}C \rightarrow {}^{14}N$, etc. (GT)
- DAR (v,v'), (v,e-) cross sections

QRPA cal.: v -180Ta, 138La, 98Tc, 92Nb, 42Ca, 12C, 4He...

Cheoun, et al., PRC81 (2010), 028501; PRC82 (2010), 035504: J. Phys. G37 (2010), 055101; PRC 83 (2011), 028801

Double β decay – ν mass – Astro-Cosmology Connection

K. Yako et al., PRL 103 (2009) 012503.

Yoshida, Kajino, Yokomakura, Kimura, Takamura & Hartmann, PRL 96 (2006) 09110; ApJ 649 (2006), 349.

Ne

Exploring the neutrino mass hierarchy probability with meteoritic supernova material, ν -process nucleosynthesis, and θ_{13} mixing

G. J. Mathews,^{1,2} T. Kajino,^{2,3} W. Aoki,² W. Fujiya,⁴ and J. B. Pitts⁵

Bayesian Analysis, including astrophysical model dependence on SN progenitor masses, v-temps. $(T_{ve}, T_{ve}, T_{v\mu\tau}, \overline{v\mu\tau})$ and nuclear input data.

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{\sum_j P(D|M_j)P(M_j)}$$
$$P(D|M_i) = \int dEdZ da_k P(E, Z, D|M_i, a_k)P(a_k|M_i)$$
$$= \int dEdZ da_k P(D|M_i, a_k, E, Z)P(Z, E|M_i, a_k)P(a|M_i)$$

TABLE I: Parameter likelihood functions $P(a_k|M_i)$.

Parameter a_k	prior			reference
$\sin^2 2\theta_{13}$	$e^{-(x-x_0)/2\sigma_x^2}$	$x_0 = 0.92$	$\sigma_x = 0.017$	[7]
R _{3a}	$e^{-(x-x_0)/2\sigma_x^2}$	$x_0 = 1.0$	$\sigma_x = 0.12$	[35]
$R_{12C\alpha}$	$e^{-(x-x_0)/2\sigma_x^2}$	$x_0 = 1.2$	$\sigma_x = 0.25$	[36]
$M_{prog}(M_{\odot})$	$m^{-2.65}$	$m_{min} = 10$	$m_{max} = 25$	[37]
$T_{\nu}({ m MeV})$	Top hat	$T_{\nu} = 3.2 - 6.5$	(see text)	[15]

Note. ${}^{a}\delta^{i}Si = [({}^{i}Si/{}^{28}Si)/({}^{i}Si/{}^{28}Si)_{\odot} - 1] \times 1000.$

11B/10B

MSW Effect & v Mass Hierarchy

What happens as neutrinos flow through the SN outer layers ?

Neutrino induced nucleosynthesis to constrain v-mass hierarchy.

Astrophysical sites for r-process including SNe, GRBs and neutron star mergers.

Pulsar kick from v-baryon int. in magnetized neutron stars.

Origin of life - chirality of amino acids.

What happens to neutrinos once they leave the supernova?

Supernova Relic Neutrinos (SRNs) to probe EoS of proto-neutron stars.

A New Method to constrain EOS & v-Oscilation

G.J. Mathews, J. Hidaka, T. Kajino & J. Suzuki, ApJ (2014), submitted.

THE ASTROPHYSICAL JOURNAL, 738:154 (16pp), 2011 September 10

THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE

SHUNSAKU HORIUCHI^{1,2}, JOHN F. BEACOM^{1,2,3}, CHRISTOPHER S. KOCHANEK^{2,3}, JOSE L. PRIETO^{4,5}, K. Z. STANEK^{2,3}, AND TODD A. THOMPSON^{2,3,6}

Fate of Massive Star

A. Heger et al. (2003)

Electron-capture SNe Normal CC-SNe (Faint SnNe) (Neutron Star fromation)

Failed SNe (Black Hole formation) Pair-v heated SNe (BH + Acc. Disk)

