The infrared regime of SU(2) with one adjoint Dirac Fermion

Ed Bennett

Swansea University Prifysgol Abertawe

from research with Andreas Athenodorou, Georg Bergner, Biagio Lucini, Agostino Patella

> KMI,名古屋大学 2014年4月9日

Photo © Tim Parkin, Flickr; CC-BY

Abstract

The SU(2) gauge theory with one Dirac flavour in the adjoint representation is investigated on the lattice for a value of the bare coupling in the region connected to the continuum limit. Results for the gluonic and mesonic spectrum, string tension from Wilson and Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode number are presented. From these, we see evidence that the theory does not show conventional confining behaviour, instead seeming to lie within or very near the onset of the conformal window. The anomalous dimension of the fermionic condensate is found to lie in the range $0.9 \leq \gamma_* \leq 0.95$. Topological observables of the theory, and of the related 2-flavour theory, are also discussed both in terms of their phenomenology and of their use as a lattice diagnostic.

Outline

Introduction

Motivation Dirac → Majorana decomposition Lattice formulation Quantum numbers Lattice topology

Results

Phase diagram Spectrum Mass anomalous dimension Topological observables [arXiv:1209.5579]

What and why?

- $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
 - + $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

What do we know?

- Conformal window:
 - ${
 m SU}(2)$ + 2 flavours is conformal (e.g. arXiv:1104.4301 etc.)
 - $\operatorname{SU}(2) + 1$ flavour predicted to be confining (e.g. Bringoltz & Sharpe)
- Technicolor
 - $\mathrm{SU}(2)$ + 1 flavour $\chi SB \ \mathrm{SU}(2) \rightarrow \mathrm{SO}(2) \Rightarrow$ 2 Goldstones
 - Insufficient for EWSB
 - Not a walking technicolor candidate

What don't we know?

A lot! Useful things we are able to calculate:

- First-principles determination of whether $\mathrm{SU}(2)+1$ flavour is conformal or confining
- Spectroscopy
- Mass anomalous dimension

What do we expect?

- Confining: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :
 - $m_{\rm PCAC} < m_{\rm lock} \Rightarrow m_{\rm state} \sim m^{1/(1+\gamma_*)} \rightarrow 0.$
 - Ratios of spectral quantities in this regime constant.
 - Very different from QCD

(Figure: Agostino Patella, from arXiv:0911.0020)

Dynamical quenching in semiclassical dynamics—fermions decouple from e.g. topology

Chiral symmetry breaking?

- 1 flavour: no obvious chiral symmetry
- Real representation: real and imaginary parts factorise
- Reexpress action in terms of real and imaginary parts of field (c.f. e.g. Montvay, hep-lat/9510042)

$$\psi = \psi_{\mathsf{M}+} + i\psi_{\mathsf{M}-}$$

$$\begin{split} \psi_{\mathsf{M}+} &= \frac{1}{2}(\psi + C\overline{\psi}^{\mathrm{T}}) \qquad \psi_{\mathsf{M}-} = \frac{1}{2i}(\psi - C\overline{\psi}^{\mathrm{T}}) \\ \Rightarrow \overline{\psi}_{\mathsf{M}+} &= \frac{1}{2}(\overline{\psi} + \psi^{\mathrm{T}}C) \qquad \overline{\psi}_{\mathsf{M}-} = \frac{1}{2i}(\psi^{\mathrm{T}}C - \overline{\psi}) \end{split}$$

• Majorana constraint $\psi_{M\pm C} \equiv C \overline{\psi}_{M\pm}^{T} = \psi_{M\pm}$ satisfied.

Action

• Mass term:

$$\begin{array}{l} - \ \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ - \ \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{array}$$

• Kinetic term:

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm} \partial\!\!\!/ \psi_{\mathsf{M}\pm} = \frac{1}{4} \left[\overline{\psi} \partial\!\!\!/ \psi \pm \psi^{\mathrm{T}} C \partial\!\!\!/ \psi \pm \overline{\psi} \partial\!\!\!/ C \overline{\psi}^{\mathrm{T}} + \psi^{\mathrm{T}} C \partial\!\!\!/ C \overline{\psi}^{\mathrm{T}} \right] \\ &- \frac{\psi^{\mathrm{T}} C \partial\!\!\!/ C \overline{\psi}^{\mathrm{T}} = \overline{\psi} \partial\!\!\!/ \psi \\ &- \overline{\psi} \partial\!\!\!/ \psi = \overline{\psi}_{\mathsf{M}+} \partial\!\!\!/ \psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-} \partial\!\!\!/ \psi_{\mathsf{M}-} \end{aligned}$$

$$\Rightarrow S_{1 \text{ Dirac}} = S_{2 \text{ Majorana}} \\ = \overline{\psi}_{M+} \partial \!\!\!/ \psi_{M+} + \overline{\psi}_{M-} \partial \!\!\!/ \psi_{M-} + m(\overline{\psi}_{M+} \psi_{M+} + \overline{\psi}_{M-} \psi_{M-})$$

and the action needs no modification.