detail	ONeMg SN	CC-SN	fSN(SH EOS)	fSN(LS EOS)	GRB
$mass(M_{\odot})$	$(8 \sim 10)$	$8 \sim 25(10 \sim 25)$	$25 \sim 125 \ (99.96\%)$	$25 \sim 125 \ (99.96\%)$	$25 \sim 125 \ (0.04\%)$
Remnant	Neutron Star	Neutron Star	Black Hole	Black Hole	Black Hole
Phenomenon	Supernova	Supernova	Failed Supernova	Failed Supernova	Gamma-Ray Burst
T_{ν_e} (MeV)	3.0	3.2	5.5	7.9	3.2
$T_{\nu \bar{e}}$ (MeV)	3.6	5.0	5.6	8.0	5.3
T_{ν_x} (MeV)	3.6	6.0	6.5	11.3	4.4
$E_{\nu_{s}}^{total}(erg)$	3.3×10^{52}	5.0×10^{52}	5.5×10^{52}	8.4×10^{52}	1.7×10^{53}
$\mathbf{E}_{\overline{\nu_{e}}}^{total}(\mathrm{erg})$	2.7×10^{52}	5.0×10^{52}	4.7×10^{52}	7.5×10^{52}	3.2×10^{53}
$E_{\nu_x}^{total}(erg)$	1.1×10^{53}	5.0×10^{52}	2.3×10^{52}	$2.7{ imes}10^{52}$	1.9×10^{52}
Δt	few s	few s	$\sim 0.5 s$	$\sim 0.5 s$	$\sim 10s$

CC-Sne: Yoshida, et al., ApJ 686 (2008), 448;
 Suzuki & Kajino, J. Phys. G40 (2013) 83101.

fSN (failed SNe): Sumiyoshi, et al., ApJ **688** (2008) 1176.

* **<u>Shen-EOS</u>**: Shen et al. Nucl. Phys. **A637** (1998) 435.

* **LS-EOS:** Lattimer & Swesty, Nucl. Phys. **A535** (1991) 331.

ONeMg SNe: Hudepohl, et al., PRL 104 (2010).

GRBs: Nakamura, Kajino, Mathews, Sato & Harikae, Int. J. Mod. Phys. E 22 (2013) 1330022; Kajino, Mathews & Hayakawa, J. Phys. G41 (2014) 044007.

Spectrum of Relic Supernova Neutrinos (RSNs)

for Hyper-Kamiokande (Mega-ton): Water Cherenkov $\bar{\nu_e} + p \rightarrow e^+ + n$

Spectrum of Relic Supernova Neutrinos (RSNs)

for Hyper-Kamiokande (Mega-ton): Water Cherenkov $\bar{\nu_e} + p \rightarrow e^+ + n$

$$\frac{dN_{\nu}}{dE_{\nu}} = \frac{c}{H_0} \int_0^{z_{max}} R_{SN}(z) \frac{dN_{\nu}(E_{\nu}')}{dE_{\nu}'} \times \frac{dz}{\sqrt{(\Omega_m)(1+z)^3 + \Omega_\Lambda}}$$

Relic Supernova Neutrinos

Hyper-Kamiokande (Mega-ton, 10y), Gd-loaded Water Cherenkov Detector $\bar{\nu_e} + p \rightarrow e^+ + n$ G. J. Mathews, J. Hidaka, T. Kajino, and J. Suzuki, ApJ (2014), in press

Relic Supernova Neutrinos (RSNs)

Hyper-Kamiokande (Mega-ton, 10y), Gd-loaded Water Cherenkov Detector $\bar{\nu_e} + p \rightarrow e^+ + n$ G. J. Mathews, J. Hidaka, T. Kajino, and J. Suzuki, ApJ (2014), in pre-

What happens as neutrinos flow through the SN outer layers ?

Pulsar Kick from v-baryon int. in Magnetized Neutron Star.

v-induced nucleosynthesis and Mass Hierarchy.

R-process nucleosynthesis in GRBs.

Supernova Nucleosynthesis Simulation

T. Kajino & S. Chiba

R-process Nucleosynthesis

Otsuki, Tagoshi, Kajino and Wanajo, ApJ 533 (2000),424; Wanajo, Kajino, Mathews and Otsuki, ApJ 554 (2001),578.

Neutron-rich condition for successful r-process: $0.1 < Y_e < 0.5$

Lighter Mass End $(10-13 \text{ M}_{\odot})$ of ν -Driven SNe: not enough neutrons for the heaviest *r*-process nuclides. \rightarrow Heavy Mass $(15-25 \text{ M}_{\odot})$ CCSNe, wanted !?

Alternative Models for the *r*-Process

Ejection of neutronized core material in MHD jet:

Moderate entropy: S>15, Neutron rich: $Y_e \sim 0.2$.

Neutron star mergers:

Low Entropy S ~ 1, Extremely neutron rich: $Y_e \sim 0.02$.

- :- can contribute to the s.s. and recent generations of stars.
- :- cannot contribute to the early generations of stars.

Freiburghaus et al (1999), Korobkin et al. (2012), Shibagaki, Kajino (2014)

Nishimura, Nishimura, Kajino & Mathews (2012)

Is there another possibility? Yes!

R-Process nucleosynthesis in collapsar jets:

Surman et al. 2008, Fujimoto et al. 2008, Ono et al. 2012, Nakamura et al. 2013.