- $\mathrm{SU}(2)$ global chiral symmetry
 - Breaks to $\mathrm{SO}(2)\equiv\mathrm{U}(1)$
 - $\mathrm{U}(1)$ in Weyl basis \leftrightarrow baryon number B in Dirac basis

Lattice formulation

- Lattice action: $S=S_{\rm g}+S_{\rm f}$
- Wilson gauge action: $\beta \sum_p \left(1 \operatorname{Retr} U(p)\right)$
- Wilson (Dirac) fermion action: $S_{\rm f}^{\rm Dirac} = \sum_{x,y} \overline{\psi}(x) D(x,y) \psi(y)$
 - Massive Dirac operator:

$$\delta_{x,y} - \frac{\kappa}{2} \left[(1 - \gamma_{\mu}) U_{\mu}(x) \delta_{y,x+\mu} + (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(x - \mu) \delta_{y,x-\mu} \right]$$

• For observables, calculate correlation functions

$$\langle X \rangle = \frac{\int D\overline{\psi} D\psi dU X e^{-S}}{\int D\overline{\psi} D\psi dU e^{-S}}$$

- + $X = O^{\dagger}(\mathbf{x}, t)O(\mathbf{0}, 0)$, operator O encodes quantum numbers
- $\lim_{t\to\infty} \langle X \rangle \sim e^{-mt}$

Fermionic bilinears

- Majorana mesons: $O(\mathbf{x},t) = \overline{\psi}_{Mi} \Gamma \psi_{Mj} = O_{ij}(\Gamma),$ $i, j \in \{+, -\}$
- Reexpress these in Dirac form:

$$\begin{split} O_{\pm\mp}(\Gamma) &= \begin{cases} \frac{1}{4i} \left(\psi^{\mathrm{T}} C \Gamma \psi - \overline{\psi} \Gamma C \overline{\psi}^{\mathrm{T}} \right) & \Gamma = \mathbb{1}, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ \pm \frac{1}{2i} \overline{\psi} \Gamma \psi & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma_{5} \gamma \end{cases} \\ O_{\pm\pm}(\Gamma) &= \begin{cases} \frac{1}{4} \left(2 \overline{\psi} \Gamma \psi \pm \psi^{\mathrm{T}} C \Gamma \psi \pm \overline{\psi} \Gamma C \overline{\psi}^{\mathrm{T}} \right) & \Gamma = \mathbb{1}, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ 0 & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma, \gamma_{0} \gamma_{5} \gamma \end{cases} \end{split}$$

• Then take correlation functions; e.g. for $\Gamma \in \{1, \gamma_5 \gamma_\mu, \gamma_5\}$,

$$\begin{split} \left\langle O_{+-}^{\dagger}(x)O_{+-}(0)\right\rangle \\ &= -\mathrm{tr}\overline{\Gamma}CD^{-1\mathrm{T}}(0;x)C\Gamma D^{-1}(0;x) + \mathrm{tr}(\overline{\Gamma}C)^{\mathrm{T}}D^{-1\mathrm{T}}(0;x)C\Gamma D^{-1}(0;x) \\ &- \mathrm{tr}C\overline{\Gamma}D^{-1}(x;0)\Gamma CD^{-1\mathrm{T}}(x;0) + \mathrm{tr}(C\overline{\Gamma})^{\mathrm{T}}D^{-1}(x;0)\Gamma CD^{-1\mathrm{T}}(x;0) \\ &= -\frac{1}{4}\mathrm{tr}\overline{\Gamma}D^{-1}(x;0)\Gamma D^{-1}(0;x) \end{split}$$

Quantum numbers

Dirac bilinears	Majorana bilinears	$U(1)^P$	correlators	
$ar{\psi}\gamma_0\gamma_5\psi$	$O_{++}(\gamma_0\gamma_5) + O_{}(\gamma_0\gamma_5)$	0-	singlet $\gamma_5, \gamma_0\gamma_5$	
$ar{\psi}\gamma_5\psi$	$O_{++}(\gamma_5) + O_{}(\gamma_5)$			
$\psi^{\mathrm{T}} C \gamma_5 \psi$	$-i(O_{++}(1) - O_{}(1) + 2iO_{+-}(1))$	2-	triplet 1	
$\psi^{\dagger}C\gamma_{5}\psi^{*}$	$-i(O_{++}(1) - O_{}(1) - 2iO_{+-}(1))$	-2^{-}		
$ar{\psi}\psi$	$O_{++}(1) + O_{}(1)$	0+	singlet 1, γ_0	
$ar{\psi}\gamma_0\psi$	$O_{+-}(\gamma_0)$	0		
$\psi^{\mathrm{T}}C\psi$	$-i(O_{++}(\gamma_5) - O_{}(\gamma_5) + 2iO_{+-}(\gamma_5))$	2+		
$\psi^{\mathrm{T}} C \gamma_0 \psi$	$-i(O_{++}(\gamma_5\gamma_0) - O_{}(\gamma_5\gamma_0) + 2iO_{+-}(\gamma_5\gamma_0))$	2	triplet or or or	
$\psi^{\dagger}C\psi^{*}$	$-i(O_{++}(\gamma_5) - O_{}(\gamma_5) - 2iO_{+-}(\gamma_5))$	_2+	- inpier 75, 70 75	
$\psi^{\dagger} C \gamma_0 \psi^*$	$-i(O_{++}(\gamma_5\gamma_0) - O_{}(\gamma_5\gamma_0) - 2iO_{+-}(\gamma_5\gamma_0))$	-2		
$ar{\psi}\gamma_5oldsymbol{\gamma}\psi$	$O_{++}(\gamma_5 \boldsymbol{\gamma}) + O_{}(\gamma_5 \boldsymbol{\gamma})$	0+	singlet $\gamma_5 oldsymbol{\gamma}, \gamma_0 \gamma_5 oldsymbol{\gamma}$	
$ar{\psi}\gamma_0\gamma_5oldsymbol{\gamma}\psi$	$O_{+-}(\gamma_0\gamma_5oldsymbol\gamma)$	0.		
$ar{\psi}\gamma_0oldsymbol{\gamma}\psi$	$O_{+-}(\gamma_0 oldsymbol{\gamma})$	0-	singlet $oldsymbol{\gamma}$, $\gamma_0oldsymbol{\gamma}$	
$ar{\psi}oldsymbol{\gamma}\psi$	$O_{+-}(oldsymbol{\gamma})$	0		
$\psi^{\mathrm{T}} C \boldsymbol{\gamma} \psi$	$-i(O_{++}(\gamma_5\boldsymbol{\gamma}) - O_{}(\gamma_5\boldsymbol{\gamma}) + 2iO_{+-}(\gamma_5\boldsymbol{\gamma}))$	2-	triplet $\gamma_5 oldsymbol{\gamma}$	
$\psi^{\dagger} C {oldsymbol \gamma} \psi^*$	$-i(O_{++}(\gamma_5 oldsymbol{\gamma}) - O_{}(\gamma_5 oldsymbol{\gamma}) - 2iO_{+-}(\gamma_5 oldsymbol{\gamma}))$	-2^{-}		

Lattice topology

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{29\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\mathsf{L}}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\rm T} = \sum_i Q_{\rm L}(i)$
- Problem: realistic gauge fields are hot and noisy
- One solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons
- Observables:
 - Topological susceptibility $\chi_{\rm T} = \langle Q_{\rm T}^2 \rangle / V \equiv (\langle Q_{\rm T}^2 \rangle \langle Q_{\rm T} \rangle^2) / V$ Instanton size: $Q_{\rm peak} = 6 / (\pi^2 \rho^4)$
 - - Instanton size distribution
 - Average instanton size (correcting for cut-off)

Gauge noise

(left: from Schäfer & Shuryak arXiv:hep-ph/9610451 §III.B.2)

Lattice topology

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{29\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\mathsf{L}}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\rm T} = \sum_i Q_{\rm L}(i)$
- Problem: realistic gauge fields are hot and noisy
- One solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons
- Observables:
 - Topological susceptibility $\chi_{\rm T} = \langle Q_{\rm T}^2 \rangle / V \equiv (\langle Q_{\rm T}^2 \rangle \langle Q_{\rm T} \rangle^2) / V$ Instanton size: $Q_{\rm peak} = 6 / (\pi^2 \rho^4)$
 - - Instanton size distribution
 - Average instanton size (correcting for cut-off)

Gauge noise

(left: from Schäfer & Shuryak arXiv:hep-ph/9610451 §III.B.2)

Lattice topology

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{29\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\mathsf{L}}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\rm T} = \sum_i Q_{\rm L}(i)$
- Problem: realistic gauge fields are hot and noisy
- One solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons
- Observables:
 - Topological susceptibility $\chi_{\rm T} = \langle Q_{\rm T}^2 \rangle / V \equiv (\langle Q_{\rm T}^2 \rangle \langle Q_{\rm T} \rangle^2) / V$ Instanton size: $Q_{\rm peak} = 6 / (\pi^2 \rho^4)$
 - - Instanton size distribution
 - Average instanton size (correcting for cut-off)

Lattice results

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - Ongoing work at $\beta=2.2$ for above volumes, and $\beta=2.05,$ $V=64\times32^3,96\times48^3$
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma \equiv \operatorname{Polyakov} \operatorname{loop} \sigma$
- Center unbroken

Phase diagram

a m

Lattice results

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - Ongoing work at $\beta=2.2$ for above volumes, and $\beta=2.05,$ $V=64\times32^3,96\times48^3$
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma \equiv \operatorname{Polyakov} \operatorname{loop} \sigma$
- Center unbroken

Lattice parameters

Lattice	V	$-am_0$	N _{conf}	Acceptance	$N_{\rm pf}$	$t_{\rm len}$	n_{steps}	Machine
A1	16×8^{3}	1.475	2400	91.4%	1	1.0	10	SC
A2	16×8^3	1.500	2200	90.9%	1	1.0	10	SC, UL
A3	16×8^3	1.510	2400	89.8%	1	1.0	10	SC, UL
A4	16×8^3	1.510	4000	92.4%	2	1.0	8	SC
B1	24×12^3	1.475	2400	79.9%	1	1.0	10	SC, UL
B2	24×12^3	1.500	2300	78.7%	1	1.0	10	SC, UL
B3	24×12^3	1.510	4000	88.5%	2	1.0	10	SC, UL
C1	32×16^3	1.475	2100	90.6%	1	1.0	20	SC
C2	32×16^{3}	1.490	2300	90.0%	1	1.0	20	SC, UL
C3	32×16^3	1.510	2200	89.4%	1	1.0	20	UL
C4	32×16^3	1.510	2300	83.2%	2	4.0	45	BGP
C5	32×16^{3}	1.514	2300	89.8%	1	1.0	20	UL, BGP
C6	32×16^3	1.519	2300	81.8%	1	1.0	20	UL, BGP
C7	32×16^3	1.523	2200	88.0%	1	1.0	20	SC
D1	48×24^3	1.510	1534	80.5%	2	4.0	65	BGP
D2	48×24^{3}	1.523	2168	91.4%	1	1.0	40	BGP

Finite-volume study

 $a\ m_{\rm PCAC}$

Lattice results

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - Ongoing work at $\beta=2.2$ for above volumes, and $\beta=2.05,$ $V=64\times32^3,96\times48^3$
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma \equiv \operatorname{Polyakov} \operatorname{loop} \sigma$
- Center unbroken

Spectrum

Spectral ratios

Lattice results

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - Ongoing work at $\beta=2.2$ for above volumes, and $\beta=2.05,$ $V=64\times32^3,96\times48^3$
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma \equiv \operatorname{Polyakov} \operatorname{loop} \sigma$
- Center unbroken

Wilson loops

Wilson loops

 $\Rightarrow \sqrt{\sigma} = 0.354(5)$

Lattice results

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - Ongoing work at $\beta=2.2$ for above volumes, and $\beta=2.05,$ $V=64\times32^3,96\times48^3$
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma \equiv \operatorname{Polyakov} \operatorname{loop} \sigma$
- Center unbroken

Center symmetry

Lattice results

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - Ongoing work at $\beta=2.2$ for above volumes, and $\beta=2.05,$ $V=64\times32^3,96\times48^3$
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma \equiv \operatorname{Polyakov} \operatorname{loop} \sigma$
- Center unbroken

Mass anomalous dimension

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\rm PCAC})^{\frac{1}{1+\gamma_*}}$ - $\Rightarrow 0.9 \lesssim \gamma_* \lesssim 1.1$
- Fitting the Dirac mode number per unit volume $\overline{\nu}(\Omega)$

$$a^{-4}\overline{\nu}(\Omega) \approx a^{-4}\nu_0(m) + A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$$

from Patella [arxiv:1204.4432]