- Model for long duration gammaray bursts (GRB).
- A failed supernova.
- Produces a black hole and a high temperature accretion disk.
- MHD + neutrino heating produces an energetic jet.

However, no fully successful numerical hydrodynamic model !

Woosley 1999, McFadyan & Woosley 2003 → Harikae et al. 2009 - 2014

1208 trajectories with positive energy to be ejected outside.

Collapsar Model for Long Gamma-Ray Bursts

Harikae et al., ApJ 704 (2009), 354; 713 (2010) 304. Nakamura, Kajino, Mathews, Sato & Harikae, IJMP 22 (2013), 1330022.

Stages of a Collapsar

- 1. Initial Collapse of 25–40 M_{\odot} progenitors.
- 2. Accretion disk heats up and a funnel region above the black hole is heated by neutrino pairannihilation and magnetic fields.
- 3. Causes launch of a relativistic jet; $\Gamma \sim 5$.

Modeling R-Process

- 1. Extend the jet beyond the MHD+neutrino pairannihilation heating using 2D hydo.
- 2. Attach tracer particles to evolve the flow of material into the accretion disk and out into jet.

Evolution of low-Y_e neutron-rich material

Nakamura, Kajino, Mathews, Sato & Harikae, Int. J. Mod. Phys. 22 (2013), 1330022.

R-Process Nucleosynthesis in Gamma-Ray Bursts

Nakamura, Kajino, Mathews, Sato & Harikae, IJMP 22 (2013), 1330022.

What happens as neutrinos flow through the SN outer layers ?

Pulsar Kick from v-baryon int. in Magnetized Neutron Star.

v-induced nucleosynthesis and Mass Hierarchy.

R-process nucleosynthesis in GRBs.

Estimating Pulsar Kick Velocities of Proto-Neutron Star

A.G.Lyne, D.R.Lomier, Nature 369, 127 (94)

Kick Velocity: Average ... 400km/s, Highest ... 1500km/s

99% of Explosion Energy ~ 10⁵³ erg is taken by Neutrinos!

http://chandra.harvard.edu/photo/ 2004/casa/casa_xray.jpg

 $\sim 600 [\text{km/s}]$

 $v_{kick} =$

Even 1% Asymmetry is sufficient to explain the Pulsar Kick. Lai & Qian, Astrophys.J. 495 (1998) L103.

Relativistic Mean Field Theory:

Maruyama, Kajino, Cheoun et al., PR D83, 081303(R), (2011); D86, 123003 (2012).

Estimating Kick Velocity of PNS with T = 20 MeV and $B = 2 \times 10^{17}$ G

<u>Poloidal</u> Magnetic Field 2 - 3% Asymmetry

The Cross-Section of v-B (Mg. Field) in Rel. MFT

$$\frac{d^{2}\sigma}{dk'd\Omega'_{k}} = \frac{G_{F}^{2}}{8\pi^{2}}k'^{2}\sum_{s_{i},s_{f}}\int \frac{d^{3}p}{(2\pi)^{3}}\tilde{W}_{BL}(2\pi)\delta(|\mathbf{k}| - |\mathbf{k}'| + e_{i}(\mathbf{p}) - e_{f}(\mathbf{k} + \mathbf{p} - \mathbf{k}'))$$

$$\times [1 - f'_{i}(\mathbf{k}')]_{BB}(e_{i})[1 - (n_{B'}(e_{j}))]$$

$$\tilde{W}_{BL} = \operatorname{Tr}\left\{\frac{(\mathbf{k}' + m_{f})(1 + \gamma_{5}\phi_{f}(p'))}{4|\mathbf{k}'|}\gamma^{\mu}(1 - \gamma_{5})\frac{\mathbf{k}'}{2|\mathbf{k}|}\gamma^{\nu}(1 - \gamma_{5})\right\}$$

$$\times \operatorname{Tr}\left\{\frac{(\phi' + M_{f}^{*})(1 + \gamma_{5}\phi_{f}(p'))}{4E_{f}^{*}(p')}\gamma_{\mu}(c_{V} - c_{A}\gamma_{5})\frac{(\phi + M_{i}^{*})(1 + \gamma_{5}\phi_{i}(p))}{4E_{i}^{*}(p)}\gamma_{\nu}(c_{V} - c_{A}\gamma_{5})\right\}$$

$$m_{f} = 0 \quad \text{when } l_{f} = \nu \quad m_{f} = m_{e} \quad \text{when } l_{f} = e$$

$$n(e(p), s) \approx n(\varepsilon(p, s)) + n'(\varepsilon(p, s))\frac{\sqrt{p_{T}^{2} + M^{*2}}}{E_{p}^{*}}\mu Bs.$$
Deformed Distribution
$$Perturbative$$

$$Treatment$$

$$mon-Magnetic Part$$

$$Magnetic Part$$

EOS of Proto Neutron-Star-Matter in RMF N, Λ, σ, ω, ρ PM1-L1

Initial Angle-Dependence

 $k_i = \varepsilon_v$ (neutrino chem. pot.), $B = 2 \times 10^{17}$ G and $\theta_i = 0^\circ$

地球上で発生?