 $- \Rightarrow 0.9 \lesssim \gamma_* \lesssim 0.95$

 $\gamma_* = 0.0$

 $\gamma_* = 0.5$

 $\gamma_* = 1.0$

 $\gamma_* = 1.5$

 $\gamma_* = 2.0$

 $\gamma_* = 0.8$

 $\gamma_* = 0.9$

 $\gamma_* = 1.0$

Mass anomalous dimension

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\rm PCAC})^{\frac{1}{1+\gamma_*}}$ - $\Rightarrow 0.9 \lesssim \gamma_* \lesssim 1.1$
- Fitting the Dirac mode number per unit volume $\overline{\nu}(\Omega)$

$$a^{-4}\overline{\nu}(\Omega) \approx a^{-4}\nu_0(m) + A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$$

from Patella [arxiv:1204.4432]

 $- \Rightarrow 0.9 \lesssim \gamma_* \lesssim 0.95$

Mode number results

Mode number results

γ_* mode number fit

γ_* mode number fit

 $0.100309 \downarrow - 0.113707 + - 0.12884 \downarrow - 0.14301 \downarrow - - 0.165855 \downarrow - 0.187747 + - 0.21824 \downarrow - 0.212120 \downarrow - - 0.21473 \downarrow - 0.218747 \downarrow - 0.21824 \downarrow - 0.218747 \downarrow - 0.218777 \downarrow - 0.218777 \downarrow - 0.218777 \downarrow - 0.21$

γ_* mode number fit

Mass anomalous dimension

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\rm PCAC})^{\frac{1}{1+\gamma_*}}$ - $\Rightarrow 0.9 \lesssim \gamma_* \lesssim 1.1$
- Fitting the Dirac mode number per unit volume $\overline{\nu}(\Omega)$

$$a^{-4}\overline{\nu}(\Omega) \approx a^{-4}\nu_0(m) + A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$$

from Patella [arxiv:1204.4432]

 $- \Rightarrow 0.9 \lesssim \gamma_* \lesssim 0.95$

Topological observables

- Theories considered:
 - Pure gauge $\mathop{\rm SU}(2)$
 - SU(2) + 1 flavour (as above)
 - SU(2) + 2 flavours (MWT-see arXiv:1104.4301 etc.)
- Expectations:
 - Conformal: Same as pure gauge
 - Confining: Different
- Results:
 - Topological susceptibility consistent between all three
 - Instanton size distribution consistent (at larger lattices)

Topological susceptibility

Topological observables

- Theories considered:
 - Pure gauge $\mathop{\rm SU}(2)$
 - SU(2) + 1 flavour (as above)
 - SU(2) + 2 flavours (MWT-see arXiv:1104.4301 etc.)
- Expectations:
 - Conformal: Same as pure gauge
 - Confining: Different
- Results:
 - Topological susceptibility consistent between all three
 - Instanton size distribution consistent (at larger lattices)

Instanton size distribution

Finite volume effects under control

Finite volume effects severely uncontrolled

Average instanton size

Topological observables

- Theories considered:
 - Pure gauge $\mathop{\rm SU}(2)$
 - SU(2) + 1 flavour (as above)
 - SU(2) + 2 flavours (MWT-see arXiv:1104.4301 etc.)
- Expectations:
 - Conformal: Same as pure gauge
 - Confining: Different
- Results:
 - Topological susceptibility consistent between all three
 - Instanton size distribution consistent (at larger lattices)

Conclusions

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Topology of MWT confirms existing findings of conformality
- Instanton size distribution gives clear indication of finite-volume artefacts

Current work

This project

- + $\beta=2.05$ work to be published "soon"
- Higher values of β to confirm continuum limit (currently $\beta=2.2$)
- Larger volumes ($V=64\times 32^3, 96\times 48^3$
- Lower m (towards chiral limit, look for signs of χSB)
- Look to running of coupling via Wilson flow

With LatKMI

- + $N_{\rm f}=4$ QCD is chorally broken, $N_{\rm f}=8$ walking, $N_{\rm f}=12$ conformal
- Compare topological observables to $\mathop{\rm SU}(3)$ YM using gradient flow smoothing
- Expect $N_{\rm f} = 12 \equiv$ YM, $N_{\rm f} = 4 \neq$ YM, $N_{\rm f} = 12 \approx$ YM
- Use mode number to verify existing calculations of γ_\ast

ご清聴ありがとうございました!

Photo © Tim Parkin, Flickr; CC-BY