DNAは宇宙から?

爆発的(暴走?)な進化を 遂げた多様な地球上生命 生命が宇宙に起源を持つとすれば・・・ 太陽系外のアミノ酸も同じ構造を持っている筈。

左(L)型と右(D)型は互いに鏡像関係にあり、 左型を回転させても右型には一致しない。 http://www.nao.ac.jp/releaselist/archive/20100406/index_j.html

円偏光をとらえたすばる望遠鏡観測装置

すばる望遠鏡、オリオン星雲中心部 の星形成領域に円偏光モード観測! 黄色部分が光が左回り(反時計回り)、 赤色部分が右回りの円偏光の領域。

地球(太陽系)起源説:

太陽系の約400倍 太陽系の約100倍

実験室の偏光実験で否定

大規模な円偏光に原始太陽系が飲み込まれて誕生。

円偏光の照射で左巻きアミノ酸が選択され、その後隕石で地球に持ち込まれた。

第2、第3の地球では、左巻き、右巻き両方のアミノ酸が存在しえる。

マーチソン隕石:アミノ酸は人類と同じ左型! NASA発表(2009年3月16日)

http://tokyo.secret.jp/80s/come/amino-acid.html

アミノ酸のように、構成要素が同じでも鏡に映したような2 つの立体構造を取り得る物質を鏡像体(光学異性体)という。 同じアミノ酸でも右型と左型では性質が大きく変わり、右 型アミノ酸は体に害をなすことも多い。なぜ生命は左型ア ミノ酸を選んだのか、その理由は宇宙にある…とするのが Glavin氏らの考え。今後のさらなる研究が期待される

はやぶさ、奇跡の生還! 小惑星イトカワからの サンプルリターンに成功。

はやぶさ日に期待!

アミノ酸は全宇宙で左巻き=宇宙起源説

ボイド・梶野・ファミアーノ・尾中 論文, Astrobiology 10 (2010), 561-568; Int. J. Mol. Sci. 12 (2011) 3432; Astrobiology (2014), submitted.

強磁場を持つ超新星(原始中性子星)周辺でのニュートリノ・原子核相互作用

★ 左右非対称が完全に破れた素粒子は宇宙でニュートリノだけ

Mann and Primakoff, Origins of Life, 11 (1981), 255; 14Cのベータ崩壊! 5730年の半減期は、あまりにゆっくり過ぎる!

★ 超新星から多量(~10⁵⁸ 個)のニュートリノが放射される。 銀河中心で起きたとすると、10兆個/秒/cm²

★ 生命元素(炭素、窒素、酸素など)は超新星爆発で合成される、 天の川で約50年に一回の頻度で繰り返し起きる。

★ 原始中性子星/ブラックホールは強磁場(~1014 ガウス)を伴う。

スピン: ニュートリノ=1/2、炭素・酸素=0、窒素=1。

強磁場を持つ超新星(原始中性子星)周辺でのニュートリノ・原子核相互作用

Boyd, Famiano, Kajino & Onaka 2014, Astrobiology, submitted.

強い磁場を帯びた中心星(中性子星、ブラック ホール)からどれくらいの距離まで、磁場による 偏極を保てるか?

SUMMARY

Relic Supernova-v:

Future observation of Relic Supernova v's in megaton Hyper-Kamiokande (i.e. Gd-loaded Water Cherenkov detector in 10y run) could solve the SN rate problem and also discriminate EoS and neutrino oscillation pattern.

v-Mass hierarchy & Total Mass:

Supernova v-process nucleosynthesis could determine the mass hierarchy Δm_{13}^2 and $\sin^2\theta_{13} \sim 0.1$ simultaneously. Inverted hierarchy is statistically more preferred. Total v-mass, if $\Sigma m_v < 0.1$ eV or 0.05eV, strongly constrain the mass hierarchy.

Origin of r-process:

GRB could be a viable site for r-process (+ CCSN, MHD-jet, NSM). Origin of Chirality of Amino Acids on Earth:

Breaking Chirality of neutrinos may be the universal origin.

Origin of Pulsar Kick:

Parity violation in magnetized neutron star triggers asymmetric v-baryon reactions to likely explain the observed pulsar kick